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The aim of this paper is to investigate the quality of approximation of almost time and band limited functions by its expansion in the Hermite and scaled Hermite basis. As a corollary, this allows us to obtain the rate of convergence of the Hermite expansion of function in the L 2 -Sobolev space with fixed compact support.

Introduction

The aim of this paper is to investigate the quality of approximation of almost time and band limited functions by its expansion in the Hermite basis. As a corollary, this allows us to obtain the rate of convergence of the Hermite expansion of function in the L 2 -Sobolev space with fixed compact support.

Time-limited functions and band-limited functions play a fundamental role in signal and image processing. The time-limiting assumption is natural as a signal can only be measured over a finite duration. The band-limiting assumption is natural as well due to channel capacity limitations. It is also essential to apply sampling theory. Unfortunately, the simplest form of the uncertainty principle tells us that a signal can not be simultaneously time and band limited. A natural assumption is thus that a signal is almost time and band limited in the following sense:

Definition. Let T, Ω > 0 and ε T , ε Ω > 0. A function f ∈ L 2 (R) is said to be • ε T -almost time limited to [-T, T ] if |t|>T |f (t)| 2 dt ≤ ε 2 T f 2 L 2 (R) ; • ε Ω -almost band limited to [-Ω, Ω] if |ω|>Ω | f (ω)| 2 dω ≤ ε 2 Ω f 2 L 2 (R) .
Here and throughout this paper the Fourier transform is normalized so that, for f ∈ L 1 (R),

f (ω) := F[f ](ω) := 1 √ 2π R f (t)e -itω dt.
Of course, given f ∈ L 2 (R), for every ε T , ε Ω > 0 there exist T, Ω > 0 such that f is ε T -almost time limited to [-T, T ] and ε Ω -almost time limited to [-Ω, Ω]. The point here is that we consider T, Ω, ε T , ε Ω as fixed parameters. A typical example we have in mind is that f ∈ H s (R) and is time-limited to [-T, T ]. Such an hypothesis is common in tomography, see e.g. [Na], where it is required in the proof of the convergence of the filtered back-projection algorithm for approximate inversion of the Radon transform. But, if f ∈ H s (R) with s > 0, that is if

f 2 H s (R) := R (1 + |ω|) 2s | f (ω)| 2 dω < +∞, then |ω|>Ω | f (ω)| 2 dω ≤ |ω|>Ω (1 + |ω|) 2s (1 + |Ω|) 2s | f (ω)| 2 dω ≤ f 2 H s (R) (1 + |Ω|) 2s . Thus f is 1 (1 + |Ω|) s f H s f L 2 (R)
-almost band limited to [-Ω, Ω].

An alternative to the back projection algorithms in tomography are the Algebraic Reconstruction Techniques (that is variants of Kaczmarz algorithm, see [Na]). For those algorithms to work well it is crucial to have a good representing system (basis, frame...) of the functions that one wants to reconstruct. Thanks to the seminal work of Landau, Pollak and Slepian, the optimal orthogonal system for representing almost time and band limited functions is known. The system in questions consists of the so called prolate spheroidal wave functions ψ T k and has many valuable properties (see [START_REF] Slepian | Prolate spheroidal wave functions, Fourier analysis and uncertainty I[END_REF][START_REF] Landau | Prolate spheroidal wave functions, Fourier analysis and uncertainty II[END_REF][START_REF] Landau | Prolate spheroidal wave functions, Fourier analysis and uncertainty III[END_REF][START_REF] Slepian | Prolate spheroidal wave functions, Fourier analysis and uncertainty IV: Extensions to many dimensions; Generalized prolate spheroidal wave functions[END_REF]). Among the most striking properties they have is that, if a function is almost time limited to [-T, T ] and almost band limited to [-Ω, Ω] then it is well approximated by its projection on the first 4ΩT terms of the basis:

(1.1) f ≃ 0≤k<4ΩT f, ψ T k ψ T k .
This is a remarkable fact as this is exactly the heuristics given by Shannon's sampling formula (note that to make this heuristics clearer, the functions are usually almost time-limited to [-T /2, T /2] and this result is then known as the 2ΩT -theorem, see [START_REF] Landau | Prolate spheroidal wave functions, Fourier analysis and uncertainty II[END_REF]). However, there is a major difficulty with prolate spheroidal wave functions that has attracted a lot of interest recently, namely the difficulty to compute them as there is no inductive nor closed form formula (see e.g. [START_REF] Bonami | Uniform bounds of prolate spheroidal wave functions and eigenvalues decay[END_REF][START_REF] Bonami | Uniform Estimates of the Prolate Spheroidal Wave Functions[END_REF][START_REF] Boyd | Prolate spheroidal wave functions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudo-spectral algorithms[END_REF][START_REF] Li | Spheroidal wave functions in electromagnetic theory[END_REF][START_REF] Xiao | Yarvin Prolate spheroidal wave functions, quadrature and interpolation[END_REF]). One approach is to explicitly compute the coefficients of the prolate spheroidal wave functions in terms of a basis of orthogonal polynomials like the Legendre polynomials or in the Hermite basis. The question that then arises is that of directly approximating almost time and band limited functions by the (truncation of) their expansion in the Hermite basis. This is the question we address here. We postpone the same question concerning Legendre polynomials for which we use different methods.

An other motivation for this work comes from the work of the first author [JP] on uncertainty principles for orthonormal bases. There it is shown that an orthonormal basis (e k ) of L 2 (R) can not have uniform time-frequency localization. Several ways of measuring localization were considered, and for most of them, the Hermite functions provided the optimal behavior. However, in one case, the proof relied on (1.1): this shows that the set of functions that are ε T -time limited to [-T, T ] and ε Ω -band limited to [-Ω, Ω] is almost of dimension 8ΩT . In particular, this set can not contain more than a fixed number of elements of an orthonormal sequence. As this proof shows, the optimal basis here consists of prolate spheroidal wave functions. As the Hermite basis is optimal for many uncertainty principles, it is thus natural to ask how far it is from optimal in this case.

Let us now be more precise and describe the main results of the paper.

Recall that the Hermite basis (h k ) k≥0 is an orthonormal basis of L 2 (R) given by h k = α k e x 2 /2 ∂ k e -x 2 where α k is a normalization constant. Recall also that the h k 's are eigenfunction of the Fourier transform. Morover, as is well known the h k 's satisfy a second order differential equation. This allows us to use the standard WKB method to approximate the Hermite functions as follows:

let λ = √ 2n + 1, p(x) = √ λ 2 -x 2 and ϕ(x) = x 0 p(t) dt, then, for |x| < λ, (1.2) h k (x) = h n (0) λ p(x) cos ϕ(x) + h ′ n (0) sin ϕ(x) λp(x) + error.
This formula is not new (e.g. [Do, KT, LC]). However, we will need a precise estimate of the error term, both in the L ∞ sense for which we improve the one given in [BKH] and the Lipschitz bound.

A first consequence of this formula is that the L 2 -mass of h n is essentially concentrated in an annulus of radius √ 2n + 1 and width ≤ 1 of the time-frequency plane. A second consequence is the approximaion over

[-T, T ] × [-T, T ] of the kernel k n (x, y) = n k=0 h k (x)h k (y).
More precisely, by using (1.2) and the Christoffel-Darboux formula, one gets for n ≥ 2T 2 :

(1.3) k n (x, y) = 1 π sin N (x -y) x -y + R n (x, y),
where

N = √ 2n + 1 + √ 2n + 3 2 , |R n (x, y)| ≤ 17T 2 √ 2n + 1 .
Again, this approximation is not new [Sa, Us] but we improve the error estimates. Nonetheless, from numerical evidences, our previous theoretical error estimate is still far from the actual error. Next, let R T n be the Hilbert-Schmidt operator defined on L 2 ([-T, T ]) by

(1.4) R T n f (x) = [-T,T ] R n (x, y)f (y) dy.
The heuristic is then as follows. Assume that f is (ε T , ε Ω ) time and band limited in

[-T, T ]× [-Ω, Ω]. Thus f is only "correlated" to the first ∼ N := max(T 2 , Ω 2 ) Hermite functions : | f, h k | is small if k > N .
One may thus expect that f = 0≤k≤N f, h k h k + error, where the error has a satisfactory decay rate with respect to N. This seems unfortunately not to be the case. We establish that for n ≥ N , the error

= f -0≤k≤n f, h k h k has an L 2 -norm bounded by T 3 / √ 2n + 1 + ε T + ε Ω : Theorem 1.1. Let Ω 0 , T 0 ≥ 2 and ε T , ε Ω > 0. Assume that |t|>T0 |f (t)| 2 dt ≤ ε 2 T f 2 L 2 (R) and |ω|>Ω0 | f (ω)| 2 dω ≤ ε 2 Ω f 2 L 2 (R) .
For n an integer, let K n f be the orthogonal projection of f on the span of h 0 , . . . , h n . Assume that n ≥ max(2T 2 , 2Ω 2 ). Then, for T ≥ T 0 ,

(1.5) f -K n f L 2 ([-T,T ]) ≤ ε Ω + 34T 3 √ 2n + 1 + 2ε T f L 2 (R)
In particular, on would need ∼ T 6 /ε 2 terms to reach an error ε. The above heuristics suggest that the right power of T may (1.5) should be closer to 1.

We will show how one can decrease the dependence on T by replacing the Hermite basis by a scaled version h α k (x) = α 1/2 h n (αx) at the expense of a worse dependence on the almost band-limitness of f . The remaining of this paper is organized as follows. The next section is devoted to the approximation of Hermite functions by the WKB method. We then devote Section 3.1 and 3.2 to establish properties of the kernel of the projection on the Hermite functions. In Section 3.3 we first prove Theorem 1.1. Then, we give the quality of approximation of almost time and band limited functions by the scaled Hermite functions. Finally, in the last section, we give various numerical examples that illustrate the different results of this work.

2. Approximating Hermite functions with the WKB method 2.1. The WKB method. Let H n be the n-th Hermite polynomial, that is

H n (x) = e x 2 d n
dx n e -x 2 . Define the Hermite functions as

h n (x) = α n H n (x)e -x 2 /2 where α n = 1 π 1/4 √ 2 n n! .
As is well known:

(i) (h n ) n≥0 is an orthonormal basis of L 2 (R). (ii) h n is even if n is even and odd if n is odd, in particular h ′ 2p (0) = 0 and h 2p+1 (0) = 0. (iii) h 2p (0) = (-1) p π 1/4 (2p -1)!! (2p)!! = (-1) p √ πp 1/4 1 - η 2p 8p with 0 < η 2p < 1. (iv) h ′ 2p+1 (0) = (-1) p √ 4p + 2 π 1/4 (2p -1)!! (2p)!! = (-1) p √ 4p + 3 √ πp 1/4 1 - η 2p+1 4p with |η 2p+1 | < 1. (v) h n satisfies the differential equation (2.6) h ′′ n (x) + (2n + 1 -x 2 )h n (x) = 0.
We will now follow the WKB method to obtain an approximation of h n . In order to simplify notation, we will fix n and drop all supscripts during the computation. Let h = h n , λ = √ 2n + 1, and define p(x) and ϕ(x) for |x| < λ as

p(x) = λ 2 -x 2 and ϕ(x) = x 0 p(t) dt.
Note that (2.6) reads h ′′ (x) + p(x)h(x) = 0. Let us define

ψ ± (x) = 1 p(x) exp ±iϕ(x) |x| < λ.
Remark. These functions are introduced according to the standard WKB method. The factor exp ±iϕ(x) would be the solution of (2.6) if p where a constant. The factor p -1/2 is here to make the wronskian of ψ + , ψ -constant. Indeed, as ϕ ′ = p, a simple computation shows that

(2.7)

ψ ′ ± (x) = - 1 2 p ′ (x) p(x) ± ip(x) ψ ± (x).
It follows that

ψ + (x)ψ ′ -(x) -ψ -(x)ψ ′ + (x) = ψ + (x)ψ -(x) 1 1 -1 2 p ′ (x) p(x) + ip(x) -1 2 p ′ (x) p(x) -ip(x) = 1 p(x) × -2ip(x) = -2i. (2.8)
Using (2.7) it is not hard to see that ψ ± both satisfy the differential equation (2.9)

y ′′ + (p 2 -q)y = 0 where q = 1 2 p ′ p ′ - 1 4 p ′ p 2 .
A simple computation shows that q(x) = -2λ 2 + 3x 2 4p(x) 4 . We will frequently use that |q

(x)| ≤ 5λ 2 4p(x) 4 . Note also that, if 0 < η < 1 and |x| ≤ λ(1 -η) then p(x) ≥ λ 2η -η 2 ≥ λ √ η
while q(x) ≤ 5 4λ 2 η 2 . Now multiplying (2.9) by h, (2.6) by ψ ± and substracting both results, we obtain

h ′′ ψ ± -ψ ′′ ± h + qhψ ± = 0. On the other hand, h ′′ ψ ± -ψ ′′ ± h = (h ′ ψ ± -ψ ′ ± h) ′ . Therefore, (2.10) (h ′ ψ ± -ψ ′ ± h) ′ = -qhψ ± . Let us now define Q ± (x) = x 0 q(t)h(t)ψ ± (t) dt.
Integrating (2.10) between 0 and x, we obtain the system

h ′ (x)ψ + (x) -h(x)ψ ′ + (x) = h ′ (0)ψ + (0) -h(0)ψ ′ + (0) -Q + (x) h ′ (x)ψ -(x) -h(x)ψ ′ -(x) = h ′ (0)ψ -(0) -h(0)ψ ′ -(0) -Q -(x)
.

According to (2.8) the determinant of this system is -2i, we can thus solve it for h(x). This leads to

h(x) = h(0) ψ ′ + (0)ψ -(x) -ψ ′ -(0)ψ + (x) 2i +h ′ (0) ψ -(0)ψ + (x) -ψ + (0)ψ -(x) 2i + Q + (x)ψ -(x) -Q -(x)ψ + (x) 2i .
It remains to identify those 3 terms. First, note that ψ

+ (0) = ψ -(0) = 1/ p(0) = 1/ √ λ while ψ ′ + (0) = ψ ′ -(0) = - 1 2 p ′ (0) p(0) + ip(0) ψ + (0) = i √ λ.
From this, we get

ψ ′ + (0)ψ -(x) -ψ ′ -(0)ψ + (x) 2i = λ p(x) e iϕ(x) + e -iϕ(x) 2 = λ p(x) cos ϕ(x).
Further,

ψ -(0)ψ + (x) -ψ + (0)ψ -(x) 2i = 1 λp(x) e iϕ(x) -e -iϕ(x) 2i = 1 λp(x) sin ϕ(x).
Finally,

Q + (x)ψ -(x) -Q -(x)ψ + (x) 2i = 1 p(x) x 0 q(t) p(t) h(t) e iϕ(t) e -iϕ(x) -e -iϕ(t) e iϕ(x) 2i dt = 1 p(x) x 0 q(t) p(t) h(t) sin ϕ(t) -ϕ(x) dt.
We are now in position to prove the following theorem:

Theorem 2.1. Let n ≥ 0. Assume that |x| ≤ √ 2n + 1, then h n (x) = h n (0) 2n + 1 2n + 1 -x 2 1/4 cos ϕ n (x) + h ′ n (0) sin ϕ n (x) (2n + 1)(2n + 1 -x 2 ) 1/4 +E n (x) (2.11) where (2.12) ϕ n (x) = x 0 2n + 1 -t 2 dt and |E n (x)| ≤ 5 4 √ 2n + 1 2n + 1 -x 2 5/2 . Moreover, for (2n + 1) -a < η < 1, a < 3/20 and x, y ≤ (1 -η) √ 2n + 1 (2.13) |E n (x) -E n (y)| ≤ 5 (2n + 1) 3/4-5a |x -y|. Further, if |x|, |y| ≤ T ≤ √ 2n+1 2 , ϕ n (x) = √ 2n + 1x -e n (x),
where

(2.14) |e n (x)| ≤ T 3 3 √ 2n + 1 and |e n (x) -e n (y)| ≤ T 2 √ 2n + 1 |x -y|, while (2.15) |E n (x)| ≤ 2 (2n + 1) 3/2 and |E n (x) -E n (y)| ≤ 8 (2n + 1) 5/4 |x -y|.
Remark. One may explicitly compute ϕ:

ϕ n (x) = 2n + 1 2 arcsin x √ 2n + 1 + x 2 2n + 1 -x 2 = √ 2n + 1x -e(x)
,

where

e n (x) = 1 2 (2n + 1) x √ 2n + 1 -arcsin x √ 2n + 1 + x √ 2n + 1 -2n + 1 -x 2 .
Also, ϕ n has a geometric interpretation: it this the area of the intersection of a disc of radius √ 2n + 1 centered at 0 with the strip [0, x] × R + . In particular, when

x → √ 2n + 1, ϕ n (x) ∼ π 4 (2n + 1).
Proof. We will fix n and use the same notation as previously, e.g.

λ = √ 2n + 1, p(x) = √ λ 2 -x 2 ,...
Let us first establish the bounds on e. Note that

e(x) = x 0 λ -λ 2 -t 2 dt = λ x 0 1 -1 -(t/λ) 2 dt = λ 2 x/λ 0 1 -1 -s 2 ds = λ 2 x/λ 0 s 2 1 + √ 1 -s 2 ds. But, b a s 2 1 + √ 1 -s 2 ds ≤ b a s 2 ds = |b 3 -a 3 | 3 the estimate of e(x
) and e(x) -e(y) follow immediately.

Consider

E(x) = 1 p(x) x 0 q(t) p(t) h(t) sin ϕ(x) -ϕ(t) dt.
Using Cauchy-Schwarz, we obtain

|E(x)| ≤ 1 p(x) x 0 q(t) 2 p(t) dt 1/2 x 0 h(t) 2 dt 1/2 ≤ 1 p(x) x 0 25λ 4 16p(t) 9 dt 1/2
since h n 2 = 1. As |x| < λ, and p decreases, the estime |E(x)| ≤ 5λ 5/2 4p(x) 5 follows. Note that, if |x| ≤ λ/2, then a slightly better estimate holds:

|E(x)| ≤ 10 4λ √ 3 λ/2 0 λ 4 (λ 2 -t 2 ) 9/2 dt 1/2 = 10 4 √ 3λ 3 1/2 0 1 (1 -s 2 ) 9/2 ds 1/2 . A numerical computation shows that |E(x)| ≤ 2 λ 3 . Remark.
Note that the bound on E allows to obtain a bound on h n . For instance, if n ≥ 2 is even

|h 2n (x)| ≤ λ p(x) |h 2n (0)| + 5 4 λ 1/2 p(x) 5 ≤ (2n + 1) 1/4 √ πn 1/4 + 5 4 λ 5/2 p(x) 9/2 1 p(x) ≤ (2n + 1) 1/4 √ πn 1/4 + 5 4 1 λ 2 η 9/4 1 p(x) ≤ 1 p(x) , provided |x| ≤ (1 -η)λ with η ≥ 2 λ 8/9 .
The same estimate is valid in the case when n is odd.

In order to prove the Lipschitz bound on E, let us introduce some further notation:

χ(x, t) = q(t) p(t) h(t) sin ϕ(x) -ϕ(t) and Φ(x, y) = x 0 χ(y, t) dt.
Thus, we have proved that for |x| < λ,

|Φ(x, x)| = |E(x)| ≤    5 4 λ 1/2 p(x) 5 if |x| < λ 2 λ 3 if |x| < λ/2 . Now, if x ≤ y < λ, E(y) -E(x) = 1 p(y) - 1 p(x) Φ(y, y) + 1 p(x) Φ(y, y) -Φ(x, y) 1 p(x) Φ(x, y) -Φ(x, x) = E 1 + E 2 + E 3 . Note, that 1 p(y) - 1 p(x) ≤ 1 2 |x -y| sup t∈[x,y] p ′ (t) p(t) 3/2 = 1 2 |x -y| sup t∈[x,y] t p(t) 5/2 ≤ λ 2p(y) 5/2 |x -y|. Thus, we obtain that |E 1 | ≤ 5λ 7/2 8p(y) 15/2 |x -y|.
In the case when |x|, |y| < λ/2, the same reasoning leads to the estimate

|E 1 | ≤ |x -y| λ 9/2 . Next, if |x|, |y| ≤ (1 -η)λ one can estimate E 2 as follows: |Φ(y, y) -Φ(x, y)| ≤ y x |χ(y, t)| dt ≤ |x -y| sup t∈[x,y] q(t) p(t) sup |t|≤|y|λ |h(t)| ≤ 5λ 2 4p(y) 5 |x -y|. Therefore, |E 2 | ≤ 5λ 2 4p(y) 11/2 |x -y|.
In general, we will bootstrap the approximation of h. Let us first assume that n is even, so that

h(t) = h n (0) λ p(x) cos ϕ(x) + E(x) Then χ(x, t) = q(t) p(t) h(t) sin ϕ(x) -ϕ(t) = h(0) √ λ q(t) p(t) cos ϕ(x) sin ϕ(x) -ϕ(t) + q(t) p(t) E(t) sin ϕ(x) -ϕ(t) = χ 1 (x, t) + χ 2 (x, t).
Therefore, we may write

|E 2 | ≤ E 1 2 + E 2 2 where E j 2 = 1 p(x) y x |χ j (y, t)| dt.
For E 2 2 we use the estimate E(t) ≤ 5 4

λ 1/2 p(t)
5 that we established above. It follows that

E 2 2 ≤ 1 p(x) y x 5λ 2 4p 9/2 (t) 5 4 λ 1/2 p(t) 5 dt ≤ 25λ 9/2 16p(y) 10 |x -y|. If |x|, |y| ≤ λ/2, we may use |E(t)| ≤ 2λ -3 , q(t) ≤ 5λ -2 , p(x) ≥ √ 3λ/2 to obtain E 2 2 ≤ 12 λ 6 |x -y|.
On the other hand,

E 1 2 ≤ |h(0)| √ λ p(x) y x q(t) p(t) dt ≤ 5 × 2 1/4 λ 5/2 4 √ πn 1/4 p(y) 11/2 |x -y|. If n is odd, h(0) = 0 while |h ′ (0)| ≤ 2 1/4 λ
√ πn 1/4 and we have to replace χ 1 by

χ 1 (x, t) = h ′ (0) q(t) √ λp(t) sin ϕ(x) sin ϕ(x) -ϕ(t) ,
from which we deduce that

E 1 2 ≤ |h ′ (0)| √ λ p(x) y x q(t) p(t) dt ≤ 5 × 2 1/4 λ 5/2 4 √ πn 1/4 p(y) 11/2 |x -y| ≤ λ 5/2 n 1/4 p(y) 11/2 |x -y|.
If |x|, |y| ≤ λ/2, there is again a slight improvement:

E 1 2 ≤ 10 7/4 √ πn 1/4 3 3/4 λ 13/2 |x -y| ≤ 11 λ 7 |x -y|, since n ≥ 3 -1/4 λ 1/2 if n ≥ 1. Finally, Φ(x, y) -Φ(x, x) = x 0 q(t) p(t) h(t) sin ϕ(y) -ϕ(t) -sin ϕ(x) -ϕ(t) dt = 2 x 0 q(t) p(t) h(t) cos ϕ(x) + ϕ(y) -2ϕ(t) 2 dt sin ϕ(y) -ϕ(x) 2 .
The integral is estimated in the same way as we estimated Φ(x, x), while for ϕ we use the mean value theorem and the fact that ϕ ′ = p. We, thus, get

|E 3 | ≤ 5λ 5/2 p(x) 4p(y) 5 |x -y| ≤ 5λ 7/2 4p(y) 5 |x -y|.
If |x|, |y| ≤ λ/2, there is again a slight improvement:

|E 3 | ≤ 2 λ 3 p(x)|x -y| ≤ 2 λ 5/2 |x -y|. Summarizing, |E(x) -E(y)| ≤ p(y) 5/2 2λ + 5 4 + 4p(y) 9/2 5n 1/4 λ 2 + p(y) 5 λ 5λ 9/2 4p(y) 10 |x -y| ≤ p(y) 3/2 2 + 5 4 + p(y) 2 + p(y) 4 5λ 9/2 4p(y) 10 |x -y|, since p(y) ≤ λ and n -1/4 ≥ 5 4 p(y) 1/2 . Now, assume that |x|, |y| ≤ (1 -η)λ, with λ -2a < η < 1, a > 0. In particular, λ ≥ p(y) ≥ λ √ η ≥ λ 1-a . Thus, |E(x) -E(y)| ≤ 5 λ 4+9/2 λ 10(1-a) |x -y| = 5 λ 3/2-10a |x -y|. If |x|, |y| ≤ λ/2, then |E(x) -E(y)| ≤ 1 λ 9/2 + 12 λ 6 + 11 λ 7 + 2 λ 5/2 ≤ 8 λ 5/2 |x -y|, since λ ≥ √ 3.
2.2. Two technical lemmas. We will now prove two technical lemmas. The first one concerns the function ϕ n :

Lemma 2.2. If |x|, |y| ≤ T ≤ 1 2 √ 2n + 1, then (2.16) |ϕ n+1 (x) -ϕ n (x)| ≤ 3T √ 2n + 1 , (2.17) |ϕ n+1 (x) -ϕ n+1 (y) -ϕ n (x) + ϕ n (y)| ≤ 3 √ 2n + 1 |x -y|, (2.18) |ϕ n+1 (x) -ϕ n (x) + ϕ n+1 (y) -ϕ n (y)| ≤ 5T √ 2n + 1 , (2.19) ϕ n+1 (x) + ϕ n (x) -ϕ n+1 (y) -ϕ n (y) = ( √ 2n + 1 + √ 2n + 3)(x -y) + ε n (x, y), with |ε n (x, y)| ≤ T 2 √ 2n + 1 |x -y| and
(2.20)

|ϕ n (x) -ϕ n (y)| ≤ 5 4 √ 2n + 1|x -y|.
Proof. Note that (2.16) is a direct consequence of (2.17) with y = 0.

Recall that ϕ n (x) =

x 0 2n + 1 -t 2 dt. We have

|ϕ n+1 (x) -ϕ n (x) -ϕ n+1 (y) + ϕ n (y)| = x y 2n + 3 -t 2 -2n + 1 -t 2 dt = x y 2 √ 2n + 3 -t 2 + √ 2n + 1 -t 2 dt ≤ x y 2 √ 2n + 1 -t 2 dt = 2 arcsin x √ 2n + 1 -arcsin y √ 2n + 1 . But, arcsin is 1 √ η -Lipschitz on [-(1 -η), (1 -η)], thus, |ϕ n+1 (x) + ϕ n (x) -ϕ n+1 (y) -ϕ n (y)| ≤ 2 √ 2 |x -y| √ 2n + 1 .
Next,

|ϕ n+1 (x) -ϕ n (x) + ϕ n (y) -ϕ n+1 (y)| ≤ x 0 2n + 3 -t 2 -2n + 1 -t 2 dt + y 0 2n + 3 -t 2 -2n + 1 -t 2 dt ≤ 2 T 0 2 √ 2n + 1 -t 2 dt ≤ 8 √ 3 T √ 2n + 1 . Set N = √ 2n + 1 + √ 2n + 3. Then, ϕ n+1 (x) + ϕ n (x) -ϕ n+1 (y) -ϕ n (y) is = x y 2n + 3 -t 2 + 2n + 1 -t 2 dt = N (x -y) + x y 2n + 3 -t 2 + 2n + 1 -t 2 -N dt.
Therefore,

ε(x, y) = x y 2n + 3 -t 2 - √ 2n + 3 dt + x y 2n + 1 -t 2 - √ 2n + 1 dt.
Let us estimate the second integral, the first being estimated in the same way:

x y 2n + 1 -t 2 - √ 2n + 1 dt = x y t 2 √ 2n + 1 -t 2 + √ 2n + 1 dt ≤ |x 3 -y 3 | 3(1 + √ 3/2) √ 2n + 1 ≤ T 2 2 √ 2n + 1 |x -y|, since √ 2n + 1 -t 2 ≥ √ 3/2, when |t| ≤ T ≤ √ 2n + 1/2. Finally, (2.19) implies (2.20): |ϕ n (x) -ϕ n (y)| ≤ √ 2n + 1|x -y| + |e n (x) -e n (y)| ≤ √ 2n + 1 + T 2 2n + 1 |x -y| ≤ 5 4 √ 2n + 1|x -y|, since T ≤ √ 2n + 1/2.
Remark. Geometrically, |ϕ n+1 (x) -ϕ n (x) -ϕ n+1 (y) + ϕ n (y)| is the area of the intersection of the annulus of inner radius √ 2n + 1 an outer radius √ 2n + 3 with a vertical strip with first coordinate in [x, y]. The annulus has width o(n -1/2 ) so that its intersection with the strip has area o(n -1/2 |x -y|) as long as this strip is not "tangent" to the annulus. The lemma is a quantitative statement of this simple geometric fact.

The next result is a simplification of Theorem 2.1:

Corollary 2.3. Let T ≥ 2 and let n ≥ 2T 2 . Then, for |x| ≤ T , we obtain that -if n is even, n = 2p (2.21) h 2p (x) = (-1) p √ πp 1/4 cos ϕ 2p (x) + Ẽ2p (x); -if n is odd, n = 2p + 1 (2.22) h 2p+1 (x) = (-1) p √ πp 1/4 sin ϕ 2p+1 (x) + Ẽ2p+1 (x),
where, for |x|, |y| ≤ T ,

(2.23) | Ẽn (x)| ≤ 2T 2 (2n + 1) 5/4 and | Ẽn (x) -Ẽn (y)| ≤ 3 T 2 (2n + 1) 3/4 |x -y|
Proof. First, we consider the case when n is even, n = 2p. Then, h 2p (0) = (-1) p √ πp 1/4 1 -η2p 8p

and h ′ 2p+1 (0) = 0. Therefore, (2.11) reads

h 2p (x) = (-1) p √ πp 1/4 1 - η 2p 8p 4p + 1 4p + 1 -x 2 1/4 cos ϕ 2p (x) + Ẽ2p (x) = (-1) p √ πp 1/4 cos ϕ 2p (x) + Ẽ2p (x), where Ẽ2p (x) is = (-1) p √ πp 1/4 1 - η 2p 8p 4p + 1 4p + 1 -x 2 1/4 -1 cos ϕ 2p (x) + (-1) p √ π η 2p 8p 5/4 cos ϕ 2p (x) +E 2p (x). But, (1 + a) 1/4 -1 ≤ a 4 , which for 0 ≤ a := x 2 4p+1-x 2 ≤ T 2 4p+1-T 2 ≤ 4 3 T 2 4p+1 gives (2.24) 4p + 1 4p + 1 -x 1/4 -1 ≤ 1 3 T 2 4p + 1 . It follows that | Ẽ2p (x)| ≤ 1 √ πp 1/4 1 + x 2 4p + 1 -x 2 1/4 -1 + 1 8 √ πp 5/4 + |E 2p (x)| ≤ 1 √ πp 1/4 1 3 T 2 4p + 1 + 1 8 √ πp 5/4 + 2 (4p + 1) 3/2 ≤ 2T 2 (4p + 1) 5/4 . Further, | Ẽ2p (x) -Ẽ2p (y)| ≤ 1 √ πp 1/4 1 - x 2 4p + 1 -1/4 -1 - y 2 4p + 1 -1/4 + 1 √ πp 1/4 4p + 1 4p + 1 -y 2 1/4 -1 + 1 8p |cos ϕ 2p (x) -cos ϕ 2p (y)| +|E 2p (x) -E 2p (y)| = E 1 2p (x, y) + E 2 2p (x, y) + E 3 2p (x, y).
We have already established that

E 3 2p (x, y) ≤ 8 (4p + 1) 5/4 |x -y|. Further, if 0 ≤ X, Y ≤ T 2 4p+1 ≤ 1 4 , then |(1 -X) -1/4 -(1 -Y ) -1/4 | ≤ 5 4 |X -Y | sup 0≤t≤1/4 (1 -t) -5/4 = 5 √ 2 3 1/4 |X -Y |. Therefore E 1 2p (x, y) ≤ 1 √ πp 1/4 5 √ 2 3 1/4 |x 2 -y 2 | 4p + 1 ≤ 4 T 4p + 1 |x -y|.
Finally, for E 2 2p we use the fact that cos is 1-Lipschitz, (2.20) and (2.24), to obtain

E 2 2p (x, y) ≤ 1 √ πp 1/4
1 3

T 2 4p + 1 + 1 8p 5 4 4p + 1|x -y| ≤ 2 T 2 (4p + 1) 3/4 |x -y|. Thus, | Ẽ2p (x) -Ẽ2p (y)| ≤ 4 T 4p + 1 + 2 T 2 (4p + 1) 3/4 + 8 (4p + 1) 5/4 |x -y| ≤ 3 T 2 (4p + 1) 3/4 |x -y|.
Let us now consider the case when n is odd, n = 2p + 1. Then, h 2p+1 (0) = 0 and

h ′ 2p+1 (0) = (-1) p √ 4p+3 √ πp 1/4 1 - η2p+1 4
. Therefore (2.11) reads

h 2p+1 (x) = (-1) p √ 4p + 3 √ πp 1/4 - η 2p+1 4 sin ϕ 2p+1 (x) (4p + 3)(4p + 3 -x 2 ) 1/4 + E 2p+1 (x) = (-1) p √ πp 1/4 1 - η 2p+1 4 4p + 3 (4p + 3 -x 2 ) 1/4 sin ϕ 2p+1 (x) + E 2p+1 (x) = (-1) p √ πp 1/4 sin ϕ 2p+1 (x) + Ẽ2p+1 (x),
where

Ẽ2p+1 (x) = (-1) p √ πp 1/4 1 - η 2p+1 4 4p + 3 (4p + 3 -x 2 ) 1/4 -1 sin ϕ 2p+1 (x) + (-1) p η 2p+1 4 √ πp 1/4 sin ϕ 2p+1 (x) + E 2p+1 (x).
The remaining of the proof is the same as for Ẽ2p .

Remark. The assumption T ≥ 2 is here to make it easier to group terms in the estimates of the errors. For T ≥ 1 the constants are slightly worse. The reader may check that

(2.25) | Ẽn (x)| ≤ 3T 2 (2n + 1) 5/4 and | Ẽn (x) -Ẽn (y)| ≤ 8 T 2 (2n + 1) 3/4 |x -y|.

L 2 -Approximation of functions by Hermite functions

3.1. The kernel of the projection onto the Hermite functions. As (h n ) n≥0 forms an orthonormal basis of L 2 (R), every f ∈ L 2 (R) can be written as

f (x) = lim n→+∞ n k=0 f, h k h k (x),
where the limit is in the L 2 (R) sense. Further,

n k=0 f, h k h k (x) = n k=0 R f (y)h k (y) dy h k (x) = R f (y) n k=0 h k (x)h k (y) dy = R k n (x, y)f (y) dy, with the kernel k n (x, y) = n k=0 h k (x)h k (y). According to the Christoffel-Darboux Formula, k n (x, y) = n + 1 2 h n+1 (x)h n (y) -h n+1 (y)h n (x)
x -y .

We will now use Corollary 2.3 to approximate this kernel:

Theorem 3.1. Let T ≥ 2, n ≥ 2T 2 and N = √ 2n+1+ √ 2n+3 2
. Then, for |x|, |y| ≤ T ,

k n (x, y) = 1 π sin N (x -y) x -y + R n (x, y), with |R n (x, y)| ≤ 17T 2 √ 2n + 1 .
Remark. The same estimate holds for T = 1 provided n ≥ 6.

Proof. For sake of simplicity, we will only prove the theorem in the case when n is even and write

n = 2p. Let λ = √ 2n + 1, µ = √ 2n + 3, α = 1 √ πp 1/4 , β = 1 √ πp 1/4 , E = (-1) p
Ẽ2p and F = (-1) p Ẽ2p+1 . Then, according to Lemma 2.2,

h 2p (x) = (-1) p 1 √ πp 1/4 cos ϕ 2p (x) + E(x) h 2p+1 (x) = (-1) p 1 √ πp 1/4 sin ϕ 2p+1 (x) + F (x) . Therefore, h 2p+1 (x)h 2p (y) -h 2p+1 (y)h 2p (x) is = 1 πp 1/2 sin ϕ 2p+1 (x) cos ϕ 2p (y) -sin ϕ 2p+1 (y) cos ϕ 2p (x) + 1 √ πp 1/4 F (x) cos ϕ 2p (y) -F (y) cos ϕ 2p (x) + 1 √ πp 1/4 sin ϕ 2p+1 (x)E(y) -sin ϕ 2p+1 (y)E(x) +F (x)E(y) -F (y)E(x) = H 1 (x, y) + H 2 (x, y) + H 3 (x, y) + H 4 (x, y).
-The first term in the equation above is the principal one. Let us start by computing

A := sin ϕ 2p+1 (x) cos ϕ 2p (y) -sin ϕ 2p+1 (y) cos ϕ 2p (x) = 1 2 sin ϕ 2p+1 (x) + ϕ 2p (y) -sin ϕ 2p+1 (x) -ϕ 2p (y) -sin ϕ 2p+1 (y) + ϕ 2p (x) + sin ϕ 2p+1 (y) -ϕ 2p (x) = sin ϕ 2p+1 (x) -ϕ 2p+1 (y) -ϕ 2p (x) + ϕ 2p (y) 2 × cos ϕ 2p+1 (x) + ϕ 2p+1 (y) + ϕ 2p (x) + ϕ 2p (y) 2 + sin ϕ 2p+1 (y) + ϕ 2p (y) -ϕ 2p (x) -ϕ 2p+1 (x) 2 × cos ϕ 2p+1 (x) -ϕ 2p (x) -ϕ 2p (y) + ϕ 2p+1 (y) 2 = S 1 C 1 + S 2 C 2 .
Now, according to (2.17),

|S 1 C 1 | ≤ |S 1 | ≤ |ϕ 2p+1 (x) -ϕ 2p+1 (y) -ϕ 2p (x) + ϕ 2p (y)| 2 ≤ 3 2 √ 2n + 1 |x -y|, while S 2 C 2 = S 2 (1 + C 2 -1). But, with (2.18), |C 2 -1| ≤ |ϕ 2p+1 (x) -ϕ 2p (x) -ϕ 2p (y) + ϕ 2p+1 (y)| 2 2 ≤ 25T 2 2(2n + 1)
.

Thus, with (2.19),

|S 2 (C 2 -1)| ≤ N + T 2 √ 2n + 1 |x -y| 25T 2 2(2n + 1) ≤ 16T 2 √ 2n + 1 |x -y|.
Finally, using again Lemma 2.2, sin N (y

-x) + ε n (y, x) is = sin N (y -x) + sin N (y -x) cos ε n (y, x) -1 + cos N (y -x) sin ε n (x, y) = sin N (y -x) + E 2 (x, y),
where

|E 2 (x, y)| ≤ |ε n (x, y)| + |ε n (x, y)| 2 2 ≤ 2T 2 √ 2n + 1 |x -y|.
Grouping those estimates leads to

A = sin N (y -x) + E 3 (x, y) with |E 3 (x, y)| ≤ 39T 2 2 √ 2n + 1 |x -y| Notice, that 1 πp 1/2 = 1 π 2 n + 1 1 + 1 n = 2 n + 1 1 π 1 + ξ n n with |ξ n | ≤ 1/2. We, thus, conclude that H 1 (x, y) = 2 n + 1 1 π sin N (y -x) + E 4 (x, y) , with |E 4 (x, y)| ≤ 1 π 1 + ξ n n |E 3 (x, y)| + ξ n πn N |x -y| ≤ 5T 2 √ 2n + 1 |x -y|.
-Consider

F (x) cos ϕ 2p (y)-F (y) cos ϕ 2p (x) = F (x) cos ϕ 2p (y)-cos ϕ 2p (x) + F (x)-F (y) cos ϕ 2p (x).
Then, according to (2.23),

F (x) -F (y) cos ϕ 2p (x) ≤ |F (x) -F (y)| ≤ 3T 2 (2n+1) 3/4 |x -y|, while F (x) cos ϕ 2p (y) -cos ϕ 2p (x) ≤ 2T 2 (2n + 1) 5/4 |ϕ 2p (y) -ϕ 2p (x)| ≤ 2T 2 (2n + 1) 5/4 5 4 √ 2n + 1|x -y| = 5T 2 2(2n + 1) 3/4 |x -y|, with (2.20). Therefore, |H 2 (x, y)| ≤ 1 √ πp 1/4 (5/2 + 3)T 2 (2n + 1) 3/4 |x -y| ≤ 2 n + 1 3T 2 2(2n + 1) 1/2 |x -y|.
Similarly, the estimate

|H 3 (x, y)| ≤ 2 n+1 3T 2 2(2n+1) 1/2 |x -y| holds.
Note that for T = 1, we have to use (2.25) instead of (2.23) which gives

|H 2 (x, y)|, |H 3 (x, y)| ≤ 2 n + 1 5T 2 (2n + 1) 1/2 |x -y|.
-Finally, according to (2.23),

|F (x)E(y) -F (y)E(x)| ≤ |F (x)||E(y) -E(x)| + |E(x)||F (x) -F (y)| ≤ 12T 4 (2n + 1) 2 |x -y| ≤ 2 n + 1 2T 2 √ 2n + 1 |x -y|.
Note that for T = 1, we have to use (2.25) instead of (2.23) which gives

|H 4 (x, y)| ≤ 2 n+1 24 (2n+1) 3/2 |x -y|
Grouping terms together, we obtain,

h 2p+1 (x)h 2p (y) -h 2p+1 (y)h 2p (x) = 2 n + 1 1 π sin N (y -x) + E 5 (x, y) , with |E 5 (x, y)| ≤ 9T 2 √ 2n + 1 |x -y|.

A tail estimate.

Let us now establish a tail estimate for k n .

Proposition 3.2. Let T ≥ 2 and n ≥ 2T 2 . Then, for |x| ≤ T , |y|≥2T k n (x, y) 2 dy ≤ 2 π 2 T + 12T 2 √ 2n + 1 ln(2n + 1).
Proof. First, using the reproducing kernel property of

k n , R k n (x, y)k n (z, y) dy = k n (x, z). But, since k n (x, y) = n k=0 h k (x)h k (y) and h k = H k e -x 2 /2
, with H k a polynomial of degree k, there exists a constant C n , such that

|k n (x, y)| ≤ C n (1 + |x|) n (1 + |y|) n e -(x 2 +y 2 )/2 . Applying Lebesgue's Dominated Converence Theorem, we have R k n (x, y)k n (z, y) dy → R k n (x, y) 2 dy,
when z → x. On the other hand, Theorem 3.1 shows that

k n (x, z) → N π + R n (x, x) uniformly in x ∈ [-T, T ]. Therefore, (3.26) R k n (x, y) 2 dy = N π + R n (x, x), |R n (x)| ≤ 9T 2 √ 2n + 1 . Now, for |x| ≤ T , Theorem 3.1 shows that [-2T,2T ] k n (x, y) 2 dy = [-2T,2T ] 1 π sin N (y -x) y -x + R n (x, y) 2 dy = 1 π 2 [-2T,2T ] sin 2 N (y -x) (y -x) 2 dy + R n (x).
The estimation of the first term is classical: for |x| ≤ T ,

1 π 2 2T -2T sin 2 N (y -x) (y -x) 2 dy = N π 2 N (2T -x) -N (2T +x) sin 2 z z 2 dz = N π 2 R sin 2 z z 2 dz - N π 2 -N (2T +x) -∞ + +∞ N (2T -x) sin 2 z z 2 dz = N π -R 1 N (x), where 0 ≤ R 1 N (x) ≤ 2N π 2 +∞ N T dz z 2 = 2 π 2 T . Next, we write R n (x) = R 2 n (x) + R 3 n (x), where R 2 n (x) = [-2T,2T ]
R n (x, y) 2 dy ≥ 0 and

|R 3 n | = [-T,T ] 2 π sin N (y -x) y -x R n (x, y) dy ≤ 18T 2 π √ 2n + 1 N (T -x) -N (T -x) sin z z dz ≤ 36T 2 π √ 2n + 1 2N T 0 min(1, z -1 ) dz ≤ 12T 2 √ 2n + 1 ln(2n + 1). It follows that for |x| ≤ T |y|≥2T k n (x, y) 2 dy ≤ R 1 n + |R 3 n | ≤ 2 π 2 T + 12T 2 √ 2n + 1 ln(2n + 1)
as announced.

3.3.

Approximating almost time and band limited functions by Hermite functions. We can now prove Theorem 1.1:

Theorem 3.3. Let Ω 0 , T 0 ≥ 2 and ε T , ε Ω > 0. Assume that |t|>T0 |f (t)| 2 dt ≤ ε 2 T f 2 L 2 (R) and |ω|>Ω0 | f (ω)| 2 dω ≤ ε 2 Ω f 2 L 2 (R) .
For n an integer, let K n f be the orthogonal projection of f on the span of h 0 , . . . , h n . Assume that n ≥ max(2T 2 , 2Ω 2 ). Then, for T ≥ T 0 ,

(3.27) f -K n f L 2 ([-T,T ]) ≤ 2ε T + ε Ω + 34T 3 √ 2n + 1 f L 2 (R)
and, for T ≥ 2T 0 ,

(3.28) f -K n f L 2 (R\[-T,T ]) 2ε T + 1 2T 1/2 + 12T 5/2 √ 2n + 1 ln(2n + 1) 1/2 f L 2 (R) .
Remark. As the proof of (3.27) only depends on Theorem 3.1, this estimate holds for T = 1, provided we assume that n ≥ 6 (see the remark following Theorem 3.1).

Proof. We will introduce several projections. For T, Ω > 0, let

P T f = 1 [-T,T ] f and Q Ω f = F -1 1 [-Ω,Ω] f ].
A simple computation shows that

Q Ω f (x) = 1 π R sin Ω(x -y) x -y f (y) dy.
The hypothesis on f is that f -

P T f L 2 (R) ≤ ε T f L 2 (R) for T ≥ T 0 and f -Q Ω f L 2 (R) ≤ ε Ω f L 2 (R) for Ω ≥ Ω 0 .
Finally, recall that the projection on the n first Hermite functions, is given by

K n f (x) = n k=0 f, h k h k (x) = R k n (x, y)f (y) dy.
It is enough to prove (3.27) for T = T 0 . Let us recall the integral operator

R T n f (x) = [-T,T ] R n (x, y)f (y) dy,
where R n (x, y) are defined in Theorem 3.1. Notice that k n (x, y) = k n (y, x) so that R n (x, y) = R n (y, x). We may then reformulate Theorem 3.1 as following:

P T K n P T f = P T Q N P T f + P T R T n P T f, where N = √ 2n+1+ √ 2n+3 2
. Note that N ≥ Ω 0 . By using (3.1), it is easy to see that

P T R T n P T f L 2 (R) ≤ P T R T n P T L 2 (R)→L 2 (R) f L 2 (R) R T n HS f L 2 (R) ≤ 34T 3 √ 2n + 1 f L 2 (R) . (3.29)
Now, using the fact that projections are contractive and N ≥ Ω 0 , we have

f -K n f L 2 ([-T,T ]) = P T f -P T K n f L 2 (R) ≤ P T f -P T K n P T f L 2 (R) + P T K n (f -P T f ) L 2 (R) ≤ P T f -P T Q N P T f + P T R T n P T f L 2 (R) + f -P T f L 2 (R) ≤ P T f -P T Q N P T f L 2 (R) + P T R T n P T f L 2 (R) + f -P T f L 2 (R) . Now, write P T Q N P T f = P T Q N f + P T Q N (f -P T f ), then P T f -P T Q N P T f L 2 (R) ≤ P T f -P T Q N f L 2 (R) + P T Q N (f -P T f ) L 2 (R) ≤ f -Q N f L 2 (R) + f -P T f L 2 (R) .
Therefore,

f -K n f L 2 ([-T,T ]) ≤ f -Q N f L 2 (R) + 34T 3 √ 2n + 1 f L 2 (R) + 2 f -P T f L 2 (R) ≤ ε Ω + 34T 3 √ 2n + 1 + 2ε T f L 2 (R) , since N ≥ Ω 0 .
Let us now prove (3.28). It is enough to prove it for T = 2T 0 . Note that

f -K n f L 2 (R\[-2T0,2T0]) ≤ f L 2 (R\[-2T0,2T0]) + K n P T f L 2 (R\[-2T0,2T0]) + K n (f -P T0 ) L 2 (R) ≤ 2ε T f 2 L 2 (R) + K n P T0 f L 2 (R\[-2T0,2T0]) .
We, therefore, need to estimate

K n P T f L 2 (R\[-2T0,2T0]) =   |x|≥2T0 |y|≤T0
k n (x, y)f (y) dy

2 dx   1/2
. Using Minkowski's inequality, this quantity is bounded by

|y|≤T0 |x|≥2T0 |k n (x, y)f (y)| 2 dx 1/2 dy = |y|≤T0 |x|≥2T0 |k n (x, y)| 2 dx 1/2 |f (y)| dy ≤ sup |y|≤T0 |x|≥2T0 |k n (x, y)| 2 dx 1/2 |y|≤T0 |f (y)| dy 1/2 ≤ 2 2 π 2 T 0 + 6T 2 0 √ 2n + 1 ln(2n + 1) 1/2 f L 1 ([-T0,T0]) ≤ 2 √ 2 1 π 2 T 1/2 0 + 6T 5/2 0 √ 2n + 1 ln(2n + 1) 1/2 f L 2 (R) ,
which is, with Proposition 3.2, complete the proof.

Remark. The error estimate given by (3.27) is not practical due to the low decay rate of the bound of R T n given by 34T 3 √ 2n + 1 . By replacing this later with a non explicit but a more realistic error estimate R T n HS , one gets the following error estimate which is more practical for numerical purposes,

(3.30) f -K n f L 2 ([-T,T ]) ≤ ε Ω + R T n HS + 2ε T f L 2 (R)
. Note also that the factor of R T n HS is actually f L 2 ([-T,T ]) , to see this, it is enough to write P T f = P T P T f in (3.29). If one has an L 1 bound for f , one may replace this term with the following computation:

P T R T n P T f 2 L 2 (R) = T -T -T,T R n (x, y)f (y) dy 2 dx (3.31) ≤ T -T sup y∈[-T,T ] |R n (x, y)| 2 dx T -T |f (y)| dy 2 .
(3.32) Thus, with Theorem 3.1, one obtains 

P T R T n P T f L 2 (R) ≤ 17T 5/2 n 1/2 T -T |f ( 
α f (x) = α -1/2 f (x/α). Recall that δ α f L 2 (R) = f L 2 (R) while δ α f L 2 ([-A,A]) = f L 2 ([-A/α,A/αA]) , δ α f L 2 (R\[-A,A]) = f L 2 (R\[-A/α,A/α]) and F[δ α f ] = δ 1/α F[f ]. In particular, if f is ε T -almost time limited to [-T, T ] (resp. ε Ω -almost band limited to [-Ω, Ω]) then δ α f is ε T -almost time limited to [-T /α, T /α]
Next, define the scaled Hermite basis h α k = δ α h k which is also an orthonormal basis of L 2 (R) and define the corresponding orthogonal projections: for f ∈ L 2 (R),

(3.33) K α n f = n k=0 f, h α k h α k .
Proposition 3.4. Let α > 0, T ≥ 2 and c ≥ 2/α. Assume that and

|t|>T |f (t)| 2 dt ≤ ε 2 T f 2 L 2 (R) and |ω|>c/α | f (ω)| 2 dω ≤ ε 2 c/α f 2 L 2 (R) .
Then, for n ≥ max(2(T /α) 2 , 2c 2 ), we have

(3.34) f -K α n f L 2 ([-T,T ]) ≤ ε T + ε c/α + 24(T /α) 3 √ 2n + 1 f L 2 (R) .
Remark. The scaling with α > 1 has as effect to decrease the dependence on T at the price of increasing the dependence on good frequency concentration, while taking α < 1 the gain and loss are reversed. In practice, the above dependence on T is very pessimistic and α > 1 is a better choice. The most natural choice is α = T and c = T Ω where Ω is such that

f is ε Ω -almost band limited to [-Ω, Ω]. Proof. For f ∈ L 2 (R), since K α n is contractive, we have f -K α n f L 2 ([-T,T ]) ≤ f -K α n P T f L 2 ([-T,T ]) + K α n (f -P T f ) L 2 ([-T,T ]) ≤ f -K α n P T f L 2 ([-T,T ]) + f -P T f L 2 ([-T,T ]) ≤ f -K α n P T f L 2 ([-T,T ]) + ε T f L 2 (R) . Moreover, K α n P T f (x) is = n k=0 P T f, h α k h α k (x) = T -T f (y) 1 α n k=0 h k (x/α)h k (y/α) dy = T /α -T /α f (αt) n k=0 h k (x/α)h k (t) dt. Therefore f -K α n P T f L 2 ([-T,T ]) is =   T -T f (x) - T /α -T /α f (αt) n k=0 h k (x/α)h k (t) dt 2 dx   1/2 =   T /α -T /α α 1/2 f (αs) - T /α -T /α f (αt) n k=0 h k (x/α)h k (t) dt 2 ds   1/2 = f α -K n f α L 2 ([-αT,αT ])
where

f α = δ 1/α 1 [-T,T ] f . Note that f α is 0-almost time limited to [-T /α, T /α]. Next, writing f α = δ α F[1 [-T,T ] f ] = δ α F[f ] -δ α F[1 R\[-T,T ] f ]
and, noting that

δ α F[f ] L 2 (R\[-c,c]) = F[f ] L 2 (R\[-c/α,c/α]) ≤ ε c/α f L 2 (R) while δ α F[1 R\[-T,T ] f ] L 2 (R\[-Ω,Ω]) ≤ δ α F[1 R\[-T,T ] f ] L 2 (R) = 1 R\[-T,T ] f L 2 (R) ≤ ε T f L 2 (R) , we get f α L 2 (R\[-c,c]) ≤ ε c/α f L 2 (R) + ε T f L 2 (R) .
It remains to apply Theorem 3.3 to complete the proof.

Numerical results

In this paragraph, we give several examples that illustrate the different results of this work.

Example 1. In this example, we check numerically that the approximation error E(x, y) = n k=0 h k (x)h k (y) -sin N (x -y) π(x -y) is much smaller than the theoretical error given by Theorem 3.1. In order to do so, we consider a uniform discretization Λ of the square [-1, 1] 2 with 6400 equidistant nodes. We then estimate the uniform approximation error sup |E(x, y|) by E n = sup Example 2. In this example, we illustrate the quality of approximation by scaled Hermite functions of a time limited and an almost band limited function. For this purpose, we consider the function f (x) = 1 [-1/2,1/2] (x). From the Fourier transform of f, one can easily check that f ∈ H s (R) for any s < 1/2. Note that f is 0-concentrated in [-1/2, 1/2] and since f ∈ H s (R), then ǫ Ω -band concentrated in [-Ω, +Ω],for any ǫ Ω < M s Ω -s with M s a positive constant. We have considered the value α = 10 and we have used (3.33) to compute the scaled Hermite approximations K α n (f ) of f with n = 40 and n = 80. The graphs of f and its scaled Hermite approximation are given by Figure 1. In Figure 2, we have given the approximation errors f (x) -K α n f (x).

Also, to illustrate the fact that the scaled Hermite approximation outperforms the usual Hermite approximation, we have repeated the previous numerical tests without the scaling factor (i.e. with α = 1). Figure 3 shows the graphs of f and K n f . Example 3. In this last example, we illustrate the quality of approximation of almost band limited and time limited function by the scaled Hermite functions for the function g given by g(x) = (1 -|x|)χ [-1,1] (x). As is easily seen by expressing the Fourier transform of g, g ∈ H s (R) for any s < 3/2. Moreover since g is suppoted on [-1, 1], g is 0-concentrated in [-1, 1]. Moreover, as in the previous example g is ǫ Ω -band concentrated in [-Ω, +Ω], for any ǫ Ω < M s Ω -s . We have considered the four couples (α, n) = ( √ 10, 20), ( √ 10, 50), ( √ 50, 20), ( √ 50, 50) and computed K α n g. The numerical results are given by Figures 4 and5. These numerical results suggest again that the scaled Hermite functions are well suited for the approximation of almost band limited and almost time limited functions. In this sense, they have similar approximation properties as the PSWFs. The actual approximation error is much smaller than the theoretical error given by Theorem 

  y)| dy. 3.4. Approximating almost time and band limited functions by scaled Hermite functions. For α > 0 and f ∈ L 2 (R) we define the scaling operator δ

  y)| and the Hilbert-Schmidt norm R T n HS that appears in (3.27) for 10 ≤ n ≤ 100.

Figure 1 .

 1 Figure 1. The Graph of f (x) = 1 [-1/2,1/2] (x) (red) and of K c n f (x) (blue) with (a) n = 40, α = 100 and (b) n = 80, α = 10. Note the Gibbs phenomena that appears.

Figure 2 .

 2 Figure 2. Graph of the approximation error f (x) -K α n f (x), α = 10, (a) n = 40 (b) n = 80.

Figure 3 .

 3 Figure 3. The Graph of f (x) = 1 [-1/2,1/2] (x) (red) and of K α n f (x) (blue) with (a) n = 40, α = 1 and (b) n = 80, α = 1.

Figure 4 .

 4 Figure 4. Graph of the approximation error g(x)-K c n g(x) with (a) c = 10, n = 20 and (b) c = 10, n = 50.

Figure 5 .

 5 Figure 5. Graph of the approximation error g(x)-K c n g(x) with (a) c = 50, n = 20 and (b) c = 50, n = 50.
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