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APPROXIMATION OF ALMOST TIME AND BAND LIMITED

FUNCTIONS I: HERMITE EXPANSIONS

PHILIPPE JAMING, ABDERRAZEK KAROUI, RON KERMAN, SUSANNA SPEKTOR

Abstract. The aim of this paper is to investigate the quality of approximation of almost
time and band limited functions by its expansion in the Hermite and scaled Hermite basis.
As a corollary, this allows us to obtain the rate of convergence of the Hermite expansion
of function in the L

2-Sobolev space with fixed compact support.

1. Introduction

The aim of this paper is to investigate the quality of approximation of almost time and
band limited functions by its expansion in the Hermite basis. As a corollary, this allows us
to obtain the rate of convergence of the Hermite expansion of function in the L2-Sobolev
space with fixed compact support.

Time-limited functions and band-limited functions play a fundamental role in signal and
image processing. The time-limiting assumption is natural as a signal can only be measured
over a finite duration. The band-limiting assumption is natural as well due to channel ca-
pacity limitations. It is also essential to apply sampling theory. Unfortunately, the simplest
form of the uncertainty principle tells us that a signal can not be simultaneously time and
band limited. A natural assumption is thus that a signal is almost time and band limited
in the following sense:

Definition. Let T,Ω > 0 and εT , εΩ > 0. A function f ∈ L2(R) is said to be

• εT -almost time limited to [−T, T ] if∫

|t|>T

|f(t)|2 dt ≤ ε2T ‖f‖2L2(R);

• εΩ-almost band limited to [−Ω,Ω] if∫

|ω|>Ω

|f̂(ω)|2 dω ≤ ε2Ω‖f‖2L2(R).

Here and throughout this paper the Fourier transform is normalized so that, for f ∈ L1(R),

f̂(ω) := F [f ](ω) :=
1√
2π

∫

R

f(t)e−itω dt.

Of course, given f ∈ L2(R), for every εT , εΩ > 0 there exist T,Ω > 0 such that f is
εT -almost time limited to [−T, T ] and εΩ-almost time limited to [−Ω,Ω]. The point here is
that we consider T,Ω, εT , εΩ as fixed parameters. A typical example we have in mind is that
f ∈ Hs(R) and is time-limited to [−T, T ]. Such an hypothesis is common in tomography, see
e.g. [Na], where it is required in the proof of the convergence of the filtered back-projection

Date: September 2, 2014.
1991 Mathematics Subject Classification. 41A10;42C15,65T99.
Key words and phrases. Almost time and band limited functions; Hermite functions.

1



2 PHILIPPE JAMING, ABDERRAZEK KAROUI, RON KERMAN, SUSANNA SPEKTOR

algorithm for approximate inversion of the Radon transform. But, if f ∈ Hs(R) with s > 0,
that is if

‖f‖2Hs(R) :=

∫

R

(1 + |ω|)2s|f̂(ω)|2 dω < +∞,

then
∫

|ω|>Ω

|f̂(ω)|2 dω ≤
∫

|ω|>Ω

(1 + |ω|)2s
(1 + |Ω|)2s |f̂(ω)|

2 dω

≤
‖f‖2Hs(R)

(1 + |Ω|)2s .

Thus f is
1

(1 + |Ω|)s
‖f‖Hs

‖f‖L2(R)

-almost band limited to [−Ω,Ω].

An alternative to the back projection algorithms in tomography are the Algebraic Recon-
struction Techniques (that is variants of Kaczmarz algorithm, see [Na]). For those algorithms
to work well it is crucial to have a good representing system (basis, frame...) of the functions
that one wants to reconstruct. Thanks to the seminal work of Landau, Pollak and Slepian,
the optimal orthogonal system for representing almost time and band limited functions is
known. The system in questions consists of the so called prolate spheroidal wave functions
ψT
k and has many valuable properties (see [SP, LP1, LP2, Sl1]). Among the most striking

properties they have is that, if a function is almost time limited to [−T, T ] and almost band
limited to [−Ω,Ω] then it is well approximated by its projection on the first 4ΩT terms of
the basis:

(1.1) f ≃
∑

0≤k<4ΩT

〈
f, ψT

k

〉
ψT
k .

This is a remarkable fact as this is exactly the heuristics given by Shannon’s sampling formula
(note that to make this heuristics clearer, the functions are usually almost time-limited to
[−T/2, T/2] and this result is then known as the 2ΩT -theorem, see [LP1]).

However, there is a major difficulty with prolate spheroidal wave functions that has
attracted a lot of interest recently, namely the difficulty to compute them as there is no
inductive nor closed form formula (see e.g. [BK1, BK2, Bo, LKL, XRY]). One approach is
to explicitly compute the coefficients of the prolate spheroidal wave functions in terms of a
basis of orthogonal polynomials like the Legendre polynomials or in the Hermite basis. The
question that then arises is that of directly approximating almost time and band limited
functions by the (truncation of) their expansion in the Hermite basis. This is the question
we address here. We postpone the same question concerning Legendre polynomials for which
we use different methods.

An other motivation for this work comes from the work of the first author [JP] on un-
certainty principles for orthonormal bases. There it is shown that an orthonormal basis
(ek) of L

2(R) can not have uniform time-frequency localization. Several ways of measuring
localization were considered, and for most of them, the Hermite functions provided the op-
timal behavior. However, in one case, the proof relied on (1.1): this shows that the set of
functions that are εT -time limited to [−T, T ] and εΩ-band limited to [−Ω,Ω] is almost of
dimension 8ΩT . In particular, this set can not contain more than a fixed number of elements
of an orthonormal sequence. As this proof shows, the optimal basis here consists of prolate
spheroidal wave functions. As the Hermite basis is optimal for many uncertainty principles,
it is thus natural to ask how far it is from optimal in this case.

Let us now be more precise and describe the main results of the paper.
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Recall that the Hermite basis (hk)k≥0 is an orthonormal basis of L2(R) given by hk =

αke
x2/2∂ke−x2

where αk is a normalization constant. Recall also that the hk’s are eigen-
function of the Fourier transform. Morover, as is well known the hk’s satisfy a second order
differential equation. This allows us to use the standard WKB method to approximate the

Hermite functions as follows: let λ =
√
2n+ 1, p(x) =

√
λ2 − x2 and ϕ(x) =

∫ x

0

p(t) dt,

then, for |x| < λ,

(1.2) hk(x) = hn(0)

√
λ

p(x)
cosϕ(x) + h′n(0)

sinϕ(x)√
λp(x)

+ error.

This formula is not new (e.g. [Do, KT, LC]). However, we will need a precise estimate of
the error term, both in the L∞ sense for which we improve the one given in [BKH] and the
Lipschitz bound.

A first consequence of this formula is that the L2-mass of hn is essentially concentrated
in an annulus of radius

√
2n+ 1 and width ≤ 1 of the time-frequency plane. A second

consequence is the approximaion over [−T, T ]× [−T, T ] of the kernel

kn(x, y) =
n∑

k=0

hk(x)hk(y).

More precisely, by using (1.2) and the Christoffel-Darboux formula, one gets for n ≥ 2T 2:

(1.3) kn(x, y) =
1

π

sinN(x− y)

x− y
+Rn(x, y),

where

N =

√
2n+ 1 +

√
2n+ 3

2
, |Rn(x, y)| ≤

17T 2

√
2n+ 1

.

Again, this approximation is not new [Sa, Us] but we improve the error estimates. Nonethe-
less, from numerical evidences, our previous theoretical error estimate is still far from the
actual error. Next, let RT

n be the Hilbert-Schmidt operator defined on L2([−T, T ]) by

(1.4) RT
nf(x) =

∫

[−T,T ]

Rn(x, y)f(y) dy.

The heuristic is then as follows. Assume that f is (εT , εΩ) time and band limited in [−T, T ]×
[−Ω,Ω]. Thus f is only “correlated” to the first ∼ N := max(T 2,Ω2) Hermite functions :
|〈f, hk〉| is small if k > N . One may thus expect that f =

∑
0≤k≤N 〈f, hk〉hk + error,

where the error has a satisfactory decay rate with respect to N. This seems unfortunately
not to be the case. We establish that for n ≥ N , the error = f −∑0≤k≤n 〈f, hk〉hk has an

L2-norm bounded by . T 3/
√
2n+ 1 + εT + εΩ:

Theorem 1.1. Let Ω0, T0 ≥ 2 and εT , εΩ > 0. Assume that
∫

|t|>T0

|f(t)|2 dt ≤ ε2T ‖f‖
2
L2(R) and

∫

|ω|>Ω0

|f̂(ω)|2 dω ≤ ε2Ω‖f‖
2
L2(R).

For n an integer, let Knf be the orthogonal projection of f on the span of h0, . . . , hn.
Assume that n ≥ max(2T 2, 2Ω2). Then, for T ≥ T0,

(1.5) ‖f −Knf‖L2([−T,T ]) ≤
(
εΩ +

34T 3

√
2n+ 1

+ 2εT

)
‖f‖L2(R)
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In particular, on would need ∼ T 6/ε2 terms to reach an error . ε. The above heuristics
suggest that the right power of T may (1.5) should be closer to 1. We will show how
one can decrease the dependence on T by replacing the Hermite basis by a scaled version
hαk (x) = α1/2hn(αx) at the expense of a worse dependence on the almost band-limitness of
f .

The remaining of this paper is organized as follows. The next section is devoted to the
approximation of Hermite functions by the WKB method. We then devote Section 3.1 and
3.2 to establish properties of the kernel of the projection on the Hermite functions. In Section
3.3 we first prove Theorem 1.1. Then, we give the quality of approximation of almost time
and band limited functions by the scaled Hermite functions. Finally, in the last section, we
give various numerical examples that illustrate the different results of this work.

2. Approximating Hermite functions with the WKB method

2.1. The WKB method. Let Hn be the n-th Hermite polynomial, that is

Hn(x) = ex
2 dn

dxn
e−x2

.

Define the Hermite functions as

hn(x) = αnHn(x)e
−x2/2 where αn =

1

π1/4
√
2nn!

.

As is well known:

(i) (hn)n≥0 is an orthonormal basis of L2(R).
(ii) hn is even if n is even and odd if n is odd, in particular h′2p(0) = 0 and h2p+1(0) = 0.

(iii) h2p(0) =
(−1)p

π1/4

√
(2p− 1)!!

(2p)!!
=

(−1)p√
πp1/4

(
1− η2p

8p

)
with 0 < η2p < 1.

(iv) h′2p+1(0) =
(−1)p

√
4p+ 2

π1/4

√
(2p− 1)!!

(2p)!!
=

(−1)p
√
4p+ 3√

πp1/4

(
1− η2p+1

4p

)

with |η2p+1| < 1.
(v) hn satisfies the differential equation

(2.6) h′′n(x) + (2n+ 1− x2)hn(x) = 0.

We will now follow the WKB method to obtain an approximation of hn.
In order to simplify notation, we will fix n and drop all supscripts during the computation.

Let h = hn, λ =
√
2n+ 1, and define p(x) and ϕ(x) for |x| < λ as

p(x) =
√
λ2 − x2 and ϕ(x) =

∫ x

0

p(t) dt.

Note that (2.6) reads h′′(x) + p(x)h(x) = 0. Let us define

ψ±(x) =
1√
p(x)

exp±iϕ(x) |x| < λ.

Remark. These functions are introduced according to the standard WKB method. The
factor exp±iϕ(x) would be the solution of (2.6) if p where a constant. The factor p−1/2 is
here to make the wronskian of ψ+, ψ− constant. Indeed, as ϕ′ = p, a simple computation
shows that

(2.7) ψ′
±(x) =

(
−1

2

p′(x)

p(x)
± ip(x)

)
ψ±(x).
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It follows that

ψ+(x)ψ
′
−(x)− ψ−(x)ψ

′
+(x) = ψ+(x)ψ−(x)

∣∣∣∣∣
1 1

− 1
2
p′(x)
p(x) + ip(x) − 1

2
p′(x)
p(x) − ip(x)

∣∣∣∣∣

=
1

p(x)
×
(
−2ip(x)

)
= −2i.(2.8)

Using (2.7) it is not hard to see that ψ± both satisfy the differential equation

(2.9) y′′ + (p2 − q)y = 0 where q =
1

2

(
p′

p

)′
− 1

4

(
p′

p

)2

.

A simple computation shows that q(x) = −2λ2 + 3x2

4p(x)4
. We will frequently use that |q(x)| ≤

5λ2

4p(x)4
. Note also that, if 0 < η < 1 and |x| ≤ λ(1 − η) then p(x) ≥ λ

√
2η − η2 ≥ λ

√
η

while q(x) ≤ 5

4λ2η2
.

Now multiplying (2.9) by h, (2.6) by ψ± and substracting both results, we obtain

h′′ψ± − ψ′′
±h+ qhψ± = 0.

On the other hand, h′′ψ± − ψ′′
±h = (h′ψ± − ψ′

±h)
′. Therefore,

(2.10) (h′ψ± − ψ′
±h)

′ = −qhψ±.

Let us now define

Q±(x) =

∫ x

0

q(t)h(t)ψ±(t) dt.

Integrating (2.10) between 0 and x, we obtain the system
{
h′(x)ψ+(x) − h(x)ψ′

+(x) = h′(0)ψ+(0)− h(0)ψ′
+(0) − Q+(x)

h′(x)ψ−(x) − h(x)ψ′
−(x) = h′(0)ψ−(0)− h(0)ψ′

−(0) − Q−(x)
.

According to (2.8) the determinant of this system is −2i, we can thus solve it for h(x). This
leads to

h(x) = h(0)
ψ′
+(0)ψ−(x)− ψ′

−(0)ψ+(x)

2i

+h′(0)
ψ−(0)ψ+(x)− ψ+(0)ψ−(x)

2i

+
Q+(x)ψ−(x)−Q−(x)ψ+(x)

2i
.

It remains to identify those 3 terms. First, note that ψ+(0) = ψ−(0) = 1/
√
p(0) = 1/

√
λ

while ψ′
+(0) = ψ′

−(0) =

(
−1

2

p′(0)

p(0)
+ ip(0)

)
ψ+(0) = i

√
λ. From this, we get

ψ′
+(0)ψ−(x)− ψ′

−(0)ψ+(x)

2i
=

√
λ

p(x)

eiϕ(x) + e−iϕ(x)

2

=

√
λ

p(x)
cosϕ(x).
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Further,

ψ−(0)ψ+(x)− ψ+(0)ψ−(x)

2i
=

1√
λp(x)

eiϕ(x) − e−iϕ(x)

2i

=
1√
λp(x)

sinϕ(x).

Finally,

Q+(x)ψ−(x)−Q−(x)ψ+(x)

2i
=

1√
p(x)

∫ x

0

q(t)√
p(t)

h(t)
eiϕ(t)e−iϕ(x) − e−iϕ(t)eiϕ(x)

2i
dt

=
1√
p(x)

∫ x

0

q(t)√
p(t)

h(t) sin
(
ϕ(t)− ϕ(x)

)
dt.

We are now in position to prove the following theorem:

Theorem 2.1. Let n ≥ 0. Assume that |x| ≤
√
2n+ 1, then

hn(x) = hn(0)

(
2n+ 1

2n+ 1− x2

)1/4

cosϕn(x) + h′n(0)
sinϕn(x)(

(2n+ 1)(2n+ 1− x2)
)1/4

+En(x)(2.11)

where

(2.12) ϕn(x) =

∫ x

0

√
2n+ 1− t2 dt and |En(x)| ≤

5

4

( √
2n+ 1

2n+ 1− x2

)5/2

.

Moreover, for (2n+ 1)−a < η < 1, a < 3/20 and x, y ≤ (1− η)
√
2n+ 1

(2.13) |En(x)− En(y)| ≤
5

(2n+ 1)3/4−5a
|x− y|.

Further, if |x|, |y| ≤ T ≤
√
2n+1
2 ,

ϕn(x) =
√
2n+ 1x− en(x),

where

(2.14) |en(x)| ≤
T 3

3
√
2n+ 1

and |en(x)− en(y)| ≤
T 2

√
2n+ 1

|x− y|,

while

(2.15) |En(x)| ≤
2

(2n+ 1)3/2
and |En(x)− En(y)| ≤

8

(2n+ 1)5/4
|x− y|.

Remark. One may explicitly compute ϕ:

ϕn(x) =
2n+ 1

2
arcsin

x√
2n+ 1

+
x

2

√
2n+ 1− x2 =

√
2n+ 1x− e(x),

where

en(x) =
1

2

[
(2n+ 1)

(
x√

2n+ 1
− arcsin

x√
2n+ 1

)
+ x

(√
2n+ 1−

√
2n+ 1− x2

)]
.

Also, ϕn has a geometric interpretation: it this the area of the intersection of a disc of
radius

√
2n+ 1 centered at 0 with the strip [0, x]× R

+. In particular, when x →
√
2n+ 1,

ϕn(x) ∼ π
4 (2n+ 1).
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Proof. We will fix n and use the same notation as previously, e.g. λ =
√
2n+ 1, p(x) =√

λ2 − x2,...
Let us first establish the bounds on e. Note that

e(x) =

∫ x

0

λ−
√
λ2 − t2 dt = λ

∫ x

0

1−
√
1− (t/λ)2 dt

= λ2
∫ x/λ

0

1−
√
1− s2 ds = λ2

∫ x/λ

0

s2

1 +
√
1− s2

ds.

But,

∣∣∣∣∣

∫ b

a

s2

1 +
√
1− s2

ds

∣∣∣∣∣ ≤
∣∣∣∣∣

∫ b

a

s2 ds

∣∣∣∣∣ =
|b3 − a3|

3
the estimate of e(x) and e(x) − e(y)

follow immediately.

Consider

E(x) =
1√
p(x)

∫ x

0

q(t)√
p(t)

h(t) sin
(
ϕ(x)− ϕ(t)

)
dt.

Using Cauchy-Schwarz, we obtain

|E(x)| ≤ 1√
p(x)

(∫ x

0

q(t)2

p(t)
dt

)1/2(∫ x

0

h(t)2 dt

)1/2

≤ 1√
p(x)

(∫ x

0

25λ4

16p(t)9
dt

)1/2

since ‖hn‖2 = 1. As |x| < λ, and p decreases, the estime |E(x)| ≤ 5λ5/2

4p(x)5
follows.

Note that, if |x| ≤ λ/2, then a slightly better estimate holds:

|E(x)| ≤ 10

4λ
√
3

(∫ λ/2

0

λ4

(λ2 − t2)9/2
dt

)1/2

=
10

4
√
3λ3

(∫ 1/2

0

1

(1− s2)9/2
ds

)1/2

.

A numerical computation shows that |E(x)| ≤ 2
λ3 .

Remark. Note that the bound on E allows to obtain a bound on hn. For instance, if n ≥ 2
is even

|h2n(x)| ≤
√

λ

p(x)
|h2n(0)|+

5

4

(
λ1/2

p(x)

)5

≤
(
(2n+ 1)1/4√

πn1/4
+

5

4

λ5/2

p(x)9/2

)
1√
p(x)

≤
(
(2n+ 1)1/4√

πn1/4
+

5

4

1

λ2η9/4

)
1√
p(x)

≤ 1√
p(x)

,

provided |x| ≤ (1− η)λ with η ≥ 2

λ8/9
.

The same estimate is valid in the case when n is odd.

In order to prove the Lipschitz bound on E, let us introduce some further notation:

χ(x, t) =
q(t)√
p(t)

h(t) sin
(
ϕ(x)− ϕ(t)

)

and

Φ(x, y) =

∫ x

0

χ(y, t) dt.
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Thus, we have proved that for |x| < λ,

|Φ(x, x)| = |E(x)| ≤





5
4

(
λ1/2

p(x)

)5
if |x| < λ

2
λ3 if |x| < λ/2

.

Now, if x ≤ y < λ,

E(y)− E(x) =

(
1√
p(y)

− 1√
p(x)

)
Φ(y, y)

+
1√
p(x)

[
Φ(y, y)− Φ(x, y)

]

1√
p(x)

[
Φ(x, y)− Φ(x, x)

]

= E1 + E2 + E3.

Note, that
∣∣∣∣∣

1√
p(y)

− 1√
p(x)

∣∣∣∣∣ ≤ 1

2
|x− y| sup

t∈[x,y]

∣∣∣∣
p′(t)

p(t)3/2

∣∣∣∣

=
1

2
|x− y| sup

t∈[x,y]

∣∣∣∣
t

p(t)5/2

∣∣∣∣ ≤
λ

2p(y)5/2
|x− y|.

Thus, we obtain that |E1| ≤
5λ7/2

8p(y)15/2
|x− y|.

In the case when |x|, |y| < λ/2, the same reasoning leads to the estimate |E1| ≤
|x− y|
λ9/2

.

Next, if |x|, |y| ≤ (1− η)λ one can estimate E2 as follows:

|Φ(y, y)− Φ(x, y)| ≤
∫ y

x

|χ(y, t)| dt ≤ |x− y| sup
t∈[x,y]

q(t)√
p(t)

sup
|t|≤|y|λ

|h(t)|

≤ 5λ2

4p(y)5
|x− y|.

Therefore, |E2| ≤
5λ2

4p(y)11/2
|x− y|.

In general, we will bootstrap the approximation of h. Let us first assume that n is even,
so that

h(t) = hn(0)

√
λ

p(x)
cosϕ(x) + E(x)

Then

χ(x, t) =
q(t)√
p(t)

h(t) sin
(
ϕ(x)− ϕ(t)

)

= h(0)
√
λ
q(t)

p(t)
cosϕ(x) sin

(
ϕ(x)− ϕ(t)

)
+

q(t)√
p(t)

E(t) sin
(
ϕ(x)− ϕ(t)

)

= χ1(x, t) + χ2(x, t).

Therefore, we may write |E2| ≤ E1
2 + E2

2 where Ej
2 =

1√
p(x)

∫ y

x

|χj(y, t)| dt.
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For E2
2 we use the estimate E(t) ≤ 5

4

(
λ1/2

p(t)

)5

that we established above. It follows that

E2
2 ≤ 1√

p(x)

∫ y

x

5λ2

4p9/2(t)

5

4

(
λ1/2

p(t)

)5

dt ≤ 25λ9/2

16p(y)10
|x− y|.

If |x|, |y| ≤ λ/2, we may use |E(t)| ≤ 2λ−3, q(t) ≤ 5λ−2, p(x) ≥
√
3λ/2 to obtain E2

2 ≤
12

λ6
|x− y|.
On the other hand,

E1
2 ≤ |h(0)|

√
λ√

p(x)

∫ y

x

∣∣∣∣
q(t)

p(t)

∣∣∣∣ dt ≤
5× 21/4λ5/2

4
√
πn1/4p(y)11/2

|x− y|.

If n is odd, h(0) = 0 while |h′(0)| ≤ 21/4λ√
πn1/4 and we have to replace χ1 by

χ1(x, t) = h′(0)
q(t)√
λp(t)

sinϕ(x) sin
(
ϕ(x)− ϕ(t)

)
,

from which we deduce that

E1
2 ≤ |h′(0)|√

λ
√
p(x)

∫ y

x

∣∣∣∣
q(t)

p(t)

∣∣∣∣ dt ≤
5× 21/4λ5/2

4
√
πn1/4p(y)11/2

|x− y| ≤ λ5/2

n1/4p(y)11/2
|x− y|.

If |x|, |y| ≤ λ/2, there is again a slight improvement:

E1
2 ≤ 107/4√

πn1/433/4λ13/2
|x− y| ≤ 11

λ7
|x− y|,

since n ≥ 3−1/4λ1/2 if n ≥ 1.

Finally,

Φ(x, y)− Φ(x, x) =

∫ x

0

q(t)√
p(t)

h(t)
[
sin
(
ϕ(y)− ϕ(t)

)
− sin

(
ϕ(x)− ϕ(t)

)]
dt

= 2

∫ x

0

q(t)√
p(t)

h(t) cos
ϕ(x) + ϕ(y)− 2ϕ(t)

2
dt sin

ϕ(y)− ϕ(x)

2
.

The integral is estimated in the same way as we estimated Φ(x, x), while for ϕ we use the
mean value theorem and the fact that ϕ′ = p. We, thus, get

|E3| ≤
5λ5/2p(x)

4p(y)5
|x− y| ≤ 5λ7/2

4p(y)5
|x− y|.

If |x|, |y| ≤ λ/2, there is again a slight improvement: |E3| ≤
2

λ3
p(x)|x− y| ≤ 2

λ5/2
|x− y|.

Summarizing,

|E(x)− E(y)| ≤
[
p(y)5/2

2λ
+

5

4
+

4p(y)9/2

5n1/4λ2
+
p(y)5

λ

]
5λ9/2

4p(y)10
|x− y|

≤
[
p(y)3/2

2
+

5

4
+ p(y)2 + p(y)4

]
5λ9/2

4p(y)10
|x− y|,

since p(y) ≤ λ and n−1/4 ≥ 5
4p(y)

1/2. Now, assume that |x|, |y| ≤ (1 − η)λ, with λ−2a <

η < 1, a > 0. In particular, λ ≥ p(y) ≥ λ
√
η ≥ λ1−a. Thus,

|E(x)− E(y)| ≤ 5
λ4+9/2

λ10(1−a)
|x− y| = 5

λ3/2−10a
|x− y|.
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If |x|, |y| ≤ λ/2, then

|E(x)− E(y)| ≤
[

1

λ9/2
+

12

λ6
+

11

λ7
+

2

λ5/2

]
≤ 8

λ5/2
|x− y|,

since λ ≥
√
3.

�

2.2. Two technical lemmas. We will now prove two technical lemmas. The first one
concerns the function ϕn:

Lemma 2.2. If |x|, |y| ≤ T ≤ 1
2

√
2n+ 1, then

(2.16) |ϕn+1(x)− ϕn(x)| ≤
3T√
2n+ 1

,

(2.17) |ϕn+1(x)− ϕn+1(y)− ϕn(x) + ϕn(y)| ≤
3√

2n+ 1
|x− y|,

(2.18) |ϕn+1(x)− ϕn(x) + ϕn+1(y)− ϕn(y)| ≤
5T√
2n+ 1

,

(2.19) ϕn+1(x) + ϕn(x)− ϕn+1(y)− ϕn(y) = (
√
2n+ 1 +

√
2n+ 3)(x− y) + εn(x, y),

with |εn(x, y)| ≤
T 2

√
2n+ 1

|x− y| and

(2.20) |ϕn(x)− ϕn(y)| ≤
5

4

√
2n+ 1|x− y|.

Proof. Note that (2.16) is a direct consequence of (2.17) with y = 0.

Recall that ϕn(x) =

∫ x

0

√
2n+ 1− t2 dt. We have

|ϕn+1(x)− ϕn(x)− ϕn+1(y) + ϕn(y)| =

∣∣∣∣
∫ x

y

√
2n+ 3− t2 −

√
2n+ 1− t2 dt

∣∣∣∣

=

∣∣∣∣
∫ x

y

2√
2n+ 3− t2 +

√
2n+ 1− t2

dt

∣∣∣∣

≤
∣∣∣∣
∫ x

y

2√
2n+ 1− t2

dt

∣∣∣∣

= 2

∣∣∣∣arcsin
x√

2n+ 1
− arcsin

y√
2n+ 1

∣∣∣∣.

But, arcsin is 1√
η -Lipschitz on [−(1− η), (1− η)], thus,

|ϕn+1(x) + ϕn(x)− ϕn+1(y)− ϕn(y)| ≤ 2
√
2

|x− y|√
2n+ 1

.
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Next,

|ϕn+1(x)− ϕn(x) + ϕn(y)− ϕn+1(y)| ≤
∣∣∣∣
∫ x

0

√
2n+ 3− t2 −

√
2n+ 1− t2 dt

∣∣∣∣

+

∣∣∣∣
∫ y

0

√
2n+ 3− t2 −

√
2n+ 1− t2 dt

∣∣∣∣

≤ 2

∫ T

0

2√
2n+ 1− t2

dt ≤ 8√
3

T√
2n+ 1

.

Set N =
√
2n+ 1 +

√
2n+ 3. Then, ϕn+1(x) + ϕn(x)− ϕn+1(y)− ϕn(y) is

=

∫ x

y

√
2n+ 3− t2 +

√
2n+ 1− t2 dt

= N(x− y) +

∫ x

y

√
2n+ 3− t2 +

√
2n+ 1− t2 −N dt.

Therefore,

ε(x, y) =

∫ x

y

√
2n+ 3− t2 −

√
2n+ 3dt+

∫ x

y

√
2n+ 1− t2 −

√
2n+ 1dt.

Let us estimate the second integral, the first being estimated in the same way:
∣∣∣∣
∫ x

y

√
2n+ 1− t2 −

√
2n+ 1dt

∣∣∣∣ =

∣∣∣∣
∫ x

y

t2√
2n+ 1− t2 +

√
2n+ 1

dt

∣∣∣∣

≤ |x3 − y3|
3(1 +

√
3/2)

√
2n+ 1

≤ T 2

2
√
2n+ 1

|x− y|,

since
√
2n+ 1− t2 ≥

√
3/2, when |t| ≤ T ≤

√
2n+ 1/2.

Finally, (2.19) implies (2.20):

|ϕn(x)− ϕn(y)| ≤
√
2n+ 1|x− y|+ |en(x)− en(y)| ≤

(√
2n+ 1 +

T 2

2n+ 1

)
|x− y|

≤ 5

4

√
2n+ 1|x− y|,

since T ≤
√
2n+ 1/2. �

Remark. Geometrically, |ϕn+1(x)−ϕn(x)−ϕn+1(y)+ϕn(y)| is the area of the intersection
of the annulus of inner radius

√
2n+ 1 an outer radius

√
2n+ 3 with a vertical strip with

first coordinate in [x, y]. The annulus has width o(n−1/2) so that its intersection with the
strip has area o(n−1/2|x − y|) as long as this strip is not “tangent” to the annulus. The
lemma is a quantitative statement of this simple geometric fact.

The next result is a simplification of Theorem 2.1:

Corollary 2.3. Let T ≥ 2 and let n ≥ 2T 2. Then, for |x| ≤ T , we obtain that

– if n is even, n = 2p

(2.21) h2p(x) =
(−1)p√
πp1/4

cosϕ2p(x) + Ẽ2p(x);

– if n is odd, n = 2p+ 1

(2.22) h2p+1(x) =
(−1)p√
πp1/4

sinϕ2p+1(x) + Ẽ2p+1(x),
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where, for |x|, |y| ≤ T ,

(2.23) |Ẽn(x)| ≤
2T 2

(2n+ 1)5/4
and |Ẽn(x)− Ẽn(y)| ≤ 3

T 2

(2n+ 1)3/4
|x− y|

Proof. First, we consider the case when n is even, n = 2p. Then, h2p(0) =
(−1)p√
πp1/4

(
1− η2p

8p

)

and h′2p+1(0) = 0. Therefore, (2.11) reads

h2p(x) =
(−1)p√
πp1/4

(
1− η2p

8p

)(
4p+ 1

4p+ 1− x2

)1/4

cosϕ2p(x) + Ẽ2p(x)

=
(−1)p√
πp1/4

cosϕ2p(x) + Ẽ2p(x),

where Ẽ2p(x) is

=
(−1)p√
πp1/4

(
1− η2p

8p

)[(
4p+ 1

4p+ 1− x2

)1/4

− 1

]
cosϕ2p(x) +

(−1)p√
π

η2p
8p5/4

cosϕ2p(x)

+E2p(x).

But, (1 + a)1/4 − 1 ≤ a
4 , which for 0 ≤ a := x2

4p+1−x2 ≤ T 2

4p+1−T 2 ≤ 4
3

T 2

4p+1 gives

(2.24)

∣∣∣∣∣

(
4p+ 1

4p+ 1− x2

)1/4

− 1

∣∣∣∣∣ ≤
1

3

T 2

4p+ 1
.

It follows that

|Ẽ2p(x)| ≤ 1√
πp1/4

∣∣∣∣∣

(
1 +

x2

4p+ 1− x2

)1/4

− 1

∣∣∣∣∣+
1

8
√
πp5/4

+ |E2p(x)|

≤ 1√
πp1/4

1

3

T 2

4p+ 1
+

1

8
√
πp5/4

+
2

(4p+ 1)3/2
≤ 2T 2

(4p+ 1)5/4
.

Further,

|Ẽ2p(x)− Ẽ2p(y)| ≤ 1√
πp1/4

∣∣∣∣∣

(
1− x2

4p+ 1

)−1/4

−
(
1− y2

4p+ 1

)−1/4
∣∣∣∣∣

+
1√
πp1/4

[∣∣∣∣∣

(
4p+ 1

4p+ 1− y2

)1/4

− 1

∣∣∣∣∣+
1

8p

]
|cosϕ2p(x)− cosϕ2p(y)|

+|E2p(x)− E2p(y)| = E1
2p(x, y) + E2

2p(x, y) + E3
2p(x, y).

We have already established that E3
2p(x, y) ≤ 8

(4p+ 1)5/4
|x − y|. Further, if 0 ≤ X,Y ≤

T 2

4p+1 ≤ 1
4 , then

|(1−X)−1/4 − (1− Y )−1/4| ≤ 5

4
|X − Y | sup

0≤t≤1/4

(1− t)−5/4 =
5
√
2

31/4
|X − Y |.

Therefore

E1
2p(x, y) ≤

1√
πp1/4

5
√
2

31/4
|x2 − y2|
4p+ 1

≤ 4
T

4p+ 1
|x− y|.
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Finally, for E2
2p we use the fact that cos is 1-Lipschitz, (2.20) and (2.24), to obtain

E2
2p(x, y) ≤

1√
πp1/4

[
1

3

T 2

4p+ 1
+

1

8p

]
5

4

√
4p+ 1|x− y| ≤ 2

T 2

(4p+ 1)3/4
|x− y|.

Thus,

|Ẽ2p(x)− Ẽ2p(y)| ≤
(
4

T

4p+ 1
+ 2

T 2

(4p+ 1)3/4
+

8

(4p+ 1)5/4

)
|x− y| ≤ 3

T 2

(4p+ 1)3/4
|x− y|.

Let us now consider the case when n is odd, n = 2p + 1. Then, h2p+1(0) = 0 and

h′2p+1(0) =
(−1)p

√
4p+3√

πp1/4

(
1− η2p+1

4

)
. Therefore (2.11) reads

h2p+1(x) =
(−1)p

√
4p+ 3√

πp1/4

(
1− η2p+1

4

) sinϕ2p+1(x)(
(4p+ 3)(4p+ 3− x2)

)1/4 + E2p+1(x)

=
(−1)p√
πp1/4

(
1− η2p+1

4

)( 4p+ 3

(4p+ 3− x2)

)1/4

sinϕ2p+1(x) + E2p+1(x)

=
(−1)p√
πp1/4

sinϕ2p+1(x) + Ẽ2p+1(x),

where

Ẽ2p+1(x) =
(−1)p√
πp1/4

(
1− η2p+1

4

)[( 4p+ 3

(4p+ 3− x2)

)1/4

− 1

]
sinϕ2p+1(x)

+
(−1)pη2p+1

4
√
πp1/4

sinϕ2p+1(x) + E2p+1(x).

The remaining of the proof is the same as for Ẽ2p. �

Remark. The assumption T ≥ 2 is here to make it easier to group terms in the estimates
of the errors. For T ≥ 1 the constants are slightly worse. The reader may check that

(2.25) |Ẽn(x)| ≤
3T 2

(2n+ 1)5/4
and |Ẽn(x)− Ẽn(y)| ≤ 8

T 2

(2n+ 1)3/4
|x− y|.

3. L2-Approximation of functions by Hermite functions

3.1. The kernel of the projection onto the Hermite functions. As (hn)n≥0 forms an
orthonormal basis of L2(R), every f ∈ L2(R) can be written as

f(x) = lim
n→+∞

n∑

k=0

〈f, hk〉hk(x),

where the limit is in the L2(R) sense. Further,
n∑

k=0

〈f, hk〉hk(x) =
n∑

k=0

∫

R

f(y)hk(y) dy hk(x) =

∫

R

f(y)
n∑

k=0

hk(x)hk(y) dy =

∫

R

kn(x, y)f(y) dy,

with the kernel kn(x, y) =

n∑

k=0

hk(x)hk(y). According to the Christoffel-Darboux Formula,

kn(x, y) =

√
n+ 1

2

hn+1(x)hn(y)− hn+1(y)hn(x)

x− y
.
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We will now use Corollary 2.3 to approximate this kernel:

Theorem 3.1. Let T ≥ 2, n ≥ 2T 2 and N =
√
2n+1+

√
2n+3

2 . Then, for |x|, |y| ≤ T ,

kn(x, y) =
1

π

sinN(x− y)

x− y
+Rn(x, y),

with |Rn(x, y)| ≤
17T 2

√
2n+ 1

.

Remark. The same estimate holds for T = 1 provided n ≥ 6.

Proof. For sake of simplicity, we will only prove the theorem in the case when n is even and
write n = 2p.

Let λ =
√
2n+ 1, µ =

√
2n+ 3, α = 1√

πp1/4 , β = 1√
πp1/4 , E = (−1)pẼ2p and F =

(−1)pẼ2p+1. Then, according to Lemma 2.2,
{

h2p(x) = (−1)p
(

1√
πp1/4 cosϕ2p(x) + E(x)

)

h2p+1(x) = (−1)p
(

1√
πp1/4 sinϕ2p+1(x) + F (x)

) .

Therefore, h2p+1(x)h2p(y)− h2p+1(y)h2p(x) is

=
1

πp1/2
(
sinϕ2p+1(x) cosϕ2p(y)− sinϕ2p+1(y) cosϕ2p(x)

)

+
1√
πp1/4

(
F (x) cosϕ2p(y)− F (y) cosϕ2p(x)

)

+
1√
πp1/4

(
sinϕ2p+1(x)E(y)− sinϕ2p+1(y)E(x)

)

+F (x)E(y)− F (y)E(x)

= H1(x, y) +H2(x, y) +H3(x, y) +H4(x, y).

— The first term in the equation above is the principal one. Let us start by computing

A := sinϕ2p+1(x) cosϕ2p(y) − sinϕ2p+1(y) cosϕ2p(x)

=
1

2

[
sin
(
ϕ2p+1(x) + ϕ2p(y)

)
− sin

(
ϕ2p+1(x)− ϕ2p(y)

)

− sin
(
ϕ2p+1(y) + ϕ2p(x)

)
+ sin

(
ϕ2p+1(y)− ϕ2p(x)

)]

= sin
ϕ2p+1(x)− ϕ2p+1(y)− ϕ2p(x) + ϕ2p(y)

2

× cos
ϕ2p+1(x) + ϕ2p+1(y) + ϕ2p(x) + ϕ2p(y)

2

+ sin
ϕ2p+1(y) + ϕ2p(y)− ϕ2p(x)− ϕ2p+1(x)

2

× cos
ϕ2p+1(x)− ϕ2p(x)− ϕ2p(y) + ϕ2p+1(y)

2
= S1C1 + S2C2.

Now, according to (2.17),

|S1C1| ≤ |S1| ≤
|ϕ2p+1(x)− ϕ2p+1(y)− ϕ2p(x) + ϕ2p(y)|

2
≤ 3

2
√
2n+ 1

|x− y|,



APPROXIMATION OF FUNCTIONS BY FINITE HERMITE SERIES 15

while S2C2 = S2(1 + C2 − 1). But, with (2.18),

|C2 − 1| ≤ |ϕ2p+1(x)− ϕ2p(x)− ϕ2p(y) + ϕ2p+1(y)|2
2

≤ 25T 2

2(2n+ 1)
.

Thus, with (2.19),

|S2(C2 − 1)| ≤
(
N +

T 2

√
2n+ 1

)
|x− y| 25T 2

2(2n+ 1)
≤ 16T 2

√
2n+ 1

|x− y|.

Finally, using again Lemma 2.2, sin
(
N(y − x) + εn(y, x)

)
is

= sinN(y − x) + sinN(y − x)
(
cos εn(y, x)− 1

)
+ cosN(y − x) sin εn(x, y)

= sinN(y − x) + E2(x, y),

where

|E2(x, y)| ≤ |εn(x, y)|+
|εn(x, y)|2

2
≤ 2T 2

√
2n+ 1

|x− y|.

Grouping those estimates leads to

A = sinN(y − x) + E3(x, y) with |E3(x, y)| ≤
39T 2

2
√
2n+ 1

|x− y|

Notice, that

1

πp1/2
=

1

π

√
2

n+ 1

√
1 +

1

n
=

√
2

n+ 1

1

π

(
1 +

ξn
n

)

with |ξn| ≤ 1/2.

We, thus, conclude that H1(x, y) =

√
2

n+ 1

(
1

π
sinN(y − x) + E4(x, y)

)
, with

|E4(x, y)| ≤
1

π

(
1 +

ξn
n

)
|E3(x, y)|+

ξn
πn

N |x− y| ≤ 5T 2

√
2n+ 1

|x− y|.

— Consider

F (x) cosϕ2p(y)−F (y) cosϕ2p(x) = F (x)
(
cosϕ2p(y)−cosϕ2p(x)

)
+
(
F (x)−F (y)

)
cosϕ2p(x).

Then, according to (2.23),
∣∣(F (x)− F (y)

)
cosϕ2p(x)

∣∣ ≤ |F (x) − F (y)| ≤ 3T 2

(2n+1)3/4
|x − y|,

while
∣∣F (x)

(
cosϕ2p(y)− cosϕ2p(x)

)∣∣ ≤ 2T 2

(2n+ 1)5/4
|ϕ2p(y)− ϕ2p(x)|

≤ 2T 2

(2n+ 1)5/4
5

4

√
2n+ 1|x− y| = 5T 2

2(2n+ 1)3/4
|x− y|,

with (2.20). Therefore,

|H2(x, y)| ≤
1√
πp1/4

(5/2 + 3)T 2

(2n+ 1)3/4
|x− y| ≤

√
2

n+ 1

3T 2

2(2n+ 1)1/2
|x− y|.

Similarly, the estimate |H3(x, y)| ≤
√

2
n+1

3T 2

2(2n+1)1/2
|x− y| holds.

Note that for T = 1, we have to use (2.25) instead of (2.23) which gives

|H2(x, y)|, |H3(x, y)| ≤
√

2

n+ 1

5T 2

(2n+ 1)1/2
|x− y|.
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— Finally, according to (2.23),

|F (x)E(y)− F (y)E(x)| ≤ |F (x)||E(y)− E(x)|+ |E(x)||F (x)− F (y)|

≤ 12T 4

(2n+ 1)2
|x− y| ≤

√
2

n+ 1

2T 2

√
2n+ 1

|x− y|.

Note that for T = 1, we have to use (2.25) instead of (2.23) which gives |H4(x, y)| ≤√
2

n+1
24

(2n+1)3/2
|x− y|

Grouping terms together, we obtain,

h2p+1(x)h2p(y)− h2p+1(y)h2p(x) =

√
2

n+ 1

(
1

π
sinN(y − x) + E5(x, y)

)
,

with |E5(x, y)| ≤
9T 2

√
2n+ 1

|x− y|. �

3.2. A tail estimate. Let us now establish a tail estimate for kn.

Proposition 3.2. Let T ≥ 2 and n ≥ 2T 2. Then, for |x| ≤ T ,
∫

|y|≥2T

kn(x, y)
2 dy ≤ 2

π2T
+

12T 2

√
2n+ 1

ln(2n+ 1).

Proof. First, using the reproducing kernel property of kn,∫

R

kn(x, y)kn(z, y) dy = kn(x, z).

But, since kn(x, y) =

n∑

k=0

hk(x)hk(y) and hk = Hke
−x2/2, with Hk a polynomial of degree

k, there exists a constant Cn, such that

|kn(x, y)| ≤ Cn(1 + |x|)n(1 + |y|)ne−(x2+y2)/2.

Applying Lebesgue’s Dominated Converence Theorem, we have
∫

R

kn(x, y)kn(z, y) dy →
∫

R

kn(x, y)
2 dy,

when z → x. On the other hand, Theorem 3.1 shows that

kn(x, z) →
N

π
+Rn(x, x)

uniformly in x ∈ [−T, T ]. Therefore,

(3.26)

∫

R

kn(x, y)
2 dy =

N

π
+Rn(x, x), |Rn(x)| ≤

9T 2

√
2n+ 1

.

Now, for |x| ≤ T , Theorem 3.1 shows that

∫

[−2T,2T ]

kn(x, y)
2 dy =

∫

[−2T,2T ]

(
1

π

sinN(y − x)

y − x
+Rn(x, y)

)2

dy

=
1

π2

∫

[−2T,2T ]

sin2N(y − x)

(y − x)2
dy +Rn(x).
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The estimation of the first term is classical: for |x| ≤ T ,

1

π2

∫ 2T

−2T

sin2N(y − x)

(y − x)2
dy =

N

π2

∫ N(2T−x)

−N(2T+x)

sin2 z

z2
dz

=
N

π2

∫

R

sin2 z

z2
dz − N

π2

(∫ −N(2T+x)

−∞
+

∫ +∞

N(2T−x)

)
sin2 z

z2
dz

=
N

π
−R1

N (x),

where 0 ≤ R1
N (x) ≤ 2N

π2

∫ +∞

NT

dz

z2
=

2

π2T
.

Next, we write Rn(x) = R2
n(x) +R3

n(x), where R
2
n(x) =

∫

[−2T,2T ]

Rn(x, y)
2 dy ≥ 0 and

|R3
n| =

∫

[−T,T ]

2

π

∣∣∣∣
sinN(y − x)

y − x
Rn(x, y)

∣∣∣∣ dy

≤ 18T 2

π
√
2n+ 1

∫ N(T−x)

−N(T−x)

∣∣∣∣
sin z

z

∣∣∣∣ dz

≤ 36T 2

π
√
2n+ 1

∫ 2NT

0

min(1, z−1) dz ≤ 12T 2

√
2n+ 1

ln(2n+ 1).

It follows that for |x| ≤ T
∫

|y|≥2T

kn(x, y)
2 dy ≤ R1

n + |R3
n| ≤

2

π2T
+

12T 2

√
2n+ 1

ln(2n+ 1)

as announced. �

3.3. Approximating almost time and band limited functions by Hermite func-

tions. We can now prove Theorem 1.1:

Theorem 3.3. Let Ω0, T0 ≥ 2 and εT , εΩ > 0. Assume that
∫

|t|>T0

|f(t)|2 dt ≤ ε2T ‖f‖2L2(R) and

∫

|ω|>Ω0

|f̂(ω)|2 dω ≤ ε2Ω‖f‖2L2(R).

For n an integer, let Knf be the orthogonal projection of f on the span of h0, . . . , hn.
Assume that n ≥ max(2T 2, 2Ω2). Then, for T ≥ T0,

(3.27) ‖f −Knf‖L2([−T,T ]) ≤
(
2εT + εΩ +

34T 3

√
2n+ 1

)
‖f‖L2(R)

and, for T ≥ 2T0,

(3.28) ‖f −Knf‖L2(R\[−T,T ])

(
2εT +

1

2T 1/2
+

12T 5/2

√
2n+ 1

ln(2n+ 1)

)1/2

‖f‖L2(R).

Remark. As the proof of (3.27) only depends on Theorem 3.1, this estimate holds for T = 1,
provided we assume that n ≥ 6 (see the remark following Theorem 3.1).

Proof. We will introduce several projections. For T,Ω > 0, let

PT f = 1[−T,T ]f and QΩf = F−1
[
1[−Ω,Ω]f̂ ].
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A simple computation shows that

QΩf(x) =
1

π

∫

R

sinΩ(x− y)

x− y
f(y) dy.

The hypothesis on f is that ‖f − PT f‖L2(R) ≤ εT ‖f‖L2(R) for T ≥ T0 and ‖f −QΩf‖L2(R) ≤
εΩ‖f‖L2(R) for Ω ≥ Ω0.

Finally, recall that the projection on the n first Hermite functions, is given by

Knf(x) =

n∑

k=0

〈f, hk〉hk(x) =
∫

R

kn(x, y)f(y) dy.

It is enough to prove (3.27) for T = T0. Let us recall the integral operator

RT
nf(x) =

∫

[−T,T ]

Rn(x, y)f(y) dy,

whereRn(x, y) are defined in Theorem 3.1. Notice that kn(x, y) = kn(y, x) so thatRn(x, y) =
Rn(y, x). We may then reformulate Theorem 3.1 as following:

PTKnPT f = PTQNPT f + PTRT
nPT f,

where N =
√
2n+1+

√
2n+3

2 . Note that N ≥ Ω0. By using (3.1), it is easy to see that
∥∥PTRT

nPT f
∥∥
L2(R)

≤
∥∥PTRT

nPT

∥∥
L2(R)→L2(R)

‖f‖L2(R)‖RT
n‖HS‖f‖L2(R)

≤ 34T 3

√
2n+ 1

‖f‖L2(R).(3.29)

Now, using the fact that projections are contractive and N ≥ Ω0, we have

‖f −Knf‖L2([−T,T ]) = ‖PT f − PTKnf‖L2(R)

≤ ‖PT f − PTKnPT f‖L2(R) + ‖PTKn(f − PT f)‖L2(R)

≤
∥∥PT f − PTQNPT f + PTRT

nPT f
∥∥
L2(R)

+ ‖f − PT f‖L2(R)

≤ ‖PT f − PTQNPT f‖L2(R) +
∥∥PTRT

nPT f
∥∥
L2(R)

+ ‖f − PT f‖L2(R).

Now, write PTQNPT f = PTQNf + PTQN (f − PT f), then

‖PT f − PTQNPT f‖L2(R) ≤ ‖PT f − PTQNf‖L2(R) + ‖PTQN (f − PT f)‖L2(R)

≤ ‖f −QNf‖L2(R) + ‖f − PT f‖L2(R).

Therefore,

‖f −Knf‖L2([−T,T ]) ≤ ‖f −QNf‖L2(R) +
34T 3

√
2n+ 1

‖f‖L2(R) + 2‖f − PT f‖L2(R)

≤
(
εΩ +

34T 3

√
2n+ 1

+ 2εT

)
‖f‖L2(R),

since N ≥ Ω0.

Let us now prove (3.28). It is enough to prove it for T = 2T0. Note that

‖f −Knf‖L2(R\[−2T0,2T0])
≤ ‖f‖L2(R\[−2T0,2T0])

+ ‖KnPT f‖L2(R\[−2T0,2T0])

+‖Kn(f − PT0
)‖L2(R)

≤ 2εT ‖f‖2L2(R) + ‖KnPT0
f‖L2(R\[−2T0,2T0])

.
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We, therefore, need to estimate

‖KnPT f‖L2(R\[−2T0,2T0])
=



∫

|x|≥2T0

∣∣∣∣∣

∫

|y|≤T0

kn(x, y)f(y) dy

∣∣∣∣∣

2

dx




1/2

.

Using Minkowski’s inequality, this quantity is bounded by

∫

|y|≤T0

(∫

|x|≥2T0

|kn(x, y)f(y)|2 dx
)1/2

dy =

∫

|y|≤T0

(∫

|x|≥2T0

|kn(x, y)|2 dx
)1/2

|f(y)| dy

≤
(

sup
|y|≤T0

∫

|x|≥2T0

|kn(x, y)|2 dx
)1/2(∫

|y|≤T0

|f(y)| dy
)1/2

≤ 2

(
2

π2T0
+

6T 2
0√

2n+ 1
ln(2n+ 1)

)1/2

‖f‖L1([−T0,T0])

≤ 2
√
2

(
1

π2T
1/2
0

+
6T

5/2
0√

2n+ 1
ln(2n+ 1)

)1/2

‖f‖L2(R),

which is, with Proposition 3.2, complete the proof. �

Remark. The error estimate given by (3.27) is not practical due to the low decay rate of

the bound of ‖RT
n‖ given by

34T 3

√
2n+ 1

. By replacing this later with a non explicit but a

more realistic error estimate ‖RT
n‖HS , one gets the following error estimate which is more

practical for numerical purposes,

(3.30) ‖f −Knf‖L2([−T,T ]) ≤
(
εΩ + ‖RT

n‖HS + 2εT
)
‖f‖L2(R).

Note also that the factor of ‖RT
n‖HS is actually ‖f‖L2([−T,T ]), to see this, it is enough to

write PT f = PTPT f in (3.29). If one has an L1 bound for f , one may replace this term
with the following computation:

∥∥PTRT
nPT f

∥∥2
L2(R)

=

∫ T

−T

∣∣∣∣
∫

−T,T

Rn(x, y)f(y) dy

∣∣∣∣
2

dx(3.31)

≤
∫ T

−T

sup
y∈[−T,T ]

|Rn(x, y)|2 dx
(∫ T

−T

|f(y)| dy
)2

.(3.32)

Thus, with Theorem 3.1, one obtains

∥∥PTRT
nPT f

∥∥
L2(R)

≤ 17T 5/2

n1/2

∫ T

−T

|f(y)| dy.

3.4. Approximating almost time and band limited functions by scaled Hermite

functions. For α > 0 and f ∈ L2(R) we define the scaling operator δαf(x) = α−1/2f(x/α).
Recall that ‖δαf‖L2(R) = ‖f‖L2(R) while

‖δαf‖L2([−A,A]) = ‖f‖L2([−A/α,A/αA]), ‖δαf‖L2(R\[−A,A]) = ‖f‖L2(R\[−A/α,A/α])

and F [δαf ] = δ1/αF [f ]. In particular, if f is εT -almost time limited to [−T, T ] (resp.
εΩ-almost band limited to [−Ω,Ω]) then δαf is εT -almost time limited to [−T/α, T/α]
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Next, define the scaled Hermite basis hαk = δαhk which is also an orthonormal basis of
L2(R) and define the corresponding orthogonal projections: for f ∈ L2(R),

(3.33) Kα
n f =

n∑

k=0

〈f, hαk 〉hαk .

Proposition 3.4. Let α > 0, T ≥ 2 and c ≥ 2/α. Assume that and
∫

|t|>T

|f(t)|2 dt ≤ ε2T ‖f‖2L2(R) and

∫

|ω|>c/α

|f̂(ω)|2 dω ≤ ε2c/α‖f‖
2
L2(R).

Then, for n ≥ max(2(T/α)2, 2c2), we have

(3.34) ‖f −Kα
n f‖L2([−T,T ]) ≤

(
εT + εc/α +

24(T/α)3√
2n+ 1

)
‖f‖L2(R).

Remark. The scaling with α > 1 has as effect to decrease the dependence on T at the price
of increasing the dependence on good frequency concentration, while taking α < 1 the gain
and loss are reversed. In practice, the above dependence on T is very pessimistic and α > 1
is a better choice. The most natural choice is α = T and c = TΩ where Ω is such that f is
εΩ-almost band limited to [−Ω,Ω].

Proof. For f ∈ L2(R), since Kα
n is contractive, we have

‖f −Kα
n f‖L2([−T,T ]) ≤ ‖f −Kα

nPT f‖L2([−T,T ]) + ‖Kα
n (f − PT f)‖L2([−T,T ])

≤ ‖f −Kα
nPT f‖L2([−T,T ]) + ‖f − PT f‖L2([−T,T ])

≤ ‖f −Kα
nPT f‖L2([−T,T ]) + εT ‖f‖L2(R).

Moreover, Kα
nPT f(x) is

=

n∑

k=0

〈PT f, h
α
k 〉hαk (x) =

∫ T

−T

f(y)
1

α

n∑

k=0

hk(x/α)hk(y/α) dy

=

∫ T/α

−T/α

f(αt)

n∑

k=0

hk(x/α)hk(t) dt.

Therefore ‖f −Kα
nPT f‖L2([−T,T ]) is

=



∫ T

−T

∣∣∣∣∣f(x)−
∫ T/α

−T/α

f(αt)

n∑

k=0

hk(x/α)hk(t) dt

∣∣∣∣∣

2

dx




1/2

=



∫ T/α

−T/α

∣∣∣∣∣α
1/2f(αs)−

∫ T/α

−T/α

f(αt)

n∑

k=0

hk(x/α)hk(t) dt

∣∣∣∣∣

2

ds




1/2

= ‖fα −Knfα‖L2([−αT,αT ])

where fα = δ1/α
[
1[−T,T ]f

]
. Note that fα is 0-almost time limited to [−T/α, T/α]. Next,

writing

f̂α = δαF [1[−T,T ]f ] = δαF [f ]− δαF [1R\[−T,T ]f ]

and, noting that

‖δαF [f ]‖L2(R\[−c,c]) = ‖F [f ]‖L2(R\[−c/α,c/α]) ≤ εc/α‖f‖L2(R)
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while
∥∥δαF [1R\[−T,T ]f ]

∥∥
L2(R\[−Ω,Ω])

≤
∥∥δαF [1R\[−T,T ]f ]

∥∥
L2(R)

=
∥∥1R\[−T,T ]f

∥∥
L2(R)

≤ εT ‖f‖L2(R),

we get ∥∥∥f̂α
∥∥∥
L2(R\[−c,c])

≤ εc/α‖f‖L2(R) + εT ‖f‖L2(R).

It remains to apply Theorem 3.3 to complete the proof. �

4. Numerical results

In this paragraph, we give several examples that illustrate the different results of this work.

Example 1. In this example, we check numerically that the approximation error E(x, y) =∣∣∣∣∣
n∑

k=0

hk(x)hk(y)−
sinN(x− y)

π(x− y)

∣∣∣∣∣ is much smaller than the theoretical error given by Theorem

3.1. In order to do so, we consider a uniform discretization Λ of the square [−1, 1]2 with
6400 equidistant nodes. We then estimate the uniform approximation error sup |E(x, y|)
by Ẽn = sup

x,y∈Λ
|E(x, y)| and the Hilbert-Schmidt norm ‖RT

n‖HS that appears in (3.27) for

10 ≤ n ≤ 100.

n 10 25 50 75 100

Ẽn 0.067 0.039 0.025 0.023 0.022

R̃n 0.051 0.034 0.022 0.019 0.017

Example 2. In this example, we illustrate the quality of approximation by scaled Hermite
functions of a time limited and an almost band limited function. For this purpose, we con-
sider the function f(x) = 1[−1/2,1/2](x). From the Fourier transform of f, one can easily
check that f ∈ Hs(R) for any s < 1/2. Note that f is 0−concentrated in [−1/2, 1/2] and
since f ∈ Hs(R), then ǫΩ-band concentrated in [−Ω,+Ω],for any ǫΩ < MsΩ

−s with Ms a
positive constant. We have considered the value α = 10 and we have used (3.33) to compute
the scaled Hermite approximations Kα

n (f) of f with n = 40 and n = 80. The graphs of f
and its scaled Hermite approximation are given by Figure 1. In Figure 2, we have given the
approximation errors f(x)−Kα

n f(x).

Also, to illustrate the fact that the scaled Hermite approximation outperforms the usual
Hermite approximation, we have repeated the previous numerical tests without the scaling
factor (i.e. with α = 1). Figure 3 shows the graphs of f and Knf .

Example 3. In this last example, we illustrate the quality of approximation of almost
band limited and time limited function by the scaled Hermite functions for the function
g given by g(x) = (1 − |x|)χ[−1,1](x). As is easily seen by expressing the Fourier trans-
form of g, g ∈ Hs(R) for any s < 3/2. Moreover since g is suppoted on [−1, 1], g
is 0-concentrated in [−1, 1]. Moreover, as in the previous example g is ǫΩ-band concen-
trated in [−Ω,+Ω], for any ǫΩ < MsΩ

−s. We have considered the four couples (α, n) =

(
√
10, 20), (

√
10, 50), (

√
50, 20), (

√
50, 50) and computed Kα

n g. The numerical results are
given by Figures 4 and 5. These numerical results suggest again that the scaled Hermite
functions are well suited for the approximation of almost band limited and almost time
limited functions. In this sense, they have similar approximation properties as the PSWFs.
The actual approximation error is much smaller than the theoretical error given by Theorem
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Figure 1. The Graph of f(x) = 1[−1/2,1/2](x) (red) and of Kc
nf(x) (blue)

with (a) n = 40, α = 100 and (b) n = 80, α = 10. Note the Gibbs
phenomena that appears.

Figure 2. Graph of the approximation error f(x) −Kα
n f(x), α = 10, (a)

n = 40 (b) n = 80.

Figure 3. The Graph of f(x) = 1[−1/2,1/2](x) (red) and of Kα
n f(x) (blue)

with (a) n = 40, α = 1 and (b) n = 80, α = 1.

3.4 This actual approximation error depends on the truncation order n as well as on the
parameter α.
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Figure 4. Graph of the approximation error g(x)−Kc
ng(x) with (a) c = 10,

n = 20 and (b) c = 10, n = 50.

Figure 5. Graph of the approximation error g(x)−Kc
ng(x) with (a) c = 50,

n = 20 and (b) c = 50, n = 50.
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