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Abstract

The objective of the present paper is to provide a challenging and well-defined validation test
case for fluid-structure interaction (FSI) in turbulent flow to close a gap in the literature. The
following list of requirements are taken into account during the definition and setup phase.
First, the test case should be geometrically simple which is realized by a classical cylinder
flow configuration extended by a flexible structure attached to the backside of the cylinder.
Second, clearly defined operating and boundary conditions are a must and put into practice by
a constant inflow velocity and channel walls. The latter are also evaluated against a periodic
setup relying on a subset of the computational domain. Third, the material model should
be widely used. Although a rubber plate is chosen as the flexible structure, it is demon-
strated by additional structural tests that a classical St. Venant-Kirchhoff material model is
sufficient to describe the material behavior appropriately. Fourth, the flow should be in the
turbulent regime. Choosing water as the working fluid and a medium-size water channel,
the resulting Reynolds number of Re = 30, 470 guarantees a sub-critical cylinder flow with
transition taking place in the separated shear layers. Fifth, the test case results should be
underpinned by a detailed validation process. For this purpose complementary numerical and
experimental investigations were carried out. Based on optical contactless measuring tech-
niques (particle-image velocimetry and laser distance sensor) the phase-averaged flow field and
the structural deformations were determined. These data were compared with corresponding
numerical predictions relying on large-eddy simulations and a recently developed semi-implicit
predictor-corrector FSI coupling scheme. Both results were found to be in close agreement
showing a quasi-periodic oscillating flexible structure in the first swiveling FSI mode with a
corresponding Strouhal number of about StFSI = 0.11.

Keywords: Fluid-structure interaction (FSI); FSI validation test case; FSI benchmark;
turbulent reference experiment; particle-image velocimetry (PIV); coupled numerical
simulation; large-eddy simulation (LES); shell.

1. Introduction

A flexible structure exposed to a fluid flow is deformed and deflected owing to the fluid forces
acting on its surface. These displacements influence the flow field resulting in a coupling
process between the fluid and the structure shortly denoted fluid-structure interaction (FSI).
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Due to its manifold forms of appearance it is a topic of major interest in many fields of
engineering. Based on enhanced numerical algorithms and increased computational resources
numerical simulations have become an important and valuable tool for solving this kind of
problem within the last decade. Today FSI simulations complement additional experimental
investigations. A long-lasting vision of the computational engineer is to completely replace
or at least strongly reduce expensive experimental investigations in the foreseeable future.
However, to attain this goal validated and thus reliable simulation tools are required.
The long-term objective of the present research project is the coupled simulation of big
lightweight structures such as thin membranes exposed to turbulent flows (outdoor tents,
awnings...). To study these complex FSI problems, a multi-physics code framework was re-
cently developed (Breuer et al., 2012). In order to assure reliable numerical simulations of
complex configurations, the whole FSI code needs to be validated at first on simpler test cases
with trusted reference data. In Breuer et al. (2012) the verification process of the code de-
veloped is detailed. The computational fluid dynamics (CFD) and computational structural
dynamics (CSD) solvers were at first checked separately and then, the coupling algorithm was
considered in detail based on a laminar benchmark. A 3D turbulent example was also taken
into account to prove the applicability of the newly developed coupling scheme in the context
of large-eddy simulations (LES). However, owing to missing reference data a full validation
was not possible. The overall goal of the present paper is to present a turbulent FSI test
case supported by experimental data and numerical predictions based on the multi-physics
code developed. Thus, on the one hand the current FSI methodology involving LES and shell
structures undergoing large deformations is validated. On the other hand, a new turbulent
FSI validation test case is defined based on detailed measurements and with specific insights
into numerical flow simulations, computational structural analysis as well as coupling issues.
Hence, the present study should provide a precisely described test case to the FSI community
for the technically relevant case of turbulent flows interacting with flexible thin structures. To
propose a new FSI test case supported by experimental data a brief literature study of the
available FSI test cases with simple flexible thin structures has to be done. These validation
test cases can be divided into two groups: the laminar and the turbulent cases. For the sake
of brevity complicated FSI cases are ignored in the following summary.
As laminar, purely numerical FSI test cases one can cite the 2D and 3D modified cavity flows
of Wall (1999) and Mok (2001), taken as example in Förster et al. (2007): This is a modification
of the well-known lid-driven cavity CFD benchmark with a flexible membrane at the bottom.
The CFD part of the FSI code can be validated at first with the classical lid-driven cavity flow.
Then based on a simple modification assuming a flexible instead of a rigid bottom wall, the
FSI coupling algorithm can be evaluated. This test is purely numerical and no experimental
data are provided.
From the very first, the hemodynamics research domain was interested in FSI to study blood
flow in flexible veins and arteries. Therefore, as 2D and 3D numerical laminar test cases the
model of a compliant vessel of Nobile (2001) and Formaggia et al. (2001) have to be cited. This
unsteady test case is often used to validate FSI codes relying on shells, because of its simplicity
and of the 3D structure deformations. Regarding other laminar benchmarks, there are many
FSI test cases with elastic plates: a very simple test case is the 2D numerical laminar test case
used by Glück et al. (2001). A cantilever plate is transversely put into a flow. The solution
is stationary and the displacement is small. It is too simple to validate a FSI code, but very
useful to debug and evaluate the coupling scheme. In Glück et al. (2001) another test case
is presented: a L-shaped flexible body is located in a laminar flow and mounted headlong at
the bottom wall. This case is 3D and stationary, at least for moderate Reynolds numbers. It
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is useful for first 3D coupling tests, but no experimental data are provided. Balint and Lucey
(2005) carried out a 2D cantilever plate in axial flow in order to describe human snoring caused
by flutter of the soft palate. Two Reynolds numbers are tested with large deflections of the
plate and numerical flow results are provided. More complicated is the 2D numerical laminar
benchmark of Wall and Ramm (1998), which was later modified by Hübner et al. (2004): A
thin elastic cantilever plate is attached behind a rigid square cylinder. The geometry is simple,
but the deformations of the structure are significant, which implies a good structure model
for the great displacements expected and an appropriate remeshing or robust mesh moving
procedure for the CFD solver. Moreover, the artificial added-mass effect is strong. Therefore,
it represents an appropriate benchmark to test the coupling method (Boyer et al., 2011).
The well-known 2D numerical laminar benchmarks of Turek and Hron (2006) and Turek et al.
(2010) developed in a collaborative research effort on FSI (Bungartz et al., 2010) have to be
cited here, too: An elastic cantilever plate is clamped behind a rigid circular cylinder. Three
different test cases, named FSI1, FSI2 and FSI3 are provided, complemented by additional self-
contained CFD and CSD test cases to check both solvers independently. These test cases were
also used to validate the solvers applied in the present study (Breuer et al., 2012). The laminar
benchmarks proposed above are all purely numerical, i.e., a cross-comparison between different
numerical results is possible, but no rigorous validation against experimental measurements
can be carried out.
In order to close this gap, a nominally 2D laminar experimental case was provided by Gomes
and Lienhart (2006, 2013) and Gomes (2011): A very thin metal sheet with an additional
weight at the end is attached behind a rotating circular cylinder and mounted inside a channel
filled with a mixture of polyglycol and water to reach a low Reynolds number in the laminar
regime. Experimental data are provided for several inflow velocities and two different swiveling
motions could be identified depending on the inflow velocity. Owing to the thin metal sheet
and the rear mass the accurate prediction of this case is demanding. A first comparison
between this laminar benchmark and numerical simulations can be found in Gomes et al.
(2011): two configurations with different inflow velocities were taken into account. The FSI
code is composed of FASTEST-3D (see Section 4.1) for the CFD side and of FEAP (Taylor,
2002) for the CSD side. The results show a very good agreement for the configuration with the
higher inflow velocity (second swiveling FSI mode). Nevertheless, differences were observed for
the low inflow velocity leading to the first swiveling FSI mode. Gomes et al. (2011) explained
these deviations by the influence of the structural damping: in the high inflow velocity case the
relevant frequency for the excitation process is the frequency of the coupled system (motion-
induced excitation (MIE), see Naudascher and Rockwell (1994)). In the low inflow velocity
case, the relevant frequency for the excitation process is the first natural frequency of the
pure structure surrounded by vacuum (instability-induced excitation (IIE), see Naudascher
and Rockwell (1994)). Thus as argued by Gomes et al. (2011), for the first swiveling mode the
FSI phenomenon is more sensitive to the structural damping, which was not considered in the
numerical model.
The second category in the classification of FSI benchmarks presented here is composed of test
cases based on turbulent flows involving 2D structures: In Gomes et al. (2010) a rigid plate with
a single rotational degree of freedom was mounted into a water channel and experimentally
studied by particle-image velocimetry (PIV). This study also presents the first comparison
between experimental data and predicted results achieved by the present code for a turbulent
FSI problem. As another turbulent experimental benchmark, the investigations of Gomes and
Lienhart (2010, 2013) and Gomes (2011) have to be cited: the same geometry as in Gomes and
Lienhart (2006) was used, but this time with water as the working fluid leading to much higher
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Reynolds numbers within the turbulent regime. The resulting FSI test case was found to be
very challenging from the numerical point of view. Indeed, the prediction of the deformation
and motion of the very thin flexible structure requires two-dimensional finite-elements. On
the other hand the discretization of the extra weight mounted at the end of the thin metal
sheet calls for three-dimensional volume elements. Thus for a reasonable prediction of this
test case both element types have to be used concurrently and have to be coupled adequately.
Additionally, the rotational degree of freedom of the front cylinder complicates the structural
simulation and the grid adaptation of the flow prediction.
Thus, in the present study a slightly different configuration is considered to provide in a first
step a less ambitious test case for the comparison between predictions and measurements focus-
ing the investigations more to the turbulent flow regime and its coupling to a less problematic
structural model. For this purpose, a fixed cylinder with a thicker rubber tail and without a
rear mass is used. This should open the computation of the proposed benchmark case to a
broader spectrum of codes and facilitates its adoption in the community. Strong emphasis is
put on a precise description of the experimental measurements, a comprehensive discussion of
the modeling in the numerical simulation (for the single field solutions as well as for the coupled
problem) and the processing of the respective data to guarantee a reliable reproduction of the
proposed test case with various suitable methods.
The paper is organized as follows: A detailed description of this new test case is given in
Section 2. The measuring techniques used in the experiment are described in Section 3. Then,
the numerical simulation methodology will be presented in Section 4 including a brief resume
of the theory of the multi-physics code. Afterwards the full numerical setup is explained.
Due to cycle-to-cycle variations in the FSI phenomenon observed in the experiment and in
the simulation, the results have to be phase-averaged prior to a detailed comparison. The
process is described in Section 5. The experimental unsteady raw results are briefly presented
in Section 6. Finally, numerical and experimental phased-resolved results are compared and
discussed in Section 7. All data available for comparison are specified in Section 8. For the sake
of clarity, the investigations on the material and on the structural model have been relegated
to Appendices at the end of the paper.

2. Description of the Validation Test Case

2.1. Description of the geometrical model and the test section

The proposed benchmark case, denoted FSI-PfS-1a, is derived from the turbulent benchmark of
Gomes and Lienhart (2010, 2013). In their test case a very thin metal sheet with an additional
weight at the end was attached behind a rotating cylinder. The case was found to be very
challenging from the point of view of modeling and simulation. Therefore, the idea of the
present paper is to propose a simpler FSI benchmark avoiding the aforementioned complicated
features and being similar to the recently used FSI test case applied for LES studies (Breuer
et al., 2012), but supplemented by experimental data to compare with.
FSI-PfS-1a consists of a flexible thin structure with a distinct thickness clamped behind a
fixed rigid non-rotating cylinder installed in a water channel (see Fig. 1). The cylinder has
a diameter D = 0.022 m. It is positioned in the middle of the experimental test section with
Hc = H/2 = 0.120 m (Hc/D ≈ 5.45), whereas the test section denotes a central part of the
entire water channel (see Fig. 2). Its center is located at Lc = 0.077 m (Lc/D = 3.5) down-
stream of the inflow section. The test section has a length of L = 0.338 m (L/D ≈ 15.36), a
height of H = 0.240 m (H/D ≈ 10.91) and a width W = 0.180 m (W/D ≈ 8.18). The blocking
ratio of the channel is about 9.2 %. The gravitational acceleration g points in x-direction (see
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Fig. 1), i.e. in the experimental setup this section of the water channel is turned 90 degrees.
The deformable structure used in the experiment behind the cylinder has a length l = 0.060 m
(l/D ≈ 2.72) and a width w = 0.177 m (w/D ≈ 8.05). Therefore, in the experiment there is a
small gap of about 1.5×10−3 m between the side of the deformable structure and both lateral
channel walls. The thickness of the rubber plate is h = 0.0021 m (h/D ≈ 0.09). This thickness
is an averaged value. The material is natural rubber and thus it is difficult to produce a per-
fectly homogeneous 2 mm plate. The measurements show that the thickness is between 0.002
and 0.0022 m. All parameters of the geometrical configuration of the FSI-PfS-1a benchmark
are summarized in Table 1.

W
L

H
h

l

Hc

Lc

D

inflow z
x

y

w

g

Figure 1: Sketch of the geometrical configuration of the validation test case within the test section.

Cylinder diameter D = 0.022 m
Cylinder center x-position Lc = 0.077 m Lc/D = 3.5
Cylinder center y-position Hc= H/2 = 0.120 m Hc/D≈ 5.45
Test section length L = 0.338 m L/D ≈ 15.36
Test section height H = 0.240 m H/D ≈ 10.91
Test section width W = 0.180 m W/D ≈ 8.18
Deformable structure length l = 0.060 m l/D ≈ 2.72
Deformable structure height h = 0.0021 m h/D ≈ 0.09
Deformable structure width w = 0.177 m w/D ≈ 8.05

Table 1: Geometrical configuration of the FSI-PfS-1a validation test case.

2.2. Description of the water channel

In order to validate numerical FSI simulations based on reliable experimental data, the spe-
cial research unit on FSI (Bungartz et al., 2010) designed and constructed a water channel
(Göttingen type, see Fig. 2) for corresponding experiments with a special concern regarding
controllable and precise boundary and working conditions (Gomes and Lienhart, 2006, 2010;
Gomes, 2011). The channel (2.8 m × 1.3 m × 0.5 m, fluid volume of 0.9 m3) has a rectangular
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flow path and includes several rectifiers and straighteners to guarantee a uniform inflow into
the test section. To allow optical flow measurement systems like particle-image velocimetry,
the test section is optically accessible on three sides. It possesses the same geometry as the
test section described in Section 2.1. The structure is fixed on the backplate of the test section
and additionally fixed in the front glass plate. With a 24 kW axial pump a water inflow of
up to umax = 6 m/s is possible. To prevent asymmetries the gravity force is aligned with the
x-axis in main flow direction.

channel

test section

motoraxial pump

1276

27
75

 straightener

240

33
8

180

z

x

y

x

Figure 2: Sketch of the flow channel (dimensions given in mm).

2.3. Flow parameters

Several preliminary tests were performed to find the best working conditions in terms of maxi-
mum structure displacement, good reproducibility and measurable structure frequencies within
the turbulent flow regime. Figure 3 depicts the measured extrema of the structure displace-
ment versus the inlet velocity and Figure 4 gives the frequency and Strouhal number of the FSI
phenomenon as a function of the inlet velocity. These data were achieved by measurements
with the laser distance sensor explained in Section 3.2. The entire diagrams are the result of
a measurement campaign in which the inflow velocity was consecutively increased from 0 to
2.5 m/s. Four regions can be detected (see Fig. 3):

• uinflow ≤ 0.4 m/s: The deflections of the flexible structure are marginal resulting from fluid
turbulence fluctuations. This is typical extraneously-induced excitation (EIE) mechanism
as explained by Naudascher and Rockwell (1994).
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Figure 3: Experimental displacements of the structure extremity versus the inlet velocity.
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Figure 4: Experimental measurements of the frequency and the corresponding Strouhal number of
the FSI phenomenon versus the inlet velocity.

• 0.4 m/s < uinflow ≤ 1.65 m/s: The rubber plate deformations are quasi two-dimensional
and in the first swiveling mode. This region is dominated by an instability-induced exci-
tation (IIE) (Naudascher and Rockwell, 1994). IIE is provoked by flow instability which
gives rise to flow fluctuations if a specific flow velocity is reached. These fluctuations
and the resulting forces become well correlated and their frequency is close to a nat-
ural frequency of the flexible structure (lock-in phenomenon). In this case oscillations
with large amplitudes are expected. Here, the amplitudes increase until the maximum
is reached at uinflow ≈ 1.54, which corresponds to the reduced velocity VrIIE1,1 ≈ 5.71. The

reduced velocity for IIE is defined as follows: VrIIEN,n = uinflow/(fND) ≈ 1/(n St). fN is a
natural frequency of the flexible structure and St the Strouhal number defined with the
vortex-shedding frequency around the undeformed body. The natural frequencies are de-
termined by a modal analysis: The first frequency of the rubber plate f1 is found at about
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12.3 Hz and corresponds to the first swiveling mode dominant in the FSI phenomenon.
St is about 0.175 as specified in Section 7.

• 1.65 m/s < uinflow ≤ 2.33 m/s: In this range the structural deflections are chaotic and
three-dimensional. This is a crossover phase. The frequency of the FSI phenomenon
increases until the first natural frequency of the rubber plate. Beyond this value it is
difficult to measure the FSI frequency because of the chaotic movement.

• 2.33 m/s < uinflow: The deformations observed are three-dimensional and several modes
are superposed.

At an inflow velocity of uinflow = 1.385 m/s the displacements are symmetrical, reasonably
large and well reproducible. Based on the inflow velocity chosen and the cylinder diameter the
Reynolds number of the experiment is equal to Re = 30, 470. Regarding the flow around the
front cylinder, at this inflow velocity the flow is in the sub-critical regime. That means the
boundary layers are still laminar, but transition to turbulence takes place in the free shear layers
evolving from the separated boundary layers behind the apex of the cylinder. Transition to
turbulence means that from that point onwards the flow is three-dimensional and chaotic, and
consists of a variety of different length and time scales. The low-frequency components of the
turbulent flow dominate the coupled FSI problem, whereas the high-frequency contributions
are visible in the fluid forces but are filtered out by the flexible structure. That is the reason
why the signals for the deflections show the quasi-periodic signals without high-frequency
fluctuations as will be shown below in Fig. 11.
Except the boundary layers at the section walls the inflow was found to be nearly uniform in
y- and z-direction (see Fig. 5). The time-averaged velocity components u and v are measured
with two-component laser-Doppler velocimetry (LDV) along the y-axis in the middle of the
measuring section at x/D = 4.18 and z/D = 0. It can be assumed that the time-averaged
velocity component w shows a similar velocity profile as v. Furthermore, a low inflow tur-

bulence level of Tuinflow =

√

1
3

(

u′2 + v′2 + w′2

)

/uinflow = 0.02 is measured. All experiments

were performed with water under standard conditions at T = 20◦ C. The flow parameters are
summarized in Table 2.

in
fl
o
w

in
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o
w

Figure 5: Profiles of the time-averaged streamwise and normal velocity as well as the turbulence
level at the inflow section of the water channel for the y-direction.
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Inflow velocity uinflow= 1.385 m/s
Flow density ρf = 1000 kg/m3

Flow dynamic viscosity µf = 1.0×10−3 Pa s

Table 2: Flow parameters of the FSI-PfS-1a validation test case.

2.4. Choice of structural models and material parameters

Rubber materials are widely used in many different applications, due to, e.g., their isotropic
mechanical behavior, their wide range of usable elastic deformations and their adaptability
to different needs. Depending on the specific application, the suitable description of the me-
chanical behavior must be realized by a more or less complex material model such as Ogden,
Neo-Hooke, Mooney-Rivlin or Varga (Holzapfel, 2000). For the present FSI benchmark, the
material and dimensions of the deformable structure should be selected in such a way that it
is rather easy to excite the structure with only moderate fluid forces in the experiment (i.e., it
should not be too stiff) and it should undergo only reversible, i.e. elastic, deformations in the
range of interest. Moreover, to enable the computation of this test case by many other groups,
the structural setup should be simple in order to be described by as few parameters as possible
and the structural analysis should be feasible with even less sophisticated material laws like,
e.g., St. Venant-Kirchhoff. Another issue is the wish to keep the structural modeling open to
either solid or shell finite element formulations which makes it necessary to avoid an excessively
thin structure to guarantee the desired flexibility. As a consequence of all these requirements,
a custom-made flexible and isotropic rubber material with a reasonable thickness, produced by
the company Draftex Automotive GmbH, is applied and its material parameters are presented
below. For understanding the behavior of the rubber used for the structural model and to
verify the characteristic parameters for the structural simulations, pure structural test cases
were defined and performed in the laboratory (See Appendix A).
Although the material shows a strong non-linear elastic behavior for large strains, the appli-
cation of a linear elastic constitutive law is favored, to enable the reproduction of this FSI
benchmark by a variety of different computational analysis codes without the need of complex
material laws. This assumption can be justified by the observation that in the FSI test case,
a formulation for large deformations but small strains is applicable. Hence, the identification
of the material parameters is done on the basis of the moderate strain expected and the St.
Venant-Kirchhoff constitutive law is chosen as the simplest hyper-elastic material model.

The density of the rubber material can be determined to be ρrubber plate = 1360 kg/m3 for a
thickness of the plate h = 0.0021 m. This permits the accurate modeling of inertia effects of
the structure and thus dynamic test cases can be used to calibrate the material constants. For
the chosen material model there are only two parameters to be defined: The Young’s modulus
E and the Poisson’s ratio ν. In order to avoid complications in the needed element technology
due to incompressibility, the material was realized to have a Poisson’s ratio which reasonably
differs from 0.5. Material tests of the manufacturer indicate that the Young’s modulus is
E = 16 MPa and the Poisson’s ratio is ν = 0.48. The material parameters are summarized in
Table 3.
To numerically validate the decision on structural models and to check the material parameters
simulations are carried out with the reference software Abaqus1 on the pure structural test cases

1http://www.3ds.com/products/simulia/portfolio/abaqus/overview
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Flexible structure density ρrubber plate = 1360 kg/m3

Young’s modulus E = 16 MPa
Poisson’s ratio ν = 0.48

Table 3: Structural parameters of the FSI-PfS-1a flexible structure.

described in Appendix A. The results are presented in Appendix B.

3. Measuring Techniques for the Experimental Investigations

Experimental FSI investigations need to contain fluid and structure measurements for a full
description of the coupling process. Under certain conditions, the same technique for both
disciplines can be used. The measurements performed by Gomes and Lienhart (2006, 2010,
2013) used the same camera system for the simultaneous acquisition of the velocity fields and
the structural deflections. This procedure works well for FSI cases involving laminar flows and
2D structure deflections. In the present case the structure deforms slightly three-dimensional
with increased cycle-to-cycle variations caused by turbulent variations in the flow. The ap-
plied measuring techniques, especially for the structural side, have to deal with those changed
conditions especially the formation of shades. Furthermore, certain spatial and temporal res-
olutions as well as low measurement errors are requested. Due to the different deformation
behavior a single camera setup for the structural measurements like in Gomes and Lienhart
(2006, 2010, 2013) used was not practicable. Therefore, the velocity fields were captured by a
2D particle-image velocimetry (PIV) setup and the structural deflections were measured with
a laser triangulation technique. Both devices are presented in the next sections.

3.1. Particle-image velocimetry

A classic particle-image velocimetry (Adrian, 1991) setup depicted in Fig. 6 consists of a single
camera obtaining two components of the fluid velocity on a planar surface illuminated by a
laser light sheet. Particles introduced into the fluid are following the flow and reflecting the
light during the passage of the light sheet. By taking two reflection fields in a short time
interval ∆t, the most-likely displacements of several particle groups on an equidistant grid
are estimated by a cross-correlation technique or a particle-tracking algorithm. Based on a
precise preliminary calibration, the displacements obtained and the time interval ∆t chosen
the velocity field can be calculated. To prevent shadows behind the flexible structure a second
light sheet was used to illuminate the opposite side of the test section.
The phased-resolved PIV-measurements (PR-PIV) were carried out with a 4 Mega-pixel camera
(TSI Powerview 4MP, charge-coupled device (CCD) chip) and a pulsed dual-head Neodym:YAG
laser (Litron NanoPIV 200) with an energy of 200 mJ per laser pulse. The high energy of the
laser allowed to use silver-coated hollow glass spheres (SHGS) with an average diameter of
davg,SHGS = 10µm and a density of ρSHGS = 1400 kg/m3 as tracer particles. To prove the fol-
lowing behavior of these particles the Stokes number Sk and the particle sedimentation velocity
uSHGS is calculated as follows:

SkSHGS =
τp,SHGS

τf,SHGS

=
ρSHGS d2avg,SHGS

18 µf

uinflow

davg,SHGS

= 1.08 ,

uSHGS =
d2avg,SHGS g (ρSHGS − ρf )

18 µf

= 2.18×10−5 m/s .
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Figure 6: Measuring principle of a two-component PIV setup for the flow around the flexible struc-
ture.

With this Stokes number and a particle sedimentation velocity which is much lower than the
expected velocities in the experiments, an eminent following behavior is approved. The camera
takes 12 bit pictures with a frequency of about 7.0 Hz and a resolution of 1695 × 1211 px with
respect to the rectangular size of the test section. For one phase-resolved position (described in
Section 5) 60 to 80 measurements are taken. Preliminary studies with more and fewer measure-
ments showed that this number of measurements represent a good compromise between accu-
racy and effort. The grid has a size of 150 × 138 cells and was calibrated with an average factor
of 126µm/px, covering a planar flow field of x/D ≈ −2.36 to 7.26 and y/D ≈ −3.47 to 3.47 in
the middle of the test section at z/D ≈ 0. The time between the frame-straddled laser pulses
was set to ∆t = 200µs. Laser and camera were controlled by a TSI synchronizer (TSI 610035)
with 1 ns resolution. The processing of the phase-resolved fluid velocity fields involving the
structure deflections is described in Section 5.

3.2. Laser distance sensor

Non-contact structural measurements are often based on laser distance techniques. In the
present benchmark case the flexible structure shows an oscillating frequency of about 7.1 Hz.
With the requirement to perform more than 100 measurements per period, a time-resolved
system was needed. Therefore, a laser triangulation was chosen because of the known geomet-
ric dependencies, the high data rates, the small measurement range and the resulting higher
accuracy in comparison with other techniques such as laser phase-shifting or laser interferom-
etry. The laser triangulation uses a laser beam which is focused onto the object. A CCD-chip
located near the laser output detects the reflected light on the object surface. If the distance of
the object from the sensor changes, also the angle changes and thus the position of its image on
the CCD-chip. From this change in position the distance to the object is calculated by simple
trigonometric functions and an internal length calibration adjusted to the applied measurement
range. To study simultaneously more than one point on the structure, a multiple-point trian-
gulation sensor was applied (Micro-Epsilon scanControl 2750, see Fig. 7). This sensor uses a
matrix of CCD chips to detect the displacements on up to 640 points along a laser line reflected
on the surface of the structure with a data rate of 800 profiles per second. The laser line was
positioned in a horizontal (x/D ≈ 2.82, see Fig. 7(a)) and in a vertical alignment(z/D ≈ 0, see
Fig. 7(b)) and has an accuracy of 40µm. Due to the different refraction indices of air, glass
and water a custom calibration was performed to take the modified optical behavior of the
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emitted laser beams into account.
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Figure 7: Setup and alignment of multiple-point laser sensor on the flexible structure in a) z-direction
and b) x-direction.

4. Numerical Simulation Methodology

The applied numerical method relies on an efficient partitioned coupling scheme developed
for dynamic fluid-structure interaction problems in turbulent flows (Breuer et al., 2012). The
fluid flow is predicted by an eddy-resolving scheme, i.e., the large-eddy simulation technique.
FSI problems very often encounter instantaneous non-equilibrium flows with large-scale flow
structures such as separation, reattachment and vortex shedding. For this kind of flows the
LES technique is obviously the best choice (Breuer, 2002). Based on a semi-implicit scheme the
LES code is coupled with a code especially suited for the prediction of shells and membranes.
Thus an appropriate tool for the time-resolved prediction of instantaneous turbulent flows
around light, thin-walled structures results. Since all details of this methodology were recently
published in Breuer et al. (2012), in the following only a brief description is provided.

4.1. Computational fluid dynamics (CFD)

In the present methodology the temporally varying domain within a FSI application is taken
into account by the Arbitrary Lagrangian-Eulerian (ALE) formulation. The application of
the ALE method is limited to FSI cases with mild or moderate deformations of the structure.
For extreme deflections other techniques such as the immersed boundary method or overset
grids should be applied. However, since in the current test case this restriction is satisfied
and the ALE method allows to adequately resolve the thin boundary layers on the structure
using curvilinear body-fitted grids without artificial boundary conditions, it is favored for the
present application.
The extra fluxes appearing in the filtered Navier-Stokes equations are consistently determined
by the space conservation law (SCL) (Demirdžić and Perić, 1988, 1990; Lesoinne and Farhat,
1996). For this purpose the in-house code FASTEST-3D (Durst and Schäfer, 1996; Durst et al.,
1996) relying on a finite-volume scheme is used. The discretization on a block-structured body-
fitted grid is second-order accurate in space.
A predictor-corrector scheme (projection method) of second-order accuracy forms the kernel of
the fluid solver. In the predictor step an explicit Runge-Kutta scheme advances the momentum
equation in time. In the following corrector step the mass conservation equation is fulfilled by
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solving a Poisson equation for the pressure-correction. The corrector step is repeated until a
predefined convergence criterion is reached.
In LES the large scales are resolved directly, whereas the non-resolvable small scales have to be
taken into account by a subgrid-scale model. Here, the well-known Smagorinsky (1963) model
is applied. A Van Driest damping function ensures a reduction of the subgrid length near solid
walls. Owing to minor influences of the subgrid-scale model at the moderate Reynolds number
considered in this study, a dynamic procedure to determine the Smagorinsky parameter was
omitted and instead a well established standard constant Cs = 0.1 is used.

4.2. Computational structural dynamics (CSD)

The dynamic equilibrium of the structure is described by the momentum equation given in
a Lagrangian frame of reference. Large deformations, where geometrical non-linearities are
not negligible, are allowed (Hojjat et al., 2010). According to the preliminary considerations
described in Section 2.4, a total Lagrangian formulation in terms of the second Piola-Kirchhoff
stress tensor and the Green-Lagrange strain tensor which are linked by the St. Venant-Kirchhoff
material law is used in the present study. The investigations within this paper were done
with the in-house code Carat++ (Fischer et al., 2010; Bletzinger et al., 2006), developed
with an emphasis on the prediction of shell or membrane behavior. Carat++ is based on
several finite-element types and advanced solution strategies for form finding and non-linear
dynamic problems (Wüchner and Bletzinger, 2005; Wüchner et al., 2007; Bletzinger et al.,
2005; Dieringer et al., 2012). For the dynamic analysis, different time-integration schemes are
available, e.g., the implicit generalized-α method (Chung and Hulbert, 1993). In the modeling
of thin-walled structures, membrane or shell elements are applied. The deformable solid is
modeled with a 7-parameter shell element. Furthermore, special care is given to prevent locking
phenomena by applying the well-known Assumed Natural Strain (ANS) (Hughes and Tezduyar,
1981; Park and Stanley, 1986) and Enhanced Assumed Strain (EAS) methods (Bischoff et al.,
2004).
Both, shell and membrane elements reflect geometrically reduced structural models with a
two-dimensional representation of the mid-surface which can describe the three-dimensional
physical properties by introducing mechanical assumptions for the thickness direction. Due
to this reduced model additional operations are required to transfer information between the
two-dimensional structure and the three-dimensional fluid model. Thus in the case of shells,
the surface of the interface is found by moving the two-dimensional surface of the structure half
of the thickness normal to the surface on both sides and the closing of the volume (Bletzinger
et al., 2006). On these two moved surfaces the exchange of data is performed consistently with
respect to the shell theory (Hojjat et al., 2010).

4.3. Coupling algorithm

To preserve the advantages of the highly adapted CSD and CFD codes and to realize an effective
coupling algorithm, a partitioned but nevertheless strong coupling approach is chosen. The
scheme involves an explicit solution of the non-linear terms in the Navier-Stokes equations and
an implicit coupling between the computation of the pressure field and the displacements of
the structure. Thus small time steps typically required for LES to resolve the turbulent flow
field are taken into account in the coupling scheme relying on this explicit predictor-corrector
scheme. Since all details are provided in Breuer et al. (2012), only a few issues forming the
kernel of the fluid solver are provided here.
For a flexible structure in water, the added-mass effect by the surrounding fluid plays a domi-
nant role. In this situation a strong coupling scheme taking the tight interaction between the
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fluid and the structure into account, is indispensable. In the coupling scheme developed in
Breuer et al. (2012) this issue is taken into account by a FSI-subiteration loop which avoids
instabilities due to the added-mass effect known from loose coupling schemes and maintains
the explicit character of the time-stepping scheme beneficial for LES.
At the beginning of a time step a prediction of the structural displacement is carried out by
a first-order extrapolation to accelerate the convergence. A second-order prediction is not
applied, since it was observed that it does not improve the convergence for the current small
time-step size.
Based on the velocity and pressure fields from the corrector step, the fluid forces resulting from
the pressure and the viscous shear stresses at the interface between the fluid and the structure
are computed. These forces are transferred by a grid-to-grid data interpolation to the CSD
code Carat++ using a conservative interpolation scheme (Farhat et al., 1998) implemented in
the coupling interface CoMA (Gallinger et al., 2009). The conservative interpolation of the
forces ensures that the load resultants on both grids are exactly the same. This advantage is
accompanied by the drawback that in case of a coarse source grid (CFD) and very fine target
grid (CSD), the loads are distributed in a non-physical way. For the present and most other
FSI applications this is however not the case, since the grid used for LES is much finer than
the CSD grid.
Using the fluid forces provided via CoMA, Carat++ determines the stresses in the structure
and the resulting displacements of the structure. This response of the structure is transferred
back to the fluid solver via CoMA applying a bilinear interpolation which is a consistent scheme
for four-node elements with bilinear shape functions.
The CSD prediction determines displacements at the moving boundaries of the computational
domain for the fluid flow. The task is to adapt at each FSI-subiteration the grid of the
inner computational domain based on these displacements at the interface. For moderate
deformations algebraic methods are found to be a good compromise since they are extremely
fast and deliver reasonable grid point distributions maintaining the required high grid quality.
Thus, the grid adjustment is performed based on a transfinite interpolation (Thompson et al.,
1985). It consists of three shear transformations plus a tensor-product transformation.
The code coupling tool CoMA is based on the Message-Passing-Interface (MPI) and thus
runs in parallel to the fluid and structure solver. The communication in-between the codes
is performed via standard MPI commands. Since the parallelization in FASTEST-3D and
Carat++ also relies on MPI, a hierarchical parallelization strategy with different levels of
parallelism is achieved.
For more details about this semi-implicit coupling scheme, we refer to Breuer et al. (2012).

4.4. Numerical setup

4.4.1. Grids

CFD prediction.
For the CFD prediction of the flow two different block-structured grids either for a subset of
the entire channel (w′/l = 1) or for the full channel but without the gap between the flexible
structure and the side walls (w/l = 2.95) are used (see Fig. 8). In the first case the entire
grid consists of about 13.5 million control volumes (CVs), whereas 72 equidistant CVs are
applied in the spanwise direction. For the full geometry the grid possesses about 22.5 million
CVs. In this case starting close to both channel walls the grid is stretched geometrically with a
stretching factor 1.1 applying in total 120 CVs with the first cell center positioned at a distance
of ∆z/D = 1.7×10−2.
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Figure 8: Differences between the full and the subset case.

The gap between the elastic structure and the walls is not taken into account in the numerical
model and thus the width of the channel is set to w instead of W . Two main reasons are
responsible for this simplification. If the gap would be considered in the simulation, the
boundary layers of the channel walls had to be fully resolved, which is too costly. Moreover,
the cells in this gap would be subjected to heavy distortions during the FSI simulation, which
would massively complicate the purpose of grid adaptation during the movement of the flexible
structure close to the side walls and may even lead to convergence problems of the coupled
solver.

L
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Figure 9: x-y cross-section of the grids used for the simulation with 187,500 cells (Note that only
every fourth grid line in each direction is displayed here).

In the x-y cross-section both grids are identical (see Fig. 9). Since only every fourth grid line
of the mesh is shown in Fig. 9, the angles between grid lines and the transitions between the
blocks appear to be worse than in the original grid. The numerical domain has a length of L.
Since the inflow side is rounded in order to use a C-grid, the computational domain in front
of the cylinder is slightly larger than in the test section depicted in Fig. 1. The grid points
are clustered towards the rigid cylinder and the flexible structure using a stretching function
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according to a geometric series. The stretching factors are kept below 1.1 with the first cell
center located at a distance of ∆y/D = 9×10−4 from the flexible structure. Based on the wall
shear stresses on the flexible structure the average y+ values are predicted to be below 0.8,
mostly even below 0.5. Thus, the viscous sublayer on the elastic structure and the cylinder is
adequately resolved. Since the boundary layers at the upper and lower channel walls are not
considered, no grid clustering is required here.

CSD prediction.
Motivated by the fact that in the case of LES frequently a domain modeling based on periodic
boundary conditions at the lateral walls is used to reduce the CPU-time requirements, this
special approach was also investigated for the FSI test case. The detailed discussion of this spe-
cific boundary modeling for the spanwise direction is given in Section 4.4.2. As a consequence,
there are two different structure meshes used: For the CSD prediction of the case with a subset
of the full channel the elastic structure is resolved by the use of 10×10 quadrilateral four-node
shell elements. For the case discretizing the entire channel, 10 quadrilateral four-node shell
elements are used in the main flow direction and 30 in the spanwise direction. These choices are
derived from a grid independency study based on a representative pure structure simulation
test case with a very similar deformation pattern. This allows to avoid the high computational
overhead of fully coupled FSI simulations. The investigations are presented in Appendix C.
The finite elements for the structure are 7-parameter shell elements with 6 degrees of free-
dom per node (Büchter and Ramm, 1992; Büchter et al., 1994; Bischoff and Ramm, 2000).
The specific degrees of freedom are the three deformations of the mid-surface and the three
components of the difference vector of the shell director. Special treatments for the thickness
stretch are included to avoid the undesirable effect which is called thickness locking (Bischoff
and Ramm, 1997). For the present test cases the ANS method is not activated and the EAS
method is used according to the recommendations in Bischoff et al. (2004) and Bischoff (1999),
to have an effective counter-measure against transverse shear-, membrane-, in-plane shear and
thickness locking. For a detailed derivation of the element, an in-depth discussion of valid shell
formulations and locking phenomena in shell element analysis, the reader is referred to these
two studies. The shell elements used are formulated for large deformations, i.e., geometrically
non-linear analysis. In the given benchmark scenario, the ratio of the thickness and the length
of the thin structure, h/l = 0.035, is smaller than 1/10. So even a 5-parameter shell using the
Reissner-Mindlin kinematics (Reissner, 1945; Mindlin, 1951) would be valid. The 7-parameter
theory yields higher accuracy for the representation of through-the-thickness effects and is for
the structure considered fully comparable to a solid model.

4.4.2. Boundary conditions

CFD prediction.
On the CFD side no-slip boundary conditions are applied at the rigid front cylinder and at
the flexible structure. Since the resolution of the boundary layers at the channel walls would
require the bulk of the CPU-time, the upper and lower channel walls are assumed to be slip
walls. Thus the blocking effect of the walls is maintained without taking the boundary layers
into account. At the inlet a constant streamwise velocity is set as inflow condition without
adding any perturbations. The choice of zero turbulence level is based on the consideration that
such small perturbations imposed at the inlet will generally not reach the cylinder due to the
coarseness of the grid at the outer boundaries. Therefore, all inflow fluctuations will be highly
damped. However, since the flow is assumed to be sub-critical, this disregard is insignificant.
At the outlet a convective outflow boundary condition is favored allowing vortices to leave the
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integration domain without significant disturbances (Breuer, 2002). The convection velocity is
set to uinflow.
As mentioned above two different cases are considered (see Fig. 8). In order to save CPU-
time in the first case only a subset of the entire spanwise extension of the channel is taken
into account. Thus the computational domain has a width of w′/l = 1 in z-direction and the
flexible structure is a square in the x-z-plane. In this case a reasonable approximation already
applied in Breuer et al. (2012) is to apply periodic boundary conditions in spanwise direction
for both disciplines. For LES predictions periodic boundary conditions represent an often
used measure in order to avoid the formulation of appropriate inflow and outflow boundary
conditions. The approximation is valid as long as the turbulent flow is homogeneous in the
specific direction and the width of the domain is sufficiently large. The latter can be proven
by predicting two-point correlations, which have to drop towards zero within the half-width of
the domain. The impact of periodic boundary conditions on the CSD predictions are discussed
below.
For the full case with w/l = 2.95 periodic boundary conditions can no longer be used. Instead,
for the fluid flow similar to the upper and lower walls also for the lateral boundaries slip
walls are assumed since the full resolution of the boundary layers would be again too costly.
Furthermore, the assumption of slip walls is consistent with the disregard of the small gap
between the flexible structure and the side walls discussed above.

CSD prediction.
On the CSD side, the flexible shell is loaded on the top and bottom surface by the fluid forces,
which are transferred from the fluid mesh to the structure mesh. These Neumann boundary
conditions for the structure reflect the coupling conditions. Concerning the Dirichlet boundary
conditions, the four edges need appropriate support modeling: on the upstream side at the
rigid cylinder a clamped support is realized and all degrees of freedom are equal to zero. On
the opposite downstream trailing-edge side, the rubber plate is free to move and all nodes have
the full set of six degrees of freedom. The edges which are aligned to the main flow direction
need different boundary condition modeling, depending on whether the subset or the full case
is computed:
For the subset case due to the fluid-motivated periodic boundary conditions, periodicity for
the structure is correspondingly assumed for consistency reasons. As it turns out later in
Section 7.1.1, this assumption seems to hold for this specific configuration and its deformation
pattern which has strong similarity with an oscillation in the first eigenmode of the shell.
Hence, this modeling approach may be used for the efficient processing of parameter studies,
e.g., to evaluate the sensitivity of the FSI simulations with respect to slight variations in model
parameters shown in Section 7.1.2. For this special type of support modeling, there are always
two structure nodes on the lateral sides (one in a plane z = −w/2 and its twin in the other plane
z = +w/2) which have the same load. These two nodes must have the same displacements in
x- and y-direction and their rotations have to be identical. Moreover, the periodic boundary
conditions imply that the z-displacement of the nodes on the sides are forced to be zero.
For the full case the presence of the walls in connection with the small gap implies that there is
in fact no constraining effect on the structure, as long as no contact between the rubber plate
and the wall takes place. Out of precise observations in the lab, the possibility of contact may
be disregarded. In principle, this configuration would lead to free-edge conditions like at the
trailing edge. However, the simulation of the fluid with a moving mesh needs a well-defined
mesh situation at the side walls which made it necessary to tightly connect the structure mesh
to the walls (the detailed representation of the side edges within the fluid mesh is discarded due
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to computational costs and the resulting deformation sensitivity of the mesh in these regions).
Also the displacement in z-direction of the structure nodes at the lateral boundaries is forced
to be zero.

4.4.3. Coupling conditions

For the turbulent flow a time-step size of ∆tf = 2×10−5 s (∆t∗f = 1.26×10−3 in dimensionless
form using uinflow and D as reference quantities) is chosen and the same time-step size is applied
for the structural solver based on the generalized-α method with the spectral radius ̺∞ = 1.0,
i.e, the Newmark standard method. For the CFD part this time-step size corresponds to a
CFL number in the order of unity. Furthermore, a constant underrelaxation factor of ω = 0.5
is considered for the displacements and the loads are transferred without underrelaxation. In
accordance with previous laminar and turbulent cases in Breuer et al. (2012) the FSI conver-
gence criterion is set to εFSI = 10−4 for the L2 norm of the displacement differences. 4 to 15
FSI-subiterations are required to reach the convergence criterion. The mean value of the FSI-
subiterations for an entire simulation is about 5.8: The maxima are only appearing in short
time intervals during the maximum deflections of the structure or when the plate deforms with
the maximum velocity.
After an initial phase in which the coupled system reaches a statistically steady state, each
simulation is carried out for about 4 s real-time corresponding to about 27 swiveling cycles of
the flexible structure.
For the coupled LES predictions the national supercomputer SuperMIG/SuperMUC was used
applying either 82 or 140 processors for the CFD part of the reduced and full geometry,
respectively. Additionally, one processor is required for the coupling code and one processor
for the CSD code, respectively.

5. Generation of Phase-resolved Data

Each flow characteristic of a quasi-periodic FSI problem can be written as a function f =
f̄ + f̃ + f ′, where f̄ describes the global mean part, f̃ the quasi-periodic part and f ′ a ran-
dom turbulence-related part (Reynolds and Hussain, 1972; Cantwell and Coles, 1983). This
splitting can also be written in the form f = 〈f〉 + f ′, where 〈f〉 is the phase-averaged part,
i.e., the mean at constant phase. In order to be able to compare numerical results and exper-
imental measurements, the irregular turbulent part f ′ has to be averaged out. This measure
is indispensable owing to the nature of turbulence which only allows reasonable comparisons
based on statistical data. Therefore, the present data are phase-averaged to obtain only the
phase-resolved contribution 〈f〉 of the problem, which can be seen as a representative and thus
characteristic signal of the underlying FSI phenomenon.

5.1. Description of the method

The procedure to generate phase-resolved results is the same for the experiments and the
simulations and is also similar to the one presented in Gomes and Lienhart (2006). The
technique can be split up into three steps:

• Reduce the 3D-problem to a 2D-problem

Due to the facts that in the present benchmark the structure deformation in spanwise
direction is negligible and that the delivered experimental PIV-results are only available
in one x-y-plane, first the 3D-problem is reduced to a 2D-problem. For this purpose
the flow field and the shell position in the CFD predictions are averaged in spanwise
direction.
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• Determine n reference positions for the FSI problem

A representative signal of the FSI phenomenon is the history of the y-displacements of
the shell extremity. Therefore, it is used as the trigger signal for this averaging method
leading to phase-resolved data. Note that the averaged period of this signal is denoted T .
At first, it has to be defined in how many sub-parts the main period of the FSI problem
will be divided and so, how many reference positions have to be calculated (for example
in the present work n = 23). Then, the margins of each period of the y-displacement
curve are determined. In order to do that the intersections between the y-displacement
curve and the zero crossings (Uy = 0) are looked for and used to limit the periods. Third,
each period Ti found is divided into n equidistant sub-parts denoted j (see Fig. 10(a)).

• Sort and average the data corresponding to each reference position

The sub-part j of the period Ti corresponds to the sub-part j of the period Ti+1 and so
on. Each data set found in a sub-part j will be averaged with the other sets found in the
sub-parts j of all other periods (see Fig. 10(b)). Finally, data sets of n phase-averaged
positions for the representative reference period are achieved.
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Figure 10: A representative signal of the present FSI phenomenon: the time history of the y-
displacements Uy of the shell extremity.

5.2. Application of the method

The simulation data containing structure positions, pressure and velocity fields, are generated
every 150 time steps. According to the frequency observed for the structure and the time-
step size chosen about 50 data sets are obtained per swiveling period. With respect to the
time interval predicted and the number of subparts chosen, the data for each subpart are
averaged from about 50 data sets. A post-processing program is implemented based on the
method described above. It does not require any special treatment and thus the aforementioned
method to get the phase-resolved results is straightforward.
For the experiments different ways to apply the phase-averaging technique can be found:
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Gomes and Lienhart (2006) used a FPGA (Field Programmable Gate Array) with a 1 MHz
internal clock to monitor two main events in parallel during the acquisition: On the one hand
the PIV measurements and on the other hand the beginning of each structure motion cycle.
After obtaining all the data a post-processing software sorted and reconstructed the phase-
averaged results based on the correlated information given by the FPGA. It is possible to
implement such an analysis method if the beginning of each structure motion cycle can easily
be detected. In Gomes and Lienhart (2006) the starting position of the swiveling period was
determined in real time using an electronic angular position sensor. Owing to the fixed cylinder
such a signal is not available in the present configuration.
Thus, the current experimental setup uses a similar, but less complex reconstruction method.
It consists of the multiple-point triangulation sensor described in Section 3.2 and the synchro-
nizer of the PIV system. Each measurement pulse of the PIV system is detected in the data
acquisition of the laser distance sensor, which measures the structure deflection continuously
with 800 profiles per second. With this setup, contrary to Gomes and Lienhart (2006), the
periods are not detected during the acquisition but in the post-processing phase. After the run
a specific software based on the described method mentioned above computes the reference
structure motion period and sorts the PIV data to get the phase-averaged results.

6. Unsteady Results

In order to comprehend the real structure deformation and the turbulent flow field found in
the present test case, experimentally and numerically obtained unsteady results are presented
in this section.
Figure 11 shows experimental raw signals of dimensionless displacements from a point located
at a distance of 9 mm from the shell extremity in the midplane of the test section. In Fig-
ure 11(a) the history of the y-displacement U∗

y = Uy/D obtained in the experiment is plotted.
The signal shows significant variations in the extrema: The maxima of U∗

y vary between 0.298
and 0.523 and the minima between -0.234 and -0.542. The standard deviations on the extrema
are about ±0.05 (±12 % of the mean value of the extrema). Minor variations are observed
regarding the period in Figure 11(a). Figure 11(b) and 11(c) show the corresponding experi-
mental phase portrait and phase plane, respectively. The phase portrait has a quasi-ellipsoidal
form. The monitoring point trajectory plotted in the phase plane describes an inversed “C”,
which is typical for the first swiveling mode. The cycle-to-cycle variations in these plots are
small. Therefore, the FSI phenomenon can be characterized as quasi-periodic.
Figure 12 is composed of eight images of the instantaneous flow field (streamwise velocity
component) experimentally measured in the x-y plane located in the middle of the rubber
plate. These pictures constitute a full period T of the FSI phenomenon arbitrarily chosen.
As mentioned before, the shell deforms in the first swiveling mode. Thus, there is only one
wave node located at the clamping of the flexible structure. At the beginning of the period
(t = 0) the structure is in its undeformed state. Then, it starts to deform upwards and reaches
a maximal deflection at t ≈ T/4. Afterwards, the shell deflects downwards until its maximal
deformation at t ≈ 3T/4. Finally the plate deforms back to its original undeformed state and
the end of the period is reached. It should be pointed out that very similar figures as depicted
in Fig. 12 could also be shown from the numerical predictions based on LES. Exemplary and
for the sake of brevity, Fig. 13 displays the streamwise velocity component of the flow field in
a x-y-plane only at t ≈ 3T/4.
As visible in Fig. 12 and in Fig. 13 the flow is highly turbulent, particularly near the cylinder,
the flexible structure and in the wake. As expected the LES prediction is capable to resolve
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Figure 11: Experimental raw signals of dimensionless displacements from a point in the midplane
of the test section located at a distance of 9 mm from the shell extremity.

small-scale flow structures in the wake region and in the shear layers. The strong shear layers
originating from the separated boundary layers are clearly visible. This is the region where
for the sub-critical flow the transition to turbulence takes place as visible in the figures. Con-
sequently, the flow in the wake region behind the cylinder is obviously turbulent and shows
cycle-to-cycle variations. That means the flow field in the next periods succeeding the interval
depicted in Fig. 12 will definitely look slightly different due to the irregular chaotic character
of turbulence. Therefore, in order to be able to compare these results an averaging method
is needed leading to a statistically averaged representation of the flow field. Since the FSI
phenomenon is quasi-periodic the phase-averaging procedure presented above is ideal for this
purpose and the results obtained are presented in the next section.

7. Phase-resolved Results and Discussion

The following part is divided into two different sections: in the first one numerical phased-
resolved results obtained for the two configurations (full and subset case) are compared. Based
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(a) t ≈ T/8 (b) t ≈ T/4

(c) t ≈ 3T/8 (d) t ≈ T/2

Figure 12: Experimental unsteady flow field for t ∈ ]0, T/2] (x-y plane located in the middle of the
rubber plate).

on this evaluation one case is chosen for a parameter study. Then, in the second subsection
the numerical phased-averaged results chosen are juxtaposed to the experimental ones in order
to verify their quality.
In both simulations (subset and full case) the flow is initialized by assuming the entire structure
to be non-deformable. In this case the shell attached to the backside of the cylinder acts
like a splitter plate attenuating the generation of a von Kàrmàn vortex street behind the
cylinder. Nevertheless, quasi-periodic vortex shedding is still observed with a Strouhal number
of Stfixed ≈ 0.175. Owing to different loads on both sides the structure starts to deflect as
soon as it is released. After a short initial phase, in which the amplitudes of the deflections
successively increase, a new quasi-periodic mode of oscillation is reached. In accordance with
the experiment in the numerical simulations the shell deforms in the first swiveling mode as
visible in Fig. 14.
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(e) t ≈ 5T/8 (f) t ≈ 3T/4

(g) t ≈ 7T/8 (h) t ≈ T

Figure 12: (continued): Experimental unsteady flow field for t ∈ ]T/2, T ] (x-y plane located in the
middle of the rubber plate).

(a) Strong backflow region u/uinflow < −0.6 visualized by blue iso-surface. (b) Zoom of the shear layers.

Figure 13: Unsteady flow field and deformed structure predicted by LES at t ≈ 3T/4.
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7.1. Comparison of numerical results

Two numerical setups are used to run the FSI-PfS-1a simulation: the full case and the subset
case. These configurations differ regarding the geometry and the boundary conditions as
described in Section 4.4. The subset case represents a simpler model than the full case requiring
less CPU-time (one second real-time is predicted in about 170 hours wall-clock with the subset
case on 84 processors and in about 310 hours wall-clock with the full case on 142 processors).
Similar savings can be achieved with respect to the memory requirements of both cases. The
full case requires a maximum of 231 Mbytes per core and about 32 Gbytes for all processors.
The subset case needs 242 Mbytes per core, which leads to about 20 Gbytes for the entire
simulation. Thus the subset is worth to be considered. The question, however, is which
influence these modeling assumptions have on the numerical results?

7.1.1. Full case vs. subset case

Both setups are performed with slightly different material characteristics than defined in Sec-
tion 2.4: The Young’s modulus is set to E = 14 MPa, the thickness of the rubber plate is equal
to h = 0.002 m, the solid density is ρrubber plate = 1425 kg m−3 and no structural damping is
used. The reason is that this comparison was a preliminary study carried out prior to the final
definition of the test case. Because of the similitude of the values used here and those defined
in Section 2.4 and because of the large CPU-time requested, the comparison of the numerical
results is not repeated with the parameters defined in Section 2.4.

Deflection of the structure.
At first the predicted deformation of the structure is analyzed. For this purpose Fig. 14 depicts
an arbitrarily chosen snapshot of the deformed structure for both cases taken from the quasi-
periodic oscillation mode. It is observed that the flexible structure in the full case deforms more
strongly in z-direction than in the subset case. This observation can be explained as follows:
the full setup has a wider structure and the lateral nodes are exposed to less constraints than
in the subset case.

(a) Full case (small z-deformations of the structure) (b) Subset case (nearly no z-deformations of the
structure)

Figure 14: Comparison of the structure deformations in y- and z-direction between the full and
subset case.

In order to quantify these displacement variations along the z-axis in the full case, three
characteristic points on the structure in three parallel planes depicted in Fig. 15(c) are chosen:
One plane is set in the middle of the structure, the others are shifted ±60 mm in the spanwise
direction. All three points are not located directly on the shell extremity but at a distance of 9
mm from the extremity. This choice is motivated by the planned comparison with the measured
data (Section 7.2) and the limitation in the experiment. The laser distance sensor does not
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allow to follow the structure extremity and thus points at a certain distance from the tail are
chosen. The dimensionless y-displacements U∗

y = Uy/D at these three points are monitored
as shown in Fig. 15(a). The following observation can be made: 1. The displacements are
in phase. 2. Local differences between the curves are observed in the extrema. 3. These
variations are, however, not constant in time. In other words the displacement in one plane
is not always bigger than another. The variations reflect some kind of waves in the structure
that move in the spanwise direction. Comparing those three raw signals with the z-averaged
displacements depicted in Fig. 15(b), a maximal difference of 5% regarding the extrema is
noticed. Hence the variations are small. The corresponding z-variations of the subset case are
even smaller (< 0.5%). Therefore, it was decided to continue the analysis by averaging both
cases in z-direction. Notice that by the averaging procedure in z-direction the 3D-problem is
reduced to a 2D-problem.
The next step is to compare the structure deformations obtained with the full and the sub-
set case. Figure 15(b) shows the z-averaged dimensionless y-displacements of both cases
taken at 9 mm from the extremity. The frequencies are identically predicted in both cases
(fFSInum = 6.96 Hz and StFSInum = 0.11). Minor differences appear in the extrema of the
raw signals presented in Fig. 15(b). As before these variations are not constant in time
and thus the maximal values are found irregularly for either the full or the subset case.
As a consequence the comparison of the phase-averaged displacement signal (see Fig. 15(d))
shows no significant changes between both cases and the coefficient of determination R2 =

1 −
∑

i

(

U∗

yi
− Û∗

yi

)2

/
∑

i

(

U∗

yi
− U∗

y

)2
of the calculated mean phase is close to unity (0.9869

for the full case and 0.9782 for the subset case). Û∗

yi
denotes the estimated mean value of U∗

y

for the point i. U∗

y is the mean value of all the displacements. The standard deviation for each
point of the averaged phase is also computed: the maximum for the full case is 0.055 (dimen-
sionless) and for the subset case 0.065 (dimensionless). These values are small compared to
the signal, which is another indication for the reliability of the averaged phase. The subset
case predicts structure deformations very similar to the full case. In order to check if the FSI
results are quasi identical for the full and the subset case, the phase-resolved flow field has to
be additionally taken into account.

Phase-resolved flow field.
The phase-averaging process described in Section 5 delivers the phase-resolved flow fields for
the full and the subset case. In order to compare both just two representative phase-averaged
positions of the FSI problem are chosen to limit this subsection. Figure 16 shows the flow
field in the vicinity of the shell during its maximal deformation at t ≈ T/4 and Fig. 17
depicts it close to its undeformed position at t ≈ T , where T denotes the period time of the
phase-averaged signal. The figures display the contours of the phase-averaged streamwise and
transverse velocity components. Furthermore, the local error of the velocity magnitude defined
by the deviation between the absolute values of the velocity vector of both cases normalized
by the inflow velocity uinflow is depicted. For both positions the results obtained for the subset
and full case are nearly identical. Figures 16(e) and 17(e) underline that the local error of
the velocity magnitude between both cases is about zero everywhere except in the region near
the structure. For the position t ≈ T/4 (Fig. 16(e)) small local errors are located behind the
structure in the vortex shedding region. For the position t ≈ T (Fig. 17(e)) the phase-averaged
position of the shell for the subset case differs slightly from the one of the full case. Since the
flow field is rapidly changing during the vortex shedding process, this minor deviation in the
phase-angle explains the small local errors observed near the structure and in the shear layer.
The comparison of the phase-averaged flow fields shows no significant changes between both
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(a) Comparison of the numerical raw dimension-
less displacements at the three points sketched in
Fig. 15(c) (full case).
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(b) Comparison of the numerical z-averaged dimen-
sionless displacements between the full (red) and the
subset (blue) case.

60mm

60mm

9mm
.

(c) Position of the monitoring points (in red) for the
full case.
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(d) Comparison of the averaged phase of the full
and the subset case.

Figure 15: Comparison of numerical results for the full case and the subset case.

cases. The subset case predicts the phase-averaged flow field very similar to the full case. As
said before, the subset setup is simpler and less expensive in CPU-time. Therefore, the subset
case is very interesting in order to simulate the present test case using LES.

7.1.2. Sensitivity study for the subset case – Dimensional analysis

In order to better understand the test case a dimensional analysis was carried out. The phys-
ical quantities of the present FSI problem are: The dynamic viscosity µf , the fluid density ρf ,
the inlet velocity uinflow for the fluid; the cylinder diameter D, the dimensions of the rubber
plate l, w and h; the Young’s modulus E, the Poisson’s ratio ν and the density of the rubber
plate ρrubber plate; To describe the FSI phenomenon the FSI frequency fFSI, the displacement
extrema Uy|max

and Uy|min
are chosen. These 13 physical quantities lead to 10 dimensionless

parameters: The Reynolds number Re = ρfuinflowD/µf for the fluid; the length ratios w/l, h/l,
D/l for the geometry; ν for the material of the rubber plate; The density ratio ρf/ρrubber plate,
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the Cauchy number Cy = ρfu
2
inflow/E (as defined in De Langre (2002)), the extrema of the

dimensionless y-displacements U∗

y

∣

∣

max
= Uy|max

/D and U∗

y

∣

∣

min
= Uy|min

/D and the Strouhal
number StFSI = fFSID/uinflow for the FSI coupling.

In the present experimental investigation the operating conditions for the fluid are well-known.
The length and the width of the rubber plate are well defined, too. Therefore, the Reynolds
number Re, the geometrical ratios w/l and D/l are fixed in the sensitivity study.

• On the contrary, as mentioned in Section 2.1, the material is natural rubber and to
manufacture a perfectly homogeneous 2 mm plate is not easy. The experimental mea-
surements show that the thickness varies between 0.002 and 0.0022 m. Two values of h
are tested: the theoretical value of 0.002 m and the average value 0.0021 m. Consequently,
the geometrical ratio h/l will be taken into account in the sensitivity study.

• The density of the rubber plate ρrubber plate is determined by a scale and the volume of
the structure. Due to the dependency of this volume on the plate thickness the density
determination can be inaccurate. As an additional dimensionless parameter the density
ratio ρf/ρrubber plate is a part of the sensitivity study.

• The last parameter of the structure is the Young’s modulus, because it has an important
influence on the modeling of the material. A range of values for E and consequently of
Cy is tested to evaluate this influence.

The dimensional analysis presented here will also be reduced to the six following dimensionless
numbers: the density ratio ρf/ρrubber plate, the geometrical ratio h/l, the Cauchy number Cy,
the dimensionless y-displacement extrema U∗

y

∣

∣

max
and U∗

y

∣

∣

min
and the Strouhal number StFSI.

All the tests were carried out without structural damping and are summarized in Table 4. The
full case used in Section 7.1.1 and the experimental results are also added as references. Each
simulation was done for a time interval of 4 s physical time and comprises about 27 swiveling
periods. Relative errors between the numerical and experimental values are given.

The following results and trends can be seen:

• By varying the Young’s modulus E between 8 and 16 MPa (240×10−6 ≥ Cy ≥ 120×10−6)
it is possible to control the mode of the FSI phenomenon. Thus E (or the Cauchy number)
turns out to be the most crucial material parameter. With E smaller than 9 MPa (Cy
≥ 213×10−6), the system oscillates in the second swiveling mode (similar to the second
bending mode presented in Fig. B.25). With E larger than 12 MPa (Cy ≤ 160×10−6)
the structure deflection is dominated by the first bending mode of the structure. For a
Young’s modulus between 9 and 12 MPa (213×10−6 ≥ Cy ≥ 160×10−6) a mode transition
phase appears in which both swiveling modes are apparent. In this situation the y-
displacements of the flexible structure extremity are no longer quasi-periodic and can
not be described by a unique frequency.

• Non-negligible variations in the density (1320 kg m−3 ≤ ρrubber plate ≤ 1725 kg m−3)
(0.757 ≥ ρf/ρrubber plate ≥ 0.580) for a fixed thickness (h = 0.002 m) and Young’s modulus
(E = 14 MPa) do not drastically change the results of the frequency and of the mean
period extrema. The FSI frequency fFSI (respectively the Strouhal number StFSI) slightly
decreases with the increase of the density.
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Case Materials parameters Dimensionless numbers Results

Thickness Density E h/l ρf Cy fFSI StFSI Error U∗

y

∣

∣

max
Error U∗

y

∣

∣

min
Error Comments

h (mm) (kg m−3) (MPa) ρrubber plate (Hz) (%) (%) (%)

Subset case

2 1320 14 0.033 0.757 137×10−6 7.00 0.1112 -1.40 0.460 10.1 -0.488 -16.4 first swiveling mode

2 1425 14 0.033 0.702 137×10−6 6.96 0.1106 -2.02 0.463 10.6 -0.457 -8.9 first swiveling mode

2 1725 14 0.033 0.580 137×10−6 6.94 0.1102 -2.22 0.458 9.6 -0.478 -13.9 first swiveling mode

2 1425 8 0.033 0.702 240×10−6 - - - - - - - second swiveling mode

2 1425 9 0.033 0.702 213×10−6 - - - - - - - second mode+transition

2 1425 10 0.033 0.702 192×10−6 - - - - - - - second mode+transition

2 1425 11 0.033 0.702 174×10−6 - - - - - - - transition

2 1425 12 0.033 0.702 160×10−6 - - - - - - - transition+first mode

2 1425 14 0.033 0.702 137×10−6 6.96 0.1106 -2.02 0.463 10.6 -0.457 -8.9 first swiveling mode

2 1425 15 0.033 0.702 129×10−6 7.04 0.1118 -0.84 0.448 7.2 -0.481 -14.6 first swiveling mode

2 1425 16 0.033 0.702 120×10−6 7.10 0.1128 -0.01 0.471 12.6 -0.473 -12.7 first swiveling mode

2.1 1360 14 0.035 0.735 137×10−6 7.00 0.1112 -1.38 0.463 10.6 -0.471 -12.2 first swiveling mode

2.1 1360 15 0.035 0.735 129×10−6 7.07 0.1123 -0.50 0.461 10.3 -0.479 -14.0 first swiveling mode

2.1 1360 16 0.035 0.735 120×10−6 7.08 0.1125 -0.25 0.456 9.1 -0.464 -10.6 first swiveling mode

2.1 1360 18 0.035 0.735 107×10−6 7.13 0.1133 0.36 0.447 6.8 -0.462 -10.2 first swiveling mode

2.1 1360 20 0.035 0.735 96×10−6 7.20 0.1144 1.32 0.452 8.0 -0.461 -9.7 first swiveling mode

Full case 2 1425 14 0.033 0.702 137×10−6 6.96 0.1106 -2.02 0.465 11.2 -0.473 -12.6 first swiveling mode

Experiments 7.10 0.1128 - 0.418 - -0.420 - first swiveling mode

Table 4: Parameter study for the subset case of the FSI test case (without structural damping).



7 PHASE-RESOLVED RESULTS AND DISCUSSION 29

• Comparing the results for both thicknesses for the range 14 MPa ≤ E ≤ 16 MPa, it is
obvious that a mild variation of the thickness of the rubber plate (0.1 mm, equivalent to
5 %) has a non-negligible influence on the extrema of the mean period and no significant
influence on the frequency.

• Overall the frequency of the FSI phenomenon fFSI (respectively the Strouhal number
StFSI) is very well predicted (relative error under 2.22 %) for all tested parameters leading
to the first swiveling mode.

• Comparing the results for the density ρrubber plate = 1360 kg m−3 in the range 14 MPa ≤
E ≤ 20 MPa, we observe that the FSI frequency fFSI (respectively the Strouhal number
StFSI) slightly increases with the Young’s modulus and that the displacement extrema
decrease.

In summary, the parameter study shows that the Young’s modulus (or the dimensionless
number of Cauchy Cy) is the most important parameter: It controls the swiveling mode
of the flexible structure. Furthermore, it can be observed that mild modifications of the
shell thickness (or of the geometrical ratio h/l) have a certain effect on the predicted FSI
phenomenon. Contrarily, this parameter study shows that variations of the density ratio do
not have major influence on the predictions. Therefore, errors in the density measurement
do not play an important role. With the support of these extensive preliminary numerical
investigations we can now compare the final numerical results with the experiment.

7.2. Comparison between numerical and experimental results

The investigations presented in Section 7.1.1 based on slightly different material characteristics
than defined in Section 2.4 have shown that the subset case permits a gain in CPU-time but
nevertheless nearly identical results as the full case. Therefore, the numerical computation
with the structural parameters defined in Section 2.4 (E = 16 MPa, h = 0.0021 m, ρrubber plate

= 1360 kg m−3) is carried out for the subset case.
Two simulations are considered: One with the structural damping defined in Appendix B, the
other one without damping. These results are compared with the experimental data to check
their accuracy. In order to quantitatively compare the experimental and numerical data, both
are phase-averaged as explained in Section 5. Similar to the numerical comparison presented
in Section 7.1.1 the displacement of the structure will be first analyzed and then the phase-
resolved flow field is considered.

7.2.1. Deflection of the structure

The structure contour of the phased-averaged experimental results for the reference period is
depicted in Fig. 18. Obviously, the diagram represents the first swiveling mode of the FSI phe-
nomenon showing only one wave mode at the clamping. Figure 19(a) depicts the experimental
dimensionless raw signal obtained at a point located in the midplane at a distance of 9 mm
from the shell extremity. Figure 19(b) shows the numerical signal predicted without struc-
tural damping and Fig. 19(c) the one computed with damping. Applying the phase-averaging
process the mean phase of the FSI phenomenon for the experiment and for the simulations
is generated. The outcome is presented in Fig. 19(d) with the phase as the abscissa and the
dimensionless displacement U∗

y = Uy/D as the ordinate. The amplitudes of the experimental
signal varies more than in the predictions. Therefore, the maximal standard deviation of each
point of the averaged phase is for the experiment bigger (0.083) than for the simulation (0.072
with and without damping). In order to check the reliability of the computed mean phase
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the coefficient of determination R2 is computed: it is smaller for the mean experimental phase
(0.9640) than for the mean simulation ones (0.9770 without damping and 0.9664 with damp-
ing). However, the values are close to unity, which is an indication that the averaged phases
are representative for the signals. In Fig. 19(d) the mean period calculated from the simulation
without damping is quasi-antisymmetric with respect to U∗

y = 0. On the contrary the period
derived from the experiment is not exactly antisymmetric with respect to the midpoint of the
phase φ = π: The cross-over is not at the midpoint of the phase but slightly shifted to the
right. However, the absolute values of the minimum and maximum are nearly identical. As
for the experimental phase, the simulation with damping generates a phase signal, which is
not completely antisymmetric. In the experiment this weak asymmetry can be attributed to
minor asymmetries in the setup or in the rubber material. The comparison in Fig. 19(d) shows
some differences in the extrema and a summary is presented in Table 5. Without structural
damping the simulations produce extrema which are too large by about 10 %. With structural
damping the extrema are smaller, even smaller than in the experiment by about 4 %. Thus,
the structural damping also has a significant influence on the FSI predictions and can not be
overlooked.
The frequency of the FSI phenomenon, i.e., the frequency of the y-displacements, is about
fFSIexp = 7.10 Hz in the experimental investigations, which corresponds to a Strouhal number

StFSI ≈ 0.11. In the numerical predictions without damping this frequency is fno damping
FSInum

= 7.08 Hz

and with damping fdamping
FSInum

= 7.15 Hz. This comparison shows an error of ǫf = −0.25 % for the
results without damping and ǫf = 0.65 % for the cases with damping. Nevertheless, the FSI
frequency is also very well predicted in both cases. One can notice that the frequency of the
coupled system slightly increases due to the structural damping.

Case Results
StFSI (Hz) fFSI (%) Error U∗

y

∣

∣

max
Error (%) U∗

y

∣

∣

min
Error

Sim. (no damping) 0.1125 7.08 -0.25 0.456 9.1 -0.464 -10.6
Sim. (damping) 0.1136 7.15 0.65 0.401 -4.23 -0.410 2.27

Experiments 0.1128 7.10 - 0.418 - -0.420 -

Table 5: Comparison between numerical results with and without structural damping and the ex-
periment.

7.2.2. Phase-resolved flow field

Owing to improved results in case of the structural damping, this case is chosen for the direct
comparison with the measurements. The phase-averaging process delivers the phase-resolved
flow fields. Four phase-averaged positions, which describe the most important phases of the
FSI phenomenon, are chosen for the comparison: Figure 20 shows the flexible structure reach-
ing a maximal upward deflection at t ≈ T/4. Then, it deforms in the opposite direction and
moves downwards. At t ≈ T/2 the shell is almost in its undeformed state (see Fig. 21). Af-
terwards, the flexible structure reaches a maximal downward deformation at t ≈ 3T/4 as seen
in Fig. 22. At t ≈ T the period cycle is completed and the flexible structure is near its initial
state presented in Fig. 23.
For each of the given phase-averaged positions, the experimental and numerical results (dimen-
sionless streamwise and transverse velocity component) are plotted for comparison. Note that
the structure in the experimental figures is shorter than in the simulation plots. Indeed, in the
experiment it is not possible to measure exactly the whole experimental structure, around 1
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mm at the end of the structure is missing. As in Section 7.1 an additional figure shows the
error between the simulation and the experiment for the velocity magnitude.
At t ≈ T/4 (see Fig. 20), when the structure is in its maximal upward deflection, the accel-
eration zone above the structure has reached its maximum. The acceleration area below the
rubber plate is growing. Both phenomena are correctly predicted in the simulations. The
computed acceleration area above the structure is slightly overestimated. However, the local
error is mostly under 20 %.
The separation points at the cylinder are found to be in close agreement between measurements
and predictions. Accordingly, also the location of the shear layers shows a good agreement be-
tween simulations and experiments. The shedding phenomenon behind the structure generates
a turbulent wake, which is correctly reproduced by the computations. Owing to the phase-
averaging procedure, as expected all small-scale structures are averaged out.
At t ≈ T/2 (see Fig. 21), the shell is near its undeformed state. The acceleration zone above
the structure has shrunk in favor of the area below the rubber plate. Regarding these areas
the predictions show a very good agreement with the measurements (marginal local errors).
The predicted wake directly behind the structure matches the measured one.
At t ≈ 3T/4 (see Fig. 22), the downward deformation of the shell is maximal, the flow is the
symmetrical to the flow observed at t ≈ T/4 with respect to y/D = 0. Again the acceleration
areas around the structure show a very good agreement with the measurements. Once more
the wake is correctly predicted in the near-field of the structure.
At t ≈ T (see Fig. 23) the flow is symmetrical to the flow observed at t ≈ T/2 with respect to
y/D = 0. The computed acceleration area above the structure is slightly overestimated, but
the local error is under 20 %. The wake is again correctly predicted except directly after the
flexible structure.
For every position the local error is mostly under 20 %. In the error plot the areas with a bigger
local error are near the structure and in the shear layers. This can be explained by the fact that
near the structure and in the shear layers the gradients of the flow quantities are large. Since
the mesh used for the simulation is much finer than the PIV measurement grid, the accuracy
of the numerical solution is much higher than the precision of the PIV measurements in these
regions. It is also difficult to measure the flow accurately in the direct vicinity of a body due
to reflections of the laser light at the surface. Another reason is that the error expected by
the PIV method is more important for low flow velocities. Close to the flexible structure and
directly after its tail the flow velocity is small, which at least partially explains the deviations
observed between the experimental and numerical results.
In summary, for every position the computed flow is in good agreement with the measured
one. The shedding phenomenon behind the cylinder and the positions of the vortices convected
downstream are correctly predicted.

8. Available Data for Comparison

The described benchmark FSI-PfS-1a is supposed to test, evaluate and improve numerical FSI
codes. Therefore, the authors support all interested groups by the experimental and numerical
data presented in this paper. For this purpose the data are made available on the ERCOFTAC
Knowledge Base Wiki in the category ’Flow around Bodies’ accessible as case 2–13 under

http://qnet-ercoftac.cfms.org.uk/w/index.php/UFR_2-13.

Available for comparison are:

• the data for the structural test cases described in Appendix A.
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• the 23 single phase-averaged two-dimensional reference velocity fields of the PIV mea-
surement series and the corresponding numerical data used in Section 7.2;

• the raw and phase-averaged data of the displacement of the flexible structure.

• animations of the test case.
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(a) Full case (streamwise velocity component) (b) Full case (transverse velocity component)

(c) Subset case (streamwise velocity component) (d) Subset case (transverse velocity component)

(e) Absolute local error (velocity magnitude) in %

Figure 16: Comparison of the results for the full and subset case; phase-averaged data at t ≈ T/4.
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(a) Full case (streamwise velocity component) (b) Full case (transverse velocity component)

(c) Subset case (streamwise velocity component) (d) Subset case (transverse velocity component)

(e) Absolute local error (velocity magnitude) in %

Figure 17: Comparison of the results for the full and subset case; phase-averaged data at t ≈ T .



8 AVAILABLE DATA FOR COMPARISON 35

x/D

0
1

2
3

y
/D

-1

0

1

perio
d

T

T/2

T/4

3T/4

Figure 18: Experimental structural results: Structure contour for the reference period.
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(a) Experimental raw signal: Dimensionless dis-
placement.

t u  / D

U
y/

D

50 100 150 200-0.6

-0.4

-0.2

0

0.2

0.4

0.6

OO

(b) Numerical raw signal (without damping): Di-
mensionless displacement.
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(c) Numerical raw signal (with damping): Dimen-
sionless displacement.
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(d) Comparison of the averaged phase of the exper-
imental and numerical data.

Figure 19: Comparison of experimental and numerical results; raw signals and averaged phases of
a point located in the midplane at 9mm distance from the shell extremity.
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(a) PIV data (streamwise velocity component) (b) PIV data (transverse velocity component)

(c) FSI simulation (streamwise velocity component) (d) FSI simulation (transverse velocity component)

(e) Absolute local error (velocity magnitude) in %

Figure 20: Comparison of experimental and numerical results (subset case with damping, see Ta-
ble 5); phase-averaged data at t ≈ T/4.
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(a) PIV data (streamwise velocity component) (b) PIV data (transverse velocity component)

(c) FSI simulation (streamwise velocity component) (d) FSI simulation (transverse velocity component)

(e) Absolute local error (velocity magnitude) in %

Figure 21: Comparison of experimental and numerical results (subset case with damping, see Ta-
ble 5); phase-averaged data at t ≈ T/2.
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(a) PIV data (streamwise velocity component) (b) PIV data (transverse velocity component)

(c) FSI simulation (streamwise velocity component) (d) FSI simulation (transverse velocity component)

(e) Absolute local error (velocity magnitude) in %

Figure 22: Comparison of experimental and numerical results (subset case with damping, see Ta-
ble 5); phase-averaged data at t ≈ 3T/4.
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(a) PIV data (streamwise velocity component) (b) PIV data (transverse velocity component)

(c) FSI simulation (streamwise velocity component) (d) FSI simulation (transverse velocity component)

(e) Absolute local error (velocity magnitude) in %

Figure 23: Comparison of experimental and numerical results (subset case with damping, see Ta-
ble 5); phase-averaged data at t ≈ T .
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9. Conclusions

A new FSI validation test case denoted FSI-PfS-1a is proposed. The definition of the test case
is driven by the idea to setup a well-defined but nevertheless challenging validation test case
for fluid-structure interaction in the turbulent flow regime. A rigid front cylinder and a flexible
membranous rubber tail attached to the backside of the cylinder form the structure which is
exposed to a uniform inflow at a low turbulence level. Thus three critical issues of precursor
benchmarks are circumvented, i.e., an additional degree of freedom of a rotating front cylinder,
an extremely thin flexible structure and an additional weight at the end of the membranous
structure. The investigations comprise three parts.
First, two dynamic structural tests were carried out experimentally and numerically in order
to evaluate an appropriate material model and to check and evaluate the material parameters
of the rubber (Young’s modulus, structural damping). This preliminary work has shown that
the St. Venant-Kirchhoff material model is sufficient to describe the deflection of the flexible
structure.
Second, detailed experimental investigations in a water tunnel using optical measurement tech-
niques for both, the fluid flow and the structure deformation, were carried out. A quasi-periodic
oscillating flexible structure in the first swiveling mode with a corresponding Strouhal number
of about StFSI = 0.11 is found. A post-processing of the extensive data sets delivered the
phase-averaged flow field and the structural deformations.
Third, various simulations relying on a newly developed FSI simulation tool combining a
partitioned solution strategy with an eddy-resolving scheme (LES) were performed. A subset
case and full case are taken into account. Owing to the wider structure and less constraints
of the lateral nodes the deformations in the spanwise direction were found to be larger in the
full case reflecting some kind of mild waves in the structure. Nevertheless, in relation to the
deformation of the structure in cross-flow direction the spanwise deflections are insignificant,
especially for the comparison of the phase-averaged signals.
A study on three parameters for the subset case without structural damping yields that the
Young’s modulus (or the Cauchy number) has a very important influence on the system. It
controls in which swiveling mode the flexible structure oscillates. The thickness of the rubber
plate h/D plays a role in the results, too, but not so significant as the Young’s modulus. The
parameter with the least effect on the FSI simulations is the density ratio of the body: limited
variations of the density do not have major influence on the predictions.
As usual for rubber material, a certain level of structural damping has to be expected. To
model this phenomenon in a simple and straightforward way, classical Rayleigh damping is
used and adjusted based on one of the pure structural tests presented in the appendix. The
FSI simulations with and without structural damping are compared with the experiment. It
turns out that the structural damping can not be ignored in the present case and significantly
affects the deflection of the structure. Without taking the damping into account the structural
deflections are overpredicted. Including the simple damping model improves the results. The
eddy-resolving FSI simulations are found to be in close agreement with the experiment for every
position of the flexible structure. Merely the amplitudes of the deflections are slightly underpre-
dicted with damping. Nevertheless, the shedding phenomenon behind the cylinder/structure
and the positions of the vortices convected downstream are correctly predicted. Furthermore,
the FSI frequency found in the simulations matches particularly well the measured one.
The described test case FSI-PfS-1a is a part of a series of reference test cases designed to
improve numerical FSI codes. A second test case FSI-PfS-2a is described in Kalmbach and
Breuer (2013). The geometry is similar to the first one: A fixed rigid cylinder with a plate
clamped behind it. However, this time a rear mass is added at the extremity of the flexible
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structure and the material (para-rubber) is less stiff. The flexible structure deforms in the
second swiveling mode and the structure deflections are completely two-dimensional and larger.
For each test case all the experimental data are available on demand.
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Appendix A. Description of pure structural tests

The measurements of the different structural test cases and the respective numerical simulations
with different parameter sets serve two different purposes. On the one hand, the characteristic
model parameters should be determined and checked by parametric studies. On the other hand,
it should be verified that with the chosen material models, the correct structural behavior can
be recovered in the predictions.
Both pure structural cases consist of a flexible rubber plate (0.06 m × 0.177 m × 0.0021 m)
clamped between a rigid cylinder (ρcylinder = 3146 kg/m3) and two half cylinders made of brass
(ρbar = 8450 kg/m3) at the other end. These constrain the respective two edges of the plate to
deform without warping, which results in a clear and easy to measure deformation state. The
test cases use a setup with a vertical alignment of the plate (see Fig. A.24).

Free oscillation test.
In the first test case, the cylinder (C1) is fixed. To initiate an oscillation, the free end is
deflected by a well-defined horizontal movement Uy and then released, such that a decaying
vibration can be accurately traced using the laser distance sensor described in Section 3.2.

Forced periodic oscillation test.
For the second test scenario, the support of the cylinder (C1) at the upper margin is a rotatable
bearing. This cylinder is stimulated by a periodic excitation of φ(t) = φmax sin(ω t) + φoffset

with a maximal angular deflection of φmax = 6.1◦ and a frequency of ω = 18.33 s−1 resulting in
an unsteady deformation of the rubber plate. The offset of φoffset = +0.5◦ is required because of
the experimental setup of the crank drive that creates a slightly asymmetric angular excitation
of the actuated upper cylinder. However, since this shift can be easily deducted from the
measurements, it is not mentioned in the following. The inertia of the end bar increases
the displacements and also modifies the deflection behavior of the flexible structure to non-
linear deformations. The low oscillation frequency is chosen to reduce the velocity-related
deformation effects of the rubber material. As before the laser distance sensor described in
Section 3.2 detects the displacements with a high measuring frequency.
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Figure A.24: Sketch of the geometrical configuration of the structural tests.

Appendix B. Validation of the structural model

To demonstrate the applicability of solid as well as shell elements for the structural finite-
element model, comparative simulations were carried out for the structural test cases mentioned
in Appendix A. In order to separate the effects of structural damping, the cross-comparison
of models was done via the computation of eigenfrequencies and the corresponding structural
eigenmodes which are shown in Fig. B.25. Note that the shell models are visualized with their
thickness to demonstrate the regions of the more bulky parts. It can be seen that the main
dynamic deformation mechanisms which are relevant for the FSI benchmark (e.g., the first
and second plate bending modes instead of thickness vibration modes) are perfectly recovered
by the solid as well as by the dimensionally reduced shell model. Special care was taken
to model the translational and rotational inertia of the cylindrical weight appropriately for
the shell setup. As can be immediately concluded from the fact of a pure two-dimensional
discretization compared to a full resolution of the three-dimensional body, the computations
using shell elements were 8 times faster and thus, remarkably less computationally expensive.
For the correct reproduction of the transient structural test cases, the consideration of the
pre-stressing effect of the cylinder’s weight is crucial and may not be neglected. This issue was
investigated by doing eigenfrequency evaluations with and without considering the weight of the
cylinder: In the former case, first a static simulation of the benchmark setup with self-weight
was carried out and the resulting stresses were transferred to the initial structural configuration
for the eigenfrequency analysis. As a consequence, the measured first eigenfrequency of about
4.55 Hz was computed as 4.69 Hz, whereas without consideration of the pre-stress induced by
self-weight the stiffness of the structure was under-estimated and thus the first eigenfrequency
was determined to be about 4.16 Hz.
Due to the usual dynamic behavior of rubber, a certain level of damping has to be expected.
To represent this adequately in the numerical simulation, various approaches are possible.
However, damping in a vibrating structure is a complex phenomenon with various sources (Pe-
tersen, 2000). The goal within this benchmark description is to provide a simple modeling
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Figure B.25: Comparison of the first three structural eigenmodes for solid (upper row) as well as
shell models (lower row) for the pure CSD setup presented in Appendix A.

for the damping effects to enable the computation with standard finite-element codes without
adapting them. Moreover, based on the experimental observations it can be observed, that
within the proposed FSI benchmark only the lowest eigenmodes (nearly exclusively the first
bending mode shown in Fig. B.25) of the structure are excited. A proper choice for the damp-
ing model is therefore the Rayleigh damping: all damping effects are summarized in a velocity
proportional damping matrix D which is composed of a linear combination of the mass matrix
M and the (initial) stiffness matrix K0:

D = αM + βK0 . (B.1)

According to Clough and Penzien (1993), the two open Rayleigh damping factors α and β
can be evaluated by solving a pair of equations, in case that two damping ratios and the
respective frequencies are known. Since the FSI test case shows nearly only oscillations in the
first eigenmode, it was decided to take only one damping factor. More precisely, the stiffness
proportional damping factor β is considered to be evaluated and the mass proportional quantity
α is assumed to be zero. The reason for this decision is that the stiffness proportional damping
is considered to be more realistic (see, e.g., Krätzig et al., 1996) in this case, since the mass
proportional damping factor results in decaying damping effects on higher modes. The damping
parameter β is calibrated with the free oscillation test, introduced in Appendix A and it is
assumed that it can be used for the FSI simulations accordingly.

Free oscillation test.
In order to compute this test Carat++ uses a grid with 10×10 quadrilateral 7-parameter shell
elements mentioned above. The generalized-α method is used with a time step of 4×10−3 s.
Abaqus uses the meshes presented in Fig. B.25. The Abaqus shell elements are S8R. The HHT
time discretization is set with an initial time step of 1×10−3 s. Then, the adaptive time step
control is enabled with TRANSIENT FIDELITY.
Based on some rough estimations the value could be found to be in the range between 0.01 and
0.02. Further parametric studies and cross-comparisons with the experimental data lead to a
value β = 0.017. Computed results for the free oscillation test and the measured deformations
are displayed in Fig. B.26. It can be seen that with this choice of the damping parameters
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the experimentally observed decay behavior of the oscillation due to the initial deflection is
captured very well.
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Figure B.26: Free oscillation test: Comparison of y-deformations of the point marked as measuring
position in Fig. A.24 between structural simulations and experiment.

Forced periodic oscillation test.
The forced periodic oscillation test is also computed with Abaqus using shell and solid finite
elements with the settings mentioned above and the material parameters provided. The sim-
ulation results of the shell model are exemplary compared to the measured deformations in
Fig. B.27. A time period of a fully developed oscillation is chosen, to avoid transient effects
during the startup procedure of the experiment. Structural damping is used in the simulation
and adjusted as described above. The very good agreement of numerical and experimental
data supports the chosen material data summarized in Table 3. Thus the structural modeling
as an important part of the overall FSI setup is carefully checked.

Appendix C. Grid dependency study for the structural model

As a preliminary investigation for the choice of a proper structure mesh, a small test case
with a constant pressure distribution on one plate surface is carried out using the material
parameters defined in Section 2.4. The magnitude of the pressure is chosen such that the
final tip deformation is in the range of the maximally expected tip deflection of the flexible
structure in the FSI case. This load scenario is computed with a sequence of systematically
refined meshes (using quadrilateral four-node shell elements) for the quadratic structure used
in the subset case and for the rectangular one used in the full case. The tip deformations
obtained are summarized in Table C.6. Moreover, a cross-check by a simulation using a very
fine mesh of solid elements shows a deviation in the tip displacement of less than 1 %. As a
result of this grid independency study, a mesh with 30 shell elements in streamwise direction
can be considered as converged for both cases. Astonishingly, even a mesh with only 10 shell
elements of the used type in streamwise direction could be seen as reasonable for a deflection
comparable to the one observed in the FSI experiments. Thus in order to save CPU-time 10
× 10 and 10 × 30 shell elements are applied in the FSI prediction of the subset and the full
case, respectively.
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Figure B.27: Forced periodic oscillation test: Comparison of measured and computed y-
displacements of the point marked as measuring position in Fig. A.24 (Note that
the experimental data are shifted by the offset φoffset as mentioned in the text).

Mesh (Length × Width ) Utip [m] Error

Subset case

10 × 10 1.31466e-02 0.6 %
20 × 20 1.32076e-02 0.1 %
30 × 30 1.32248e-02 0.01 %
40 × 40 1.32267e-02 Ref.

Full case

10 × 30 1.31873e-02 0.4 %
20 × 60 1.32281e-02 0.1 %
30 × 90 1.32413e-02 0.01 %
40 × 120 1.32426e-02 Ref.

Table C.6: Grid study for the structure with the CSD solver Carat++.
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berg, Berichte aus der Strömungstechnik. Shaker Verlag, Aachen, Germany.

Breuer, M., De Nayer, G., Münsch, M., Gallinger, T., Wüchner, R., 2012. Fluid-structure
interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the
application of large-eddy simulation. Journal of Fluids and Structures 29, 107–130.
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Turek, S. (Eds.), Int. Workshop on Fluid-Structure Interaction: Theory, Numerics and Ap-
plications. Kassel University Press GmbH, pp. 283–294.

Glück, M., Breuer, M., Durst, F., Halfmann, A., Rank, E., 2001. Computation of fluid-structure
interaction on lightweight structures. Journal of Wind Engineering and Industrial Aerody-
namics 89 (14-15), 1351–1368.

Gomes, J. P., 2011. Fluid-structure interaction-induced oscillation of flexible structures in uni-
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II – Modelling, Simulation, Optimization. Vol. 73 of Lecture Notes in Computational Science
and Engineering, LNCSE. Springer, Heidelberg, pp. 351–381.

Holzapfel, G. A., 2000. Nonlinear Solid Mechanics: A Continuum Approach for Engineering.
John Wiley & Sons Ltd.
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