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Math ématiques/Mathematics (Analyse Num érique/Numerical Analysis) Dynamic Programming for Mean-field type Control

For mean-field type control problems, stochastic dynamic programming requires adaptation. We propose to reformulate the problem as a distributed control problem by assuming that the PDF ρ of the stochastic process exists. Then we show that Bellman's principle applies to the dynamic programming value function V (τ, ρ τ ) where the dependency on ρ τ is functional as in P.L. Lions' analysis of mean-filed games (2007). We derive HJB equations and apply them to two examples, a portfolio optimization and a systemic risk model.

Programmation dynamique pour les problèmes de contrôle à champs moyen

. Les résultats sont appliqués à un problème d'optimisation de portefeuille et à un problème de risque systémique.

Introduction

Stochastic control is an old topic [START_REF] Fleming | Controlled Markov Process and Viscosity Solutions[END_REF][START_REF] Øksendal | Applied Stochastic Control of Jump Diffusions[END_REF][START_REF] Touzi | Optimal Stochastic Control, Stochastic Target Problems and Backard SDE[END_REF][START_REF] Zhou | Stochastic Control[END_REF] which has a renewed interest in economy and finance due to mean-field games [START_REF] Lasry | Mean-field games[END_REF][START_REF] Garnier | Large deviations for a mean field model of systemic risk[END_REF][START_REF] Shen | Lqudty Generated By Heterogeneous Belefs and Costly Estmatons[END_REF]. They lead, among other things, to stochastic control problems which involve statistics of the Markov process like means and variance. Optimality conditions for these are derived either by stochastic calculus of variation [START_REF] Pironneau | A Maximum Principle for SDEs of Mean-Field Type[END_REF] or by stochastic dynamic programming in the quadratic case [START_REF] Bensoussan | Control and Nash Games with Mean Field Effect[END_REF][START_REF] Bensoussan | Mean-field Games and Mean-field Type Control[END_REF], but not in the general case for the fundamental reason that Bellman's principle does not apply in its original form on the stochastic trajectories of say X t if those depend upon statistics of X t like its mean value. As noticed earlier in [START_REF] Lions | Mean-field games[END_REF] and in [START_REF] Bensoussan | The Master Equation in Mean-Field Theory[END_REF] 1 , there seems to be no such restriction if one works with the probability measure of X t and use the Fokker-Planck equation.

In this note we apply the dynamic programming argument to the value functional V (τ, ρ τ (•)) where ρ τ is the PDF of X τ . Of course this is at the cost of several regularity assumptions, in particular it requires the existence of PDF at all times.

Once the problem is reformulated with the Fokker-Planck equation, it becomes a somewhat standard exercise to find the optimality necessary conditions by a calculus of variations. So the note begins likewise. Then a similar result is obtained by using dynamic programming and the connection with the previous approach and with stochastic dynamic programming is established, with the advantage that sufficient conditions for optimality are obtained. Finally we apply the method to two mean-field type control problems stated in [START_REF] Pironneau | A Maximum Principle for SDEs of Mean-Field Type[END_REF] and [START_REF] Garnier | Large deviations for a mean field model of systemic risk[END_REF].

The Problem

Let d, s, r ∈ N + . Consider a stochastic differential equation dX t = u(X t , t)dt + σ(X t , t, u(X t , t))dW t , (2.1) 
where T > 0, u : R d × (0, T ) → R d , σ : R d × (0, T ) × R d → R d×d and W t is a d-vector of independent Brownian motions. We make the usual assumptions for X t to exist once X 0 is known [START_REF] Touzi | Optimal Stochastic Control, Stochastic Target Problems and Backard SDE[END_REF].

Let H : R d ×(0, T )×R d ×R r → R, h : R d ×(0, T )×R d → R r , G : R d ×R s → R, g : R d → R s . Assume also that ρ 0 is positive with unit measure on R d . Let V d ⊂ R d , U d = {u ∈ (L ∞ (R d × R)) d : u(x, t) ∈ V d ∀x,
t} and consider the problem

min u∈U d J := T 0 E[ H(X t , t, u(X t , t), E[ h(X t , t, u(X t , t))])]dt + E[G(X T , E[g(X T )])]
subject to (2.1) and such that ρ 0 is the PDF of X 0 (2.2)

Andersson et al [START_REF] Pironneau | A Maximum Principle for SDEs of Mean-Field Type[END_REF] analyzed this problem using stochastic calculus of variations, claiming rightly that dynamic programming is not possible unless h = 0, g = 0. Yet denoting

Q = R d × (0, T ) and µ ij = 1 2
k σ ik σ jk , with sufficient regularity, namely if X t has a PDF ρ t (for weaker hypotheses see [START_REF] Neufeld | Nonlinear Lévy processes and their Characteristics[END_REF]), the problem is equivalent to

min u∈U d J = Q H(x, t, u(x, t), ρ t (x), χ(t))ρ t (x)dxdt + R d G(x, ξ)ρ |T dx where χ(t) = R d h(x, t, u(x, t), ρ t (x))ρ t (x)dx, ξ = R d g(x)ρ T (x)dx and ρ t s.t. ∂ t ρ + ∇ • (uρ) -∇ • ∇ • (µρ) = 0, ρ| 0 = ρ 0 (x), x ∈ R d (2.3)
where H = H, h = h if these are not functions of ρ t (x). HYPOTHESIS 1.

-Assume that all data are continuously differentiable with respect to u and ρ and have additional regularity so that the solution to the Fokker-Planck equation is unique and uniformly continuously differentiable with respect to u and µ.

Calculus of Variations

PROPOSITION 1. -Let A : B = trace(A T B). A control u is optimal for (2.3) only if R d H ′ u + h ′ u R d H ′ χ ρdx + ∇ρ * -µ ′ u : (∇∇ρ * ) (v -u)ρdx ≥ 0 ∀t, ∀v ∈ U d with (3.4) ∂ t ρ * + u∇ρ * + µ : ∇∇ρ * = -H ′ ρ ρ + H + (h ′ ρ ρ + h) R d H ′ χ ρdx , ρ * |T = g R d G ′ ξ ρ |T dx + G. (3.5) Proof . -Let us regularize problem (2.3) by replacing R d by Ω := (-L, L) d with L ≫ 1. Now Q = Ω × (0, T ).
We add to the Fokker-Planck equation (2.3) the boundary conditions: ρ(x, t) = 0, ∀x ∈ ∂Ω, t ∈ (0, T ). Consider an admissible variation λδu, i.e. u + λδu ∈ U d for all λ ∈ (0, 1). Such a variation induces a variation λδρ of ρ given by

∂ t δρ + ∇ • (uδρ + ρδu + λδuδρ) -∇ • ∇ • (µδρ + µ ′ u δu(ρ + λδρ)) = 0, δρ| t=0 = 0, (3.6) where µ ′
u is evaluated at x, t, u + θδu for some θ ∈ (0, λ). By hypothesis the solution of the Fokker-Planck eq. in (2.3) depends continuously on the data u, µ, so (3.6) with λ = 0 defines δρ. Also

δχ = Ω [(h ′ u δu + h ′ ρ δρ)ρ + hδρ], δJ = Q [(H ′ u δu + H ′ ρ δρ + H ′ χ δχ)ρ + Hδρ] + Ω [G ′ ξ δξρ |T + Gδρ |T ] 2 = Q (H ′ u + h ′ u Ω [H ′ χ ρ])ρδu + Q (H ′ ρ ρ + H + (h ′ ρ ρ + h) Ω [H ′ χ ρ])δρ + Ω [( Ω [G ′ ξ ρ |T ]g + G)δρ |T ]
The adjoint state ρ * is given by (3.5) and ρ * |∂Ω = 0. Then, multiplied by δρ and integrated on Q (3.5) gives

Q δρ H ′ ρ ρ + H + (h ′ ρ ρ + h) Ω [H ′ χ ρ] = - Q δρ [∂ t ρ * + u∇ρ * + µ : ∇∇ρ * )] = Q [ρ * (∂ t δρ + ∇ • (uδρ) -∇ • ∇ • (µδρ))] - Ω ρ * δρ| T 0 = - Q [ρ * ∇ • (ρδu -∇ • (µ ′ u δuρ))] - Ω [(g Ω [G ′ ξ ρ |T ] + G)δρ| T ] Hence δJ = Q (H ′ u + h ′ u Ω [H ′ χ ρ])ρδu - Q [ρ * ∇ • (ρδu -∇ • (µ ′ u δuρ))] = Q H ′ u + h ′ u Ω [H ′ χ ρ] + ∇ρ * -(∇∇ρ * )µ ′ u ρδu (3.7)

Dynamic Programming

For notational clarity consider the more general case where H, G are functionals of ρ t (•). For any τ ∈ [0, T ] and any ρ τ ≥ 0 with unit measure on R d , let

V (τ ; ρ τ ) = min u∈U d J(τ ; ρ τ , u) := T τ R d H(x, t, u(x, t); ρ t )ρ t (x)dxdt + R d G(x; ρ |T )ρ |T dx (4.8)
subject to (2.3), i.e. such that ρ t is the PDF of X t given by (2.1) starting with ρ τ at time τ Note that the second parameter in V is a function of x, yet it is not V (τ, ρ τ (x)) but V (τ ; ρ τ (•)). We now prove the following version of Bellman's principle of optimality : PROPOSITION 2.

-If the problem is regular, then for any τ ∈ [0, T ] and any positive ρ τ with unit measure on R d , we have :

V (τ ; ρ τ ) = min u∈U d τ +δτ τ R d H(x, t, u(x, t); ρ t )ρ t (x)dxdt + V (τ + δτ ; ρ τ +δτ ) (4.9)
subject to ρ t given by (2.3) on [τ, τ + δτ ] initialized by ρ τ at time τ

Proof . -Denote the infimum of the right-hand side by V (τ ; ρ τ ). For any ǫ > 0, there exists an u ∈ U d such that, if ρ t is the solution of (2.3) with control u :

V (τ ; ρ τ ) + ǫ > J(τ ; ρ τ , u) = T τ R d H(x, t, u(x, t); ρ t )ρ t (x)dxdt + R d G(x; ρ |T )ρ |T dx = τ +δτ τ R d Hρ t + T τ +δτ R d Hρ t + R d Gρ |T ≥ τ +δτ τ R d Hρ t + V (τ + δτ ; ρ τ +δτ ) ≥ V (τ ; ρ τ )
Conversely, given u ∈ U d and ǫ > 0, ∃ũ ∈ U d which coincides with u on R d × [τ, τ + δτ ], such that:

J(τ + δτ ; ρτ+δτ , ũ) ≤ V (τ + δτ ; ρτ+δτ ) + ǫ
where ρt is the solution of (2.3) at t with control ũ starting with ρ τ at time τ . Hence :

V (τ ; ρ τ ) = V (τ ; ρτ ) ≤ J(τ ; ρτ , ũ) = T τ R d H(x, t, ũ(x, t); ρt )ρ t (x)dxdt + R d G(x; ρ|T )ρ |T dx = τ +δτ τ R d
H(x, t, u(x, t); ρt )ρ t (x)dxdt + J(τ + δτ ; ρτ+δτ , ũ)

≤ τ +δτ τ R d H(x, t, u(x, t); ρt )ρ t (x)dxdt + V (τ + δτ ; ρτ+δτ ) + ǫ
We obtain the conclusion by letting ǫ → 0 and by taking the infimum over u ∈ U d .

PROPOSITION 3. -(HJB minimum principle).

There exists {x, τ, ρ τ (•)} → V ′ ∈ R such that :

0 = min v∈V d R d H(x, τ, v(x); ρ τ ) + H ′ ρ (x, τ, v(x); ρ τ ) • ρ τ +∂ τ V ′ + µ(x, τ, v(x)) : ∇ x ∇ x V ′ + v(x) • ∇ x V ′ ρ τ dx (4.10) 
where

H ′ ρ • ν = lim λ→0 [H(x, τ ; ρ + λν) -H(x, τ, ρ)]/λ. Proof .
-A first order approximation of the time derivative in the Fokker-Planck equation gives

δρ τ := ρ τ +δτ -ρ τ = δτ [∇ • ∇ • (µ τ ρ τ ) -∇ • (u τ ρ)] + o(δτ ) (4.11)
When everything is differentiable and smooth,

V (τ + δτ ; ρ τ +δτ ) = V (τ ; ρ τ ) + ∂ τ V (τ ; ρ τ )δτ + V ′ ρ (τ ; ρ τ ) • δρ τ + o(δτ ) (4.12)
Using (4.12) and the mean value theorem for the time integral, (4.9) yields

V (τ ; ρ τ ) = min u∈U d δτ R d Hρ τ dx + V (τ ; ρ τ ) + ∂ τ V (τ ; ρ τ )δτ + V ′ ρ (τ ; ρ τ ) • δρ τ + o(δτ )
The terms V (τ ; ρ τ ) cancel; divided by δτ and combined with (4.11) and letting δτ → 0, (4.13) gives

0 = min u∈U d R d Hρ τ dx + ∂ τ V (τ ; ρ τ ) + V ′ ρ (τ ; ρ τ ) • [∇ • ∇ • (µ τ ρ τ ) -∇ • (u τ ρ)] (4.13)
To finalize the proof we need to relate V to V ′ ρ and to its Riesz representative V ′ : PROPOSITION 4. -For any τ ∈ [0, T ] and any initial PDF ρ τ , let û and ρ denote respectively the optimal control and the corresponding solution of (2.3). Then:

R d V ′ (τ ; ρ τ )ρ τ dx = V ′ ρ (τ ; ρ τ ) • ρ τ = V (τ ; ρ τ ) + T τ R d H ′ ρ (x, t, û(x, t); ρt ) • ρt ρt (x)dxdt + R d G ′ ρ (x; ρT ) • ρT ρT (x)dx (4.14)
Proof . -Notice that Fokker-Planck implies ρ t = G(t -τ ) * ρ τ where G is a semi-group operator. Let (û t ) t∈[0,T ] be the optimal control and (ρ t ) t∈[0,T ] the corresponding solution of (2.3). Then :

V (τ ; ρτ ) = T τ R d H(x, t, û(x, t); G(t -τ ) * ρτ )G(t -τ ) * ρτ dxdt + R d G(x; ρ|T )ρ |T dx
This can be differentiated with respect to ρ by computing lim λ→0

1 λ V (τ ; ρτ + λν) -V (τ ; ρτ ) , for a given function x → ν(x) : V ′ ρ (τ ; ρτ ) • ν = T τ R d H(x, t, û(x, t); G(t -τ ) * ρτ )G(t -τ ) * νdxdt + R d G(x; ρ|T )G(T -τ ) * νdx + T τ R d H ′ ρ (x, t, û(x, t); G(t -τ ) * ρτ ) • [G(t -τ ) * ν] G(t -τ ) * ρτ dxdt + R d G ′ ρ (x; G(T -τ ) * ρτ ) • [G(T -τ ) * ν] G(T -τ ) * ρτ dx
Taking ν = ρτ leads to (4.14).

End of proof of Proposition 3 Differentiating (4.14) w.r. to τ leads to

∂ τ V (τ ; ρ τ ) = ∂ τ V ′ ρ (τ ; ρ τ ) • ρ τ + R d H ′ ρ (x, τ, ûτ (x); ρ τ ) • ρ τ ρ τ (x)dx
where ûτ is the optimal control at time τ . Now, let us go back to (4.13), which we rewrite:

0 = min uτ R d H(x, τ, u τ (x); ρ τ ) + H ′ ρ (x, τ, u τ (x); ρ τ ) • ρ τ ρ τ (x)dx + ∂ τ V ′ ρ (τ ; ρ τ ) • ρ τ + V ′ ρ (τ ; ρ τ ) • [∇ • ∇ • (µ τ ρ τ ) -∇ • (u τ ρ τ )] (4.15) 
By integrating by parts the last term, Proposition 1 is proved.

REMARK 1. -Notice that (4.14) and (4.8) implies : 

R d V ′ |T ρT dx = V (T, ρT ) = R d G + g R d ∂ ξ Gρ T dx ρT dx, ξ = R d g(x, ρT )ρ T dx (4.16) REMARK 2. -By taking ρ τ = δ(x -x 0 ) the usual HJB principle is found if h = g = 0. PROPOSITION 5. -(Hamilton-Jacobi-Bellman equation) When V d = R d , at the optimal solution û ∇ u H + ∇ u H ′ • ρτ + ∇ x V ′ + ∂ u µ : ∇ x ∇ x V ′ = 0 (4.17) R d (H + H ′ • ρτ + ∂ τ V ′ + μ : ∇ x ∇ x V ′ + û • ∇ x V ′ )ρ τ dx = 0 (4.18) REMARK 3. -When H = H(x, t, u(x, t), ρ t (x), χ(t)) with χ(t) = R d h(x, t, u(x, t), ρ t (x))ρ t (x)dx, H ′ ρ (x, τ, u(x, τ ); ρ τ ) • ρ τ = ρ τ ∂ ρ H + R d ∂ χ Hρ τ dx (h + ρ τ ∂ ρ h). ( 4 
v = M v = m Figure 1 -The control is v = M when x < x 0 , affine when x 0 < v < x 1 , and v = m when x > x 1 with x 0 = -M σ 2 b + ( 1 2γ + E T x)e -a(T -t) , x 1 = -mσ 2 b + ( 1 2γ + E T x)e -a(T -t)
Then for the optimal û and ρ (4.18) yields

∂ τ V ′ + μ : ∇ x ∇ x V ′ + û • ∇ x V ′ = -H + ρ∂ ρ H + R d ∂ χ H ρdx (h + ρ∂ ρ h) . ( 4 

.20)

The link with Section 3. is established: (3.5) and (4.20)coincide with V ′ = ρ * .

Portfolio Optimization

Following [START_REF] Pironneau | A Maximum Principle for SDEs of Mean-Field Type[END_REF], a portfolio of value x t made of a risky asset and a riskless one is optimally managed at t if the quantity v invested at t in the risky asset minimizes, with ρ |0 given,

J = 1 2 Ω (γx 2 -x)ρ |T dx - γ 2 Ω xρ |T dx 2 , ∂ t ρ + ∂ x [(ax + bv)ρ] -∂ xx [ σ 2 v 2 2 ρ] = 0 (5.21)
where a is the interest rate b is a minus the drift of the risky asset and σ is its volatility. We assume that v is a feedback function x, t → v(x, t) there are bounds on v, at each time m ≤ v ≤ M . Thus d = 1 and

H = 0, h = 0, G = 1 2 (γx 2 -x -γx Ω xρ |T dx), u = ax + bv, µ = σ 2 v 2 2 (5.22)
The problem deviates slightly from framework (2.3) but the methodology is the same and gives: 

σ 2 v 2 2 ∂Figure 2 -

 22 Figure 2 -Left: x, t → ρ(x, t); x ∈ (-15, 15) is horizontal, t ∈ (0, 2) is from front to back with origin x = -15, t = 0 on the lower left corner. Right: x, t → g(x, t).

Figure 3 -

 3 Figure 3 -ρ * (left) and ρ * (right) versus x (horizontal) and t (vertical).

Figure 4 -

 4 Figure 4 -Iteration history: values of J (top curve) and grad u J| 2 versus iteration count.

In turn, it implies q + q(2a + 2bA + A 2 σ 2 ) = 0, q(T ) = γ 2 , s(T ) = 0, r(T ) = -1 2 -γ R xρ |T and ṙ + (a + bA)r + 2qBb + 2σ 2 ABq = 0, ṡ + rBb + σ 2 B 2 q = 0, s(T ) = 0, b∂ x ρ * + σ 2 v∂ xx ρ * = 2(b + σ 2 A)qx + br + 2σ 2 Bq (5.25)

dτ is required for this regime.

-The advantage here compared with [START_REF] Pironneau | A Maximum Principle for SDEs of Mean-Field Type[END_REF] is that we do not need to guess the shape of the control nor of the adjoint state, once it is assumed polynomial. The analysis also handles constraints.

Numerical Solution of a Systemic Risk Problem

In [START_REF] Garnier | Large deviations for a mean field model of systemic risk[END_REF] it is shown that the rare event probability that the state of a system of N banks, depending on the mean situation of all, transits from a stable situation ρ 0 to a critical one ρ T at time T is given finding the minimum in g of J with

, this is also

Now we notice that ρ = ρ + t T (ρ T -ρ|T ) satisfies the conditions at 0 and T and the PDE with

This means that the problem is in the form analyzed above with state variable {ρ, ρ} and control ũ; naturally the adjoint state has also two components: {ρ * , ρ * }.

Based on the variation of J with respect to u we have used 100 iterations of a gradient method with fixed step size, ω = 0.3. The parameters of the problem are T = 2, h = 0.1, θ = 1, σ 2 = 2 3 θ and ρ 0 , ρ T are as in [START_REF] Garnier | Large deviations for a mean field model of systemic risk[END_REF]. The numerical method for the PDEs is a centered space-time finite element method of degree 1 on a mesh of 150 points and 40 time steps.