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Abstract

The paper is concerned with an efficient partitioned coupling scheme developed for dynamic
fluid–structure interaction problems in turbulent flows predicted by eddy–resolving schemes
such as large–eddy simulation (LES). To account for the added–mass effect for high density
ratios of the fluid to the structure, the semi–implicit scheme guarantees strong coupling among
flow and structure, but also maintains the advantageous properties of explicit time–marching
schemes often used for turbulence simulations. Thus by coupling an advanced LES code for the
turbulent fluid flow with a code especially suited for the prediction of shells and membranes,
an appropriate tool for the time–resolved prediction of instantaneous turbulent flows around
light, thin–walled structures results. Based on an established benchmark case in laminar flow,
i.e., the flow around a cylinder with an attached flexible structure at the backside, the entire
methodology is analyzed thoroughly including a grid independence study. After this validation,
the benchmark case is finally extended to the turbulent flow regime and predicted as a coupled
FSI problem applying the newly developed scheme based on a predictor–corrector method.
The entire methodology is found to be stable and robust. The turbulent flow field around the
flexible structure and the deflection of the structure itself are analyzed in detail.

Keywords: Fluid–structure interaction; partitioned scheme; large–eddy simulation; FSI
benchmark; (artificial) added–mass effect; semi–implicit scheme

1. Introduction

Fluid–structure interaction is a topic of major interest in many fields such as mechanical
engineering, civil engineering or medicine technique to mention only a few. Beside experimental
investigations numerical simulations have become an important and valuable tool for solving
this kind of problems. Two issues have led to a a great leap forward in the last years. On the
one hand the numerical algorithms for the single fields experience substantial progress. On the
other hand the available computational resources have strongly increased. Both developments
now allow to tackle practically relevant dynamic fluid–structure interaction problems involving
turbulent flow fields.
The long–term objective of the present investigation is to tackle civil engineering FSI applica-
tions involving lightweight structures such as awnings, large umbrellas, and tent roofs, exposed
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to the turbulent wind field. Right from the start it was clear that highly advanced solvers for
both subtasks are required for this purpose, i.e., a specialized (finite–element) solver for shells
and membranes (Bletzinger et al., 2006; Fischer et al., 2010), and a specialized (finite–volume)
solver relying on eddy–resolving methods such as large–eddy simulation (LES) (Breuer, 2002).
Thus monolithic coupling (see, e.g. Heil, 2004) is ruled out and a partitioned scheme is favored.
This idea goes back to the early work of Felippa and Park, (e.g., Park et al., 1977; Felippa and
Park, 1980; Park, 1980; Park and Felippa, 1983; Felippa and Geers, 1988) named Staggered
Solution Procedure. The strength of this approach originates from its modularity and the capa-
bility of using for each sub-problem the most adapted method to its mathematical properties.
Examples of successful applications of this general concept are too numerous to be reviewed
here. Furthermore, much work has been dedicated to the improvement of this concept (see,
e.g., Piperno et al., 1995). Partitioned schemes are further classified into loosely and strongly
coupled schemes. If the fluid dynamical problem and the structural problem are solved in a
staggered manner without any subiterations, the coupling conditions at the interface are not
exactly satisfied at each time step. The scheme is called loosely coupled and works in par-
ticular in aeroelastic applications or in applications involving compressible viscous fluids (see,
e.g., Farhat, 2004; Farhat et al., 2006). However, in many other cases weakly coupled schemes
were found to be apparently unstable. Involving an incompressible viscous fluid and certain
density ratios between the fluid and the structure, the so-called (artificial) added–mass effect
may become an issue of major concern and strongly coupled schemes are essential (see, e.g.,
Causin et al., 2005; Förster et al., 2007; Förster, 2007) as in the current study. During the
last years a variety of publications have been devoted to the development of efficient coupling
algorithms for the non–linear FSI problem arising from the strongly coupled concept. Among
these are the fixed–point iterations with fixed or dynamic underrelaxation (e.g., Mok, 2001;
Küttler and Wall, 2008; Degroote et al., 2008), vector extrapolation (e.g., Küttler and Wall,
2009) or Newton–based methods. For the latter recent overviews can be found in Küttler
(2009), Gallinger (2010) and Vierendeels et al. (2010).
Fernández et al. (2007) suggested just another coupling concept which they call a partially
explicit or semi–implicit scheme. Since that has a lot in common with the scheme proposed
independently in Breuer and Münsch (2008, 2010) building the basis for the present paper, a
brief overview should be provided. Applying the projection method developed by Chorin (1968)
and Temam (1969a,b) for the solution of the incompressible fluid flow, this scheme is extended
towards FSI problems. They proposed to strongly couple the projection sub-step carried out
in a known fluid domain with the structure, while the ALE advection–diffusion sub-step is only
weakly, i.e. explicitly, coupled to the structure. Hence the added–mass effect is accounted for in
an implicit manner, but an implicit treatment of the ALE advection–diffusion sub-step known
to be particularly expensive is avoided. Starting with the extrapolation of the fluid–structure
interface (step 0), the new fluid domain is defined in step 1 followed by the explicit solution of
the advection–diffusion problem (step 2). The projection step consisting of the solution of the
pressure equation and the governing equation for the structure, are sub-iterated in step 3. In
a rigorous theoretical evaluation the conditional stability of the scheme was proven for a linear
model problem. Furthermore, the efficiency of the method compared to fully implicitly coupled
schemes was shown in different numerical experiments on laminar flows using a finite–element
discretization on both fields (Fernández et al., 2007).
In the present work we are interested in the simulation of turbulent flows including FSI. Direct
numerical simulation and Reynolds–Averaged Navier–Stokes (RANS) equations with statistical
turbulence models are not applicable either due to their enormous CPU–time requirements or
their inability to predict non–equilibrium turbulent flows. Eddy–resolving schemes such as
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large–eddy simulation (LES) or hybrid LES–RANS approaches as for example detached–eddy
simulation (DES) have become popular for this purpose due to their favorable capabilities of
predicting complex turbulent flows (Breuer, 2002). That is especially true for instantaneous
flow processes involving large–scale flow structures such as separation, reattachment and vortex
shedding. Flow phenomena of such kind are very often encountered when the flow around or
through a device enforces the structures to be deformed or displaced, i.e. for fluid–structure
interaction. Therefore, LES is also the preferential method in the context of FSI applications
and therefore considered in the present study. However, LES is not well established in the
FSI context up to now. In a recently published book on modeling and simulation for FSI
(Bungartz et al., 2010) only two out of 15 contributions briefly touched the topic without
going into details. At least three topics are of major concern to completely marry FSI and
LES:

(i) The grid movement in ALE–FSI formulations generally means that also the filter width
varies in time leading to additional commutation errors. This issue was addressed in
Breuer and Münsch (2010) and Münsch and Breuer (2010).

(ii) For moving grids the question arises how the grid quality can be maintained during the
instantaneous simulation. It is well-known that the demands on the grid quality regarding
smoothness and orthogonality are higher for LES than for RANS. On the other hand the
quality has to be assured at each time step requiring efficient and robust schemes. Beside
using algebraic approaches also elliptic grid smoothing techniques (Spekreijse, 1995) have
to be taken into account.

(iii) Furthermore, LES differs also with respect to the time resolution issue and thus adapted
coupling schemes are favorable.

The present paper is intended to contribute especially to the last issue by proposing a FSI
coupling method adjusted to the requirements of LES. The LES technique is based on spatial
filtering of the instantaneous Navier–Stokes equations. The large scales are predicted directly
by solving the filtered Navier–Stokes equations with a time–accurate scheme involving small
time steps and modeling solely the small scales. For that purpose often predictor–corrector
schemes are taken into account. Thus a methodology is suggested which relies on this specific
time–marching scheme while taking into consideration that a strong coupling is needed to
guarantee a stable and robust algorithm.
The paper is organized as follows. At first the numerical methodologies for both single fields
are described separately in § 2. In the subsequent section (§ 3) the coupling scheme developed
is explained in detail. Then in § 4 a description of the test cases is provided explaining all
details required to define the cases from the physical point of view. In § 5 the specific numerical
setups used in the present study are given. Finally, the results are presented in § 6 split up into
the validation procedure based on the laminar case and the final outcome for the turbulent
case.

2. Numerical Methodology for Each Specific Field

2.1. Computational Fluid Dynamics (CFD)

2.1.1. Governing Equations

Within a FSI application the fluid forces acting on the structure lead to the displacement or
deformation of the structure. Thus the computational domain is no longer fixed but changes in
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time, which has to be taken into account. Besides other numerical techniques, the most popular
one is the so-called Arbitrary Lagrangian–Eulerian (ALE) formulation. Here the conservation
equations for mass and momentum, which are to be solved based on a finite–volume scheme,
are re-formulated for a temporally varying domain, i.e., control volumes (CV) with time–
dependent volumes V (t) and surfaces S(t). Hence the governing equations in ALE formulation
expressing the conservation of mass and momentum read:

d

dt

∫

V (t)

ρfdV +

∫

S(t)

ρf (uj − ug,j) · nj dS = 0 , (1)

d

dt

∫

V (t)

ρf ui dV +

∫

S(t)

ρf ui(uj − ug,j) · nj dS = −

∫

S(t)

(τij + τSGS
ij ) · nj dS −

∫

S(t)

p · ni dS .(2)

These are the (filtered) Navier–Stokes equations for an incompressible fluid assuming tempera-
ture–independent fluid properties. Overbars typically used to denote filtered quantities within
a large–eddy simulation are omitted here. Thus, the density of the fluid is denoted by ρf , the
pressure by p and the three Cartesian components of the velocity vector by ui. The molecular
momentum transport tensor is indicated by τij whereas nj describes the unit normal vector
pointing outwards. In case of LES, an additional tensor denoted τSGS

ij has to be taken into
account in the surface integral on the right-hand side of eq. (2) describing the influence of the
non–resolved subgrid–scales (SGS) on the resolved flow field (see § 2.1.2). Since the grid is
deformable, the grid velocity with which the surface of a CV is moving is taken into account via
ug,j. Here, the volume integrals now describe local changes in a CV of variable shape and thus
the additional mass and momentum fluxes due to ug,j. Since the system of equations given by
(1) and (2) is not closed anymore, the unknown grid velocity ug,j has to be determined. To
compute this grid velocity while considering the conservation principle and avoiding the loss of
mass and momentum, the so-called space conservation law (SCL) (Demirdžić and Perić, 1988,
1990) or geometric conservation law (GCL) (Lesoinne and Farhat, 1996) is applied:

d

dt

∫

V (t)

dV −

∫

S(t)

ug,j · nj dS = 0 . (3)

This extra conservation law assures that within a change of the position or the shape of a
CV no space is lost. In discretized form the SCL is expressed by the swept volumes of the
corresponding cell faces. Inserting eq. (3) into (1), the mass conservation equation for a fixed
grid is obtained:

∫

S(t)

uj · nj dS = 0 . (4)

Thus the prediction of extra grid fluxes is not necessary for the mass conservation equation in
the context of moving grids. The additional grid fluxes in the momentum equation, however,
have to be consistently determined by applying the SCL in its discrete form denoted discrete
geometric conservation laws (DGCL) (Farhat et al., 2001). In the context of the Runge–
Kutta time–marching scheme (see § 2.1.3) applied in the present study, a consistent numerical
formulation reads

∫

S(t)

(ρf ui ug,j) · nj dS ≈
∑

k={e,w,n,s,t,b}

(

ρf ui,k
δV n+1

k

∆t

)

, (5)
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where the grid fluxes are split up into six contributions according to the six surfaces of the
hexahedral CV, i.e., east, west, north, south, top and bottom. Thereby the differences between
the volumes of the CV between the new (superscript n + 1) and the old time step (n) can be
expressed by the sum over the swept volumes δVk of all surfaces. In the three–dimensional case
special care is required for the determination of the swept volumes since edges of CV surfaces
can turn. Thus a segmentation into six tetrahedra possessing the same diagonal (Kordulla
and Vinokur, 1983) is absolutely necessary in order to guarantee the correct prediction of the
swept volumes.

2.1.2. Subgrid–Scale Modeling

In principle, the LES concept leads to a closure problem similar to that obtained by RANS.
However, the non–resolvable small scales in a LES are much less problem–dependent than the
large–scale motion so that the subgrid–scale turbulence can be represented by relatively simple
models, e.g., zero–equation eddy–viscosity models. Like other eddy–viscosity models the well-
known and most often used Smagorinsky model (Smagorinsky, 1963) is based on Boussinesq’s
approximation which describes the stress tensor τSGS

ij as the product of the strain rate tensor
Sij

1 and an eddy viscosity νT ,

τSGS,a
ij = τSGS

ij − δij τSGS
kk /3 = − 2 νT Sij with Sij =

1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

, (6)

where τSGS,a
ij is the anisotropic (traceless) part of the stress tensor τSGS

ij and δij is the Kro-
necker delta. The trace of the stress tensor is added to the pressure resulting in the new
pressure P = p + τSGS

kk /3. The eddy viscosity νT itself is a function of the strain rate tensor
Sij and the subgrid length l, as

νT = l2 | Sij | with l = Cs ∆

[

1 − exp

(

−y+

A+

)3
]0.5

,

∆ = (∆x · ∆y · ∆z)1/3 , y+ =
y uτ

ν
, uτ =

√

τw

ρf
and A+ = 25 . (7)

Here, τw, uτ and y+ denote the wall shear stress, the wall shear stress velocity and the dimen-
sionless wall distance, respectively. The filter width ∆ is directly coupled to the volume of the
computational cell. Cs is the well-known Smagorinsky constant which has to be prescribed as
a fixed value or can be determined as a function of time and space by the dynamic procedure
originally proposed by Germano et al. (1991) and later improved by several authors, e.g. Lilly
(1992). In the first case, a Van Driest damping function as given in eq. (7) is required in order
to take the reduction of the subgrid length l near solid walls into account. Owing to minor
influences of SGS modeling at the moderate Reynolds number considered in this study, in the
present investigations the fixed parameter version of the Smagorinsky model is applied using
the well established standard constant Cs = 0.1.
As mentioned in the introduction, the grid movement in ALE–FSI formulations leads to addi-
tional commutation errors due to the temporally varying filter width. In Breuer and Münsch
(2010) and Münsch and Breuer (2010) this issue was addressed by investigating the influence of
deforming grids on the quality of LES predictions. For this purpose, harmonic grid movements

1Overbars omitted as mentioned above.
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with specific amplitudes and periods have been forced to a turbulent plane channel flow apply-
ing the Smagorinsky model as well as the dynamic model. A variety of cases was considered.
In one subset of cases, the amplitude of the internal grid deformation was varied and the period
of the deformations was fixed. In a second subset, computations for different cycle periods at a
constant amplitude were performed. The results were compared to LES predictions on a fixed
grid. Comparing both SGS models, the Smagorinsky model showed less deviations from the
reference case than the dynamic model. Furthermore, the mean values were observed to be
less sensitive than the second–order moments. As long as the amplitudes and frequencies of
the oscillations were not too high, the impact on the flow properties was found to be minor.
Generally, hints on what kind of grid motions are tolerable within an FSI application using
LES were obtained.

2.1.3. Discretization

Spatial Discretization.
For the present study the in-house code FASTEST-3D (Durst and Schäfer, 1996; Durst et al.,
1996) is used and extended for the FSI–LES application intended. The code is based on a three–
dimensional finite–volume scheme which is used to discretize the governing equations (1) to
(5) in ALE formulation. The discretization is done on a curvilinear, block–structured body–
fitted grid with colocated variable arrangement by applying standard schemes. A midpoint
rule approximation of second–order accuracy is used for the discretization of the surface and
volume integrals. Furthermore, the flow variables are linearly interpolated to the cell faces
leading to a second–order accurate central scheme. In order to ensure the coupling of pressure
and velocity fields on non–staggered grids, the momentum interpolation technique of Rhie and
Chow (1983) is used.

Temporal Discretization.
For LES small time steps are required to resolve the turbulent flow field in time which leads
to a preferred usage of explicit time–marching schemes. Here, a predictor–corrector scheme of
second–order accuracy forms the kernel of the fluid solver. In the predictor step an explicit
three substep low–storage Runge–Kutta scheme advances the momentum equation in time
leading to a prediction of the velocities u∗

i . These predicted velocities do not satisfy mass
conservation. Thus, in the following corrector step the mass conservation equation has to be
fulfilled by solving a Poisson equation for the pressure–correction based on the incomplete
LU decomposition method of Stone (1968). The corrector step is repeated until a predefined
convergence criterion is reached and the final velocities and the pressure of the new time step
are obtained. Hence the predictor–corrector step is also a projection method as originally
proposed by Chorin (1968) and Temam (1969a,b). The procedure described was developed for
fixed grids. Thus the question arises how to extend this predictor–corrector scheme to moving
or deforming grids. However, inserting eq. (3) into (1) the mass conservation equation for a fixed
grid is obtained. Therefore, the original pressure–correction scheme applied for the solution of
the incompressible Navier–Stokes equations on fixed grids has not to be changed concerning
the mass conservation equation in the context of moving grids. Solely in the momentum
equation the grid fluxes have to be taken into account as described above. For achieving
mass conservation the pressure–correction algorithm is repeated until a predefined convergence
criterion ε is reached leading to the final velocities ui and the corresponding pressure field p
of the new time step. For the present algorithm and test cases, typically 3 to 8 pressure–
correction iterations are required until the mass conservation equation is numerically satisfied,
e.g. ∆ṁ < ε = O(10−9).
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FASTEST-3D is highly vectorized and additionally parallelized by domain decomposition with
explicit message–passing based on MPI allowing efficient computations on vector–parallel ma-
chines and SMP clusters.

2.1.4. Grid Adaptation

As will be shown below, the coupling between fluid and structure takes place at the interface
between both domains. From the viewpoint of the CFD prediction, forces on the structure
have to be provided for the CSD calculation and even of stronger impact displacements at the
boundaries of the computational domain for the fluid flow are delivered by CSD. As a conse-
quence the task is to adapt the grid of the inner computational domain based on displacements
provided solely at specific boundaries, i.e., the interface with the structure. The choice of an
appropriate method is subject of the following constraints: The grid adaptation has typically
to be done several times during each time step. Therefore, fast and efficient methods are of
great importance. On the other hand, to maintain the grid quality, i.e., orthogonality and
smoothness, and according to these properties the accuracy of the numerical prediction for
time–dependent and moving grids, is a mandatory issue for FSI algorithms, especially for tur-
bulent flows using the LES approach. For moderate deformations algebraic methods are found
to be a good compromise since they are extremely fast and deliver reasonable grid point dis-
tributions. Another issue for the choice of the appropriate method is the question whether the
algorithm can be fully parallelized, which is the case for algebraic methods. Thus, considering
all arguments, the grid adjustment is presently performed based on a transfinite interpolation
(Thompson et al., 1985). It consists of three shear transformations plus a tensor–product trans-
formation. Beside using this algebraic approach also developments on elliptic grid smoothing
based on a composite mapping (Spekreijse, 1995) consisting of a non–linear transfinite alge-
braic transformation and an elliptic transformation are currently under development for strong
grid deformations.

2.2. Computational Structural Dynamics (CSD)

2.2.1. Governing Equations

Based on the continuum mechanics assumption the dynamic equilibrium of the structure is
described by the momentum equation given in a Lagrangian frame of reference. Allowing large
deformations, where geometrical non–linearities are not negligible, the following boundary
value problem has to be considered (Hojjat et al., 2010):

ρs ∂2d

∂t2
= ∇ · (F · S) + ρs b . (8)

Here ρs denotes the density of the structure, d the displacement of the material point in space,
F the material deformation gradient, S the second Piola–Kirchhoff stress tensor and b the
specific volume forces. A constitutive relation providing a link between stress and strain is
required to close eq. (8). For a St. Venant–Kirchhoff material with C being the constitutive
tensor and E representing the Green–Lagrange strain, the second Piola–Kirchhoff stress tensor
is given by

S = C : E , E =
1

2
(FT · F − I) (9)

2.2.2. Discretization

For the solution of the governing equation (8) for the structure, i.e. the computational structural
dynamics (CSD), the finite–element solver Carat++ (Fischer et al., 2010; Bletzinger et al.,
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2006) developed by TU Munich especially for the prediction of shell or membrane behavior is
applied. Carat++ is based on several finite–element types and advanced solution strategies
for form finding and non–linear dynamic problems. For the dynamic analysis, different time–
integration schemes are available, e.g. the implicit generalized–α method (Chung and Hulbert,
1993). In the modeling of thin–walled structures, membrane or shell elements are applied for
the discretization within the finite–element model. In the current case, the plate is modeled
with a seven–parameter shell element. Furthermore, special care is given to prevent locking
phenomena by applying the well-known ANS and EAS methods (Bischoff et al., 2004).
Both, shell and membrane elements reflect geometrically reduced structural models with a
two–dimensional representation of the mid–surface which can describe the three–dimensional
physical properties by introducing mechanical assumptions for the thickness direction. Due
to this reduced model additional operations are required in the structural part to transfer
information between the two–dimensional structure and the three–dimensional fluid model.
Thus in the case of shells, the surface of the interface is found by moving the two–dimensional
surface of the structure half of the thickness normal to the surface on both sides and the closing
of the volume (Bletzinger et al., 2006). On these two moved surfaces the exchange of data (see
§ 3) is performed consistently with respect to the shell theory (Hojjat et al., 2010).

3. Coupling Algorithm

3.1. Preliminary Considerations

The choice of the coupling scheme suggested is motivated by the following considerations and
constraints:

• Both the CSD code Carat++ and the CFD code FASTEST-3D are highly adapted to
their specific field of application, providing many special features. To preserve these ad-
vantages and to realize an effective coupling algorithm, a partitioned solution approach
is chosen. In comparison to the monolithic approach based on a unified numerical for-
mulation of the whole FSI problem, the partitioned one possesses a stronger universality
and allows to exchange codes for each subtask if appropriate.

• The method of choice for the prediction of instantaneous non–equilibrium flow processes
involving large–scale flow structures (separation, reattachment, vortex shedding) very
often encountered in FSI problems, is the LES technique. In contrast to the RANS
approach which is not an appropriate choice for such kind of flows, LES typically requires
small time steps to resolve the turbulent flow field in time which leads to a preferred usage
of explicit time–marching schemes. Here, a predictor–corrector scheme of second–order
accuracy forms the kernel of the fluid solver (see § 2.1.3). Thus the coupling scheme has
to rely on explicit predictor–corrector schemes.

• For the partitioned coupling between the fluid solver and the structure solver in general
two different methodologies can be distinguished. Within the so-called loose coupling
approach the fluid and the structure subproblem are only solved once per time step
leading to severe stability problems in many applications. Thus the strong coupling
approach accounting for the (strong) added–mass effect (see, e.g., Causin et al., 2005;
Förster et al., 2007; Förster, 2007) is favored here, where the solution of both subproblems
are repeated in a staggered manner until a dynamic equilibrium is achieved.
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The task is to marry FSI and LES by considering all relevant aspects mentioned. Thus a parti-
tioned but strong coupling scheme relying on a explicit predictor–corrector scheme is requested
meeting the requirements for an efficient large–eddy simulation on the one hand and a stable
coupling algorithm on the other hand.

3.2. Coupling Scheme

In § 2.1.3 the original predictor–corrector scheme for the fluid flow is explained. For coupled
FSI computations this basic algorithm is extended as depicted in Fig. 1 and suggested in a
similar manner already in Fernández et al. (2007). Based on the velocity and pressure field from
the corrector step, the fluid forces resulting from the pressure and the viscous shear stresses at
the interface between the fluid and the structure are computed. These forces are transferred
to the CSD code Carat++ using the conservative interpolation scheme described in § 3.3 and
implemented in CoMA.
Using the fluid forces provided via CoMA, the finite–element code Carat++ determines the
stresses in the structure and the resulting displacements dnew of the structure. This response of
the structure is transferred back to the fluid solver via CoMA applying a bilinear interpolation
also given in § 3.3.
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Grid 

Next time
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Figure 1: Sketch of the partitioned strong FSI coupling scheme including the FSI–subiteration loop.

In the case of a loose coupling approach the displacements are considered to be the physically
correct displacements of the actual time step. With respect to the flowchart in Fig. 1, it means
that FSI convergence is assumed to be achieved. Thus the computation would pass on to the
successive time step. However, this loose coupling between fluid and structure is in general



3 COUPLING ALGORITHM 10

only stable for low density ratios of the fluid to the structure ρf/ρs ¿ 1, i.e., in case of a low
so-called added mass effect (Causin et al., 2005; Förster et al., 2007; Förster, 2007).
A typical application for this situation is encountered in aeroelasticity (Farhat, 2004), i.e., a
wing of high structural density ρs exposed to a fluid flow of air possessing a low fluid density
ρf . Consequently, a low density ratio ρf/ρs results. If the wing oscillates up and down, the
structure has to also accelerate the fluid around the deformed or oscillating wing. That leads
to additional fluid forces acting on the surface in contact with the fluid denoted as added–mass
effect. Owing to the low density ratio of the air to the structure, the structure hardly senses the
fluid. Thus its added mass is of minor importance and a loose coupling scheme is reasonably
(Farhat, 2004; Farhat et al., 2006).
For cases of moderate and high density ratios ρf/ρs, e.g., a flexible structure exposed to a fluid
flow of e.g. water, the structure strongly feels the surrounding fluid. Then the added–mass
effect by the surrounding fluid plays a dominant role. In such situations loose coupling schemes
typically tend to fail, especially in the context of incompressible flows. Thus a strong coupling
scheme as suggested in the present study taking the tight interaction between the fluid and the
structure into account, is indispensable. For that purpose a so-called FSI–subiteration loop is
established in the coupling scheme developed (see Fig. 1) which works in the following manner:

• Convergence check:
First the FSI convergence is checked. For that purpose it has to be inspected whether
the dynamic equilibrium between fluid and structure is numerically achieved. The crite-
rion can either rely on the displacements of the structure or the loads on the interface.
Presently, the change of the resulting displacements within the FSI–subiteration cycle
are taken into account. Convergence is reached if the L2 norm of these displacement
differences between two FSI–subiterations (index k) normalized by the L2 norm of the
changes in the displacements between the current and the last time step (index n), i.e.,

||dn,k − dn,k−1 ||2
||dn,k − dn−1 ||2

< εFSI (10)

drops below a predefined limit, e.g. εFSI = 10−5 for the test cases of the present study.

• Grid adaptation:
Typically, convergence is not reached within the first step. Therefore, the procedure has
to be continued on the fluid side. Based on the displacements on the fluid–structure
interface, the inner computational CFD grid is adjusted as described in § 2.1.4.

• Core of the coupling scheme / Repetition of corrector step:
Subsequent to the grid adaptation solely the corrector step of the predictor–corrector
scheme is performed again and a new velocity and pressure field is obtained. Since this
issue is the key point of the coupling procedure suggested, some more explanations should
be added.

In contrast to the present coupling scheme relying on explicit time marching, within
a coupling scheme based on fully implicit time stepping as used, e.g., in Glück et al.
(2001, 2003), an inner CFD loop becomes necessary within the applied SIMPLE scheme
(Patankar and Spalding, 1972). Consequently, both schemes significantly differ with
respect to the momentum equations within the FSI–subiteration loop. For the implicit
scheme the momentum equations are solved repeatedly in each subiteration sweep. In
contrast they are only solved once per time step for the explicit case which strongly
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reduces the computational effort. Furthermore, the number of FSI–subiterations required
to reach the convergence criterion is typically much smaller for the explicit scheme (Breuer
and Münsch, 2008, 2010; Münsch and Breuer, 2010) than for the implicit variant (Glück
et al., 2001, 2003).

The clue is the pressure, which is the most important quantity when solving incompress-
ible fluid flow problems. The predictor–corrector scheme guarantees that the pressure is
determined in such a manner that the velocity field is finally divergence–free and mass
conservation is satisfied. Furthermore, the extension of the predictor–corrector scheme
towards the FSI–subiteration loops assures that the most relevant forces for the added–
mass effect, i.e. the pressure forces, are successively updated until dynamic equilibrium
is achieved. In conclusion, instabilities due to the added–mass effect known from loose
coupling schemes are strongly reduced or completely avoided by the newly developed
coupling scheme and the explicit character of the time–stepping scheme beneficial for
LES is still maintained.

To concretize the comparison of both algorithms, in Glück et al. (2001) a typical number
of about 1000 CFD iterations is provided for an average time step of the fully implicit
scheme. That means that at each time step all three non–linear momentum equations
as well as the pressure correction equation have to be solved thousand times, e.g. 4000
equations. For the present scheme, the coupling scheme is found to require only a few
FSI–subiterations (5 to 10, average about 7.5) to go below the convergence limit ensuring
dynamic equilibrium. As mentioned above, within each subiteration 3 to 8 (average about
5.5) pressure–correction iterations are necessary leading in average to 7.5 × 5.5 ≈ 41
required solutions per time step. Together with the solution of the momentum equations
a ratio of about 44 / 1000 ≈ 1 / 23 is obtained providing at least a rough estimation
about the computational effort per time step required for both schemes. Thus especially
for small time steps (used in LES), the scheme developed works very efficiently.

• Closure of the FSI–subiteration loop:
After a new pressure and velocity field is available, new loads for the structure solver are
determined. Again these are transferred via CoMA to Carat++ leading to an update of
the corresponding displacements by solving the equations of non–linear elastodynamics.
The displacements are sent back via CoMA to FASTEST-3D closing the FSI–subiteration
loop (see Fig. 1).

• Initializing a new time step / Estimation of displacements:
Based on the convergence criterion mentioned above, it is decided whether the subiter-
ation process is continued or stopped. In the latter case the computation for the next
time step is started. The new time step begins with an estimation of the displacement
d̃ of the structure. In contrast to the strong coupling scheme relying on a fully implicit
time–marching algorithm (Glück et al., 2001, 2003), in the present scheme this measure
does not only serve for convergence acceleration within the coupling process but also
ensures that the momentum equations are solved on the updated geometry, which is an
important feature. For the estimation two versions are taken into account. Either a first–
order linear or a second–order parabolic extrapolation is applied for the displacements
by taking the displacement values of two or three former time steps indicated by the
superscripts n−1, n−2, and n−3 into account:

linear: d̃n = 2dn−1 − 1dn−2 , (11)

parabolic: d̃n = 3dn−1 − 3dn−2 + 1dn−3 . (12)
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Tests with the parabolic second–order extrapolation (12) have shown no improvements of
the results and no better convergence than for the linear version (11). An explanation for
this behavior is given by the small time–step size of the explicit time–stepping scheme.

According to these estimated boundary values, the entire computational grid has to
be adapted as it is done in each FSI–subiteration loop. Once the grid is adapted, the
predictor–corrector scheme of the next time step is carried out and the cycle of the
FSI–subiteration loop is entered again.

Significant structural deformations can be taken into account by an underrelaxation of the
boundary geometry. The grid adaptation is then based on an underrelaxation of the structural
response dk

new by taking an underrelaxation factor ω and the displacement of the previous
subiteration loop (k − 1) into account:

dk
new = ω dk + (1 − ω)dk−1 , (13)

where k denotes the subiteration counter. The underrelaxation factor ω can either be assumed
to be constant or dynamically predicted based on the Aitken method (Aitken, 1926) adjusted
for vector quantities by Irons and Tuck (1969) and Mok (2001). In the latter case the underre-
laxation factor is recomputed in each iteration step based on the actual status of the coupled
problem. Unfortunately, stability is not fully guaranteed and in several practical applications
fixed, but suitably adjusted ω values were found to be equivalent or superior to the Aitken
method (see § 6.1.4). Furthermore, it should be mentioned that in case of the underrelaxation
of the displacements the fluid loads do not have to be underrelaxed during the transfer from
the CFD to the CSD solver.

3.3. Data Interpolation and Transfer

The FSI coupling scheme requires a bilateral data exchange between CSD and CFD which
is managed by the coupling interface CoMA (Gallinger et al., 2009) also developed by TU
Munich. Due to different discretization techniques applied for the subtasks (finite volumes vs.
finite elements) also different types of grids and different grid resolutions are used leading to
non–matching surfaces meshes. Consequently, a grid–to–grid data interpolation and transfer
becomes necessary. These interpolation steps include two transfers: (i) the fluid loads deter-
mined by the CFD code to the CSD code, and (ii) the structural displacements predicted by
the CSD code back to the CFD code. Both are described separately.

(i) For the transfer of pressure and viscous shear forces from CFD to CSD, a conservative
interpolation according to Farhat et al. (1998) is used, ensuring that the load resultants on
both grids are exactly the same. The main disadvantage of this method is that in case of
a coarse source grid (CFD) and very fine target grid (CSD), the loads are distributed in a
non–physical way. However, in the present case this issue does not play a role since the grid
used for LES (but also for the laminar case) is much finer than the CSD grid.
As mentioned in § 2.1.3 the fluid solver FASTEST-3D is based on a cell–centered variable
arrangement for the pressure and the velocities, whereas the grid coordinates and displacements
are cell–vertex bound. Therefore, in an initial step, the fluid loads FCC,CFD predicted based on
the pressure and viscous shear forces at the centers of the cells denoted CC are conservatively
interpolated to the face vertices, i.e., the grid nodes (N). Note that at the CFD–CSD interface
the cell centers (CC) are located in the center of the cell faces and thus in the same plane as
the face vertices (N), see Fig. 2. Thus a two–dimensional interpolation has to be carried out.
That step is necessary since the data transfer in CoMA is restricted to one topology on each
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side and since the displacements are required at N, also the loads have to be defined at these
locations. The whole interpolation procedure for the fluid loads is done in two steps:

1. Conservative interpolation of the fluid loads located in the cell centers (CC) to the cell
nodes (N) of the fluid domain (CFD→CFD, done in FASTEST-3D, see Fig. 2):

∑

CFD nodes

FN,CFD =
∑

cell centers

FCC,CFD (14)

Since the cell centers (CC) are exactly located in the geometrical centers of the cell, it
means that for an internal node not located at an edge the fluid load is equally distributed
to its four neighboring cell nodes (N), i.e., a quarter to each node. At edges of the
interface, this rule has to be adjusted accordingly.

CFD

FCC,CFD

1
4

1
4

1
4

1
4

F
j
N,CFD

Figure 2: Interpolation of loads from the cell centers (CC) located at the CFD–CSD interface
to the nodes (N) of the CFD grid. Note: Both, CC and N lie in the same plane.

2. Conservative interpolation of the fluid loads from the cell nodes of the fluid domain to
the grid nodes of the structure domain (CFD→CSD, done in CoMA, see Fig. 3):

∑

CSD nodes

FN,CSD =
∑

CFD nodes

FN,CFD (15)

To achieve this, the fluid load F
j
N,CFD at the grid node j is split up to parts which are

distributed to all nodes of the CSD element e, in which the fluid node j is found. The
weighting is based on the shape function N e

r of the CSD element e. It reads:

Fr
N,CSD = N e

r (ξj, ηj) F
j
N,CFD (16)

(ii) The calculated displacement vectors of the CSD nodes are transferred to the CFD nodes by
using a bilinear interpolation. This interpolation is a consistent scheme for four–node elements
with bilinear shape functions. A conservative interpolation as used to transfer pressure and
viscous shear forces is not suitable here, because the displacements are not integral quantities.
Thus the final step of the interpolation procedure reads:

3. Bilinear interpolation of the displacements from the structure domain dr
N,CSD to the cell

vertices of the fluid domain (CSD→CFD, done in CoMA, see Fig. 4):

d
j
N,CFD =

4
∑

r=1

N e
r (ξj, ηj)d

r
N,CSD (17)
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CFD

CSD

j
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j
N,CFD

r = 1

r = 4 r = 3

r = 2

Pj
Fr

N,CSD
ηj

ξj

Figure 3: Transfer of loads from the fluid domain (CFD) to the structure domain (CSD).

Here, the resulting displacements in the fluid domain are denoted by d
j
N,CFD. They are

obtained by the displacements of the structure domain dr
N,CSD weighted by the shape

functions N e
r of the CSD element e, in which the fluid node j is found. Thereby ξj and

ηj describe the local coordinates of the projection point Pj in the CSD element e.

CFD

CSD

d
j
N,CFD

Pj

ξj

ηj

P ′
j

dr
N,CSD

d
j
N,CFD

Figure 4: Transfer of displacements from the structure domain (CSD) to the fluid domain (CFD).

The interpolation steps 2 and 3 are done in CoMA. This code coupling tool is based on
the Message–Passing–Interface (MPI) and thus runs in parallel to the fluid and structure
solver. The communication in-between the codes is performed via standard MPI commands
using a special communicator for this purpose. Since the code parallelization in FASTEST-
3D and Carat++ also rely on MPI, separate communicators are introduced for each code.
Thus a hierarchical parallelization strategy with different levels of parallelism is achieved.
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According to the CPU time requirements of the different subtasks, an appropriate number of
processors can be assigned to the fluid and the structure part. Owing to the reduced structural
models on the one side and the fully three–dimensional highly resolved fluid prediction on the
other side, the predominant portion of the CPU time is presently required for the CFD part.
Hence in addition to the domain decomposition on the fluid and structure side, discipline
decomposition is accomplished allowing the usage of modern multi–core architectures with
their specific hierarchy of parallelism. Thus effective coupling with respect to high–performance
computing is enabled.

4. Test Cases

A collaborative effort of the DFG Research Unit 493 (Bungartz et al., 2010) was the develop-
ment of specific benchmark problems for validating various solution methods for fluid–structure
interaction. In order to allow the application of a wide range of different coupling strategies
and numerical schemes, the configuration considered is geometrically not very challenging and
furthermore restricted to the laminar flow regime (Turek and Hron, 2006). One of these bench-
mark cases, namely FSI3, is used in this study to validate the numerical methodology proposed.
The setup is described in § 4.1. To go beyond the limit of laminar flows and to test the FSI
scheme in the turbulent regime applying LES, the setup of FSI3 was slightly adapted. The
new configuration called FSI–LES is given in § 4.2

4.1. FSI Benchmark for Laminar Flow

The present FSI3 configuration (Turek and Hron, 2006; Turek et al., 2010) leans on an older
‘flow around cylinder‘ benchmark developed for testing CFD methods in the laminar flow
regime (Turek and Schäfer, 1996). In order to extend the original CFD benchmark to a FSI
test case, a flexible structure is attached to the back side of the cylinder (Turek and Hron,
2006). In a two–dimensional channel of length L/D = 25 and height H/D = 4.1 a fixed and
rigid cylinder of diameter D is mounted as sketched in Fig. 5. The cylinder position is slightly
off–centered, with the cylinder center located at 2D downstream of the inflow section and with
a distance of Hc = 2D from the lower lateral channel wall. Providing dimensions the cylinder
has a diameter of D = 0.1 m. The fluid is assumed to be an incompressible Newtonian fluid with
ρf = 1000 kg/m3. Based on a mean inflow velocity of u∞ = 2 m/s and a kinematic viscosity
of νf = 0.001 m2/s a Reynolds number of Re = 200 is obtained. According to the analytical
solution for a fully developed laminar channel flow, a parabolic velocity profile was set at the
inflow given by

u(y) = 1.5 u∞
y(H − y)

(

H
2

)2 . (18)

Besides the parabolic inflow condition (18) for the flow, no–slip boundary conditions should
be applied at the channel walls, at the rigid front cylinder and at the flexible structure (Turek
and Hron, 2006). At the outlet the conditions are not prescribed in Turek and Hron (2006).
Generally, a convective outflow boundary condition should be favored allowing vortices to leave
the integration domain without significant disturbances (Breuer, 2002).
The elastic structure has a length of l/D = 3.5 and a thickness of h/D = 0.2. The structure
is allowed to be compressible, and its deformations are significant. The material of the flex-
ible structure is specified by the St. Venant–Kirchhoff material law (Belytschko et al., 2000)
characterized by a Poisson’s ratio of νs = 0.4, a Young’s modulus of E = 5.6 · 106 kg/(m s2)
and a density of ρs = 1000 kg/m3. Consequently, the density ratio ρf/ρs is unity and the
added–mass effect plays an important role. All nodes of the structure on the rigid cylinder are
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assumed to be fixed. Contrarily, the nodes of the flexible structure are totally free at the free
extremity.

L

H

l

hD
Point A

flexible
rigid

Hc

x

y

u(y)

Figure 5: Setup of the computational domain for the FSI3 test case.

As a first step of a thoroughly carried out validation procedure, the single components (CFD
and CSD solver) have to be addressed independently. For this issue, Turek and Hron (2006)
defined the test cases CFD3 and CSM1 to CSM3, respectively. Both are briefly sketched and
the results achieved will be shwon in § 6.1.1 and § 6.1.2.

Benchmark CFD3.
Assuming that the flexible structure in Fig. 5 is rigid, the FSI3 benchmark reduces to a pure
CFD test case denoted CFD3 (Turek and Hron, 2006). The remainder of the test case and
setup is kept unchanged. Thus the laminar two–dimensional flow around a cylinder with a
kind of splitter plate at the backside mounted in a channel is considered for validation of the
CFD code.

Benchmarks CSM1 to CSM3.
Similar to the validation of the CFD tool also the CSD tool is first validated in an uncoupled
environment. For that purpose the benchmarks CSM1 to CSM3 (Turek and Hron, 2006) are
taken into account. Based on the setup sketched in Fig. 5 solely the elastic beam without
the surrounding fluid is considered here. In order to predict a deflection of the structure, a
gravitational acceleration of g = 2 m/s2 in negative y–direction is added. The CSM3 test is
computed as a time–dependent case starting from the undeformed configuration while the tests
CSM1 and CSM2 are the steady–state solutions. The material parameters are equal to those
defined for FSI3 in § 4.1 except the Young’s modulus which is reduced to E = 1.4 · 106 kg/(m
s2) for the cases CSM1 and CSM3.

4.2. FSI Benchmark for Turbulent Flow

For extending the coupled FSI3 case towards an appropriate test case for the turbulent flow
regime (FSI–LES), several adjustments are necessary. These are required either to allow LES
or to reduce the computational effort to a reasonable level.
First, the computational domain has to be extended to a three–dimensional geometry since
turbulence is always 3–D and LES predictions can thus not rely on two–dimensional integration
domains. Therefore, the computational domain has now a width of W/D = l/D = 3.5 in z–
direction. Thus the flexible structure is a square in the x–z–plane.
Second, owing to this three–dimensional extension of the domain, boundary conditions are
required for the flow and for the structure. Thus, in spanwise direction periodic boundary
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conditions are chosen for both disciplines. For the structure that implies that in the cross–
section (x–y plane) the same boundary conditions are used as in 4.1. Additionally, the z–
displacement of the nodes on the sides are forced to be zero. Due to periodic boundary
conditions set in the fluid solver there are always two nodes of the sides (one in a plane and
its twin in the other plane) which have the same load. These two nodes must have the same
displacement in x– and y–direction.
Third, since the resolution of the boundary layers at the channel walls would require the bulk
of the CPU time, the lateral channel walls are assumed to be slip walls. Thus the blocking
effect of the walls is maintained without taking the boundary layers into account. Of course,
on the structure, no–slip boundary conditions are used as in the laminar case. At the channel
outlet again a convective outflow condition is specified to avoid reflections and disturbances
(Breuer, 2002).
Fourth, as a direct consequence of the slip conditions at the channel walls, the inflow profile
has to be modified and a constant velocity u∞ is now set at the inflow.
Fifth, in order to enter the turbulent regime, the Reynolds number is set to Re = u∞D/νf = 104.
For the pure cylinder the flow is in the sub–critical regime at this Reynolds number, where the
boundary layer at the cylinder is still laminar and transition to turbulence takes place in the
free shear layers behind the cylinder (Breuer, 1998, 2000). All other dimensions and properties
of the fluid and the structure are kept unchanged.

Benchmark CFD–LES.
In order to initialize the coupled FSI–LES case and to check the LES prediction of the turbulent
flow, in a first step the flexible structure is again assumed to be rigid as in the laminar case.
Thus, the FSI–LES benchmark reduces to a pure CFD test case denoted CFD–LES.

5. Numerical Setup

The predictions are carried out based on the numerical schemes described in § 2 and § 3. In
the following specific settings are provided for both, laminar and turbulent cases separately.

5.1. FSI Benchmark for Laminar Flow including CFD3 and CSM1–3

In order to allow a grid independence study for the laminar flow cases CFD3 and FSI3, a
series of three block–structured grids was taken into account for the flow predictions. In the
cross–section the grid is successively refined by a factor of two in both directions. The coars-
est grid (2–D) depicted in Fig. 6 consists of about 27,000 control volumes (CVs). The next
finer level, i.e. the medium grid, possesses about 90,000 CVs and the fine grid consists of
about 360,000 CVs. In wall–normal direction the first cell center is located at a distance of
∆y/D = 6.925 · 10−3, 3.125 · 10−3 and 1.5 · 10−3 from the flexible structure for the coarse,
medium and fine grid, respectively. Owing to the grid stretching applied in wall–normal di-
rection, the ratio between two successive grid levels is not exactly one half. For the structure
the corresponding grid is kept fixed for all three FSI3 predictions (coarse, medium and fine).
It consists in total of 30 four–node shell elements. The same discretization is also applied for
the preliminary structural tests CSM1 to CSM3.
Since for low Reynolds numbers the stability of explicit time–marching schemes is dominated
by viscous effects, the time–step size has to be reduced with the refinement of the grid in order
to stay in the stable limits2. Therefore, time–step sizes of ∆tf = 10−4 s, (coarse grid), 5 ·10−5 s

2Since the FSI coupling scheme is mainly intended for high–Re flows within the LES context, this restriction
solely applies to the present laminar test case.
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(medium grid) and 10−5 s (fine grid) are chosen to predict the flow field, respectively. Although
in general different time–step sizes are possible for both solvers, presently this option is not
implemented in the coupling tool CoMA. Hence in all cases considered the time–step size of
the solver for the structure is adapted to the time–step size of the fluid solver, i.e., ∆ts = ∆tf .
For time–stepping the structural solution the generalized–α method is applied with a spectral
radius ̺∞ = 0.8.
Within the coupled FSI prediction a constant underrelaxation factor of ω = 0.5 is considered
for transferring the computed displacements from the structure domain to the fluid domain
(see discussion in § 6.1.4). No underrelaxation of the fluid loads is necessary as mentioned in
§ 3.2. For this case, a linear first–order extrapolation (11) for the estimation of the structural
displacements at the beginning of each time step is performed. The choice is already motivated
in § 3.2.
FSI convergence is reached if the L2 norm of the displacement differences according to eq. (10)
drops below εFSI = 10−5. For that purpose in the mean about 10 FSI–subiterations are
required. Tests were also carried out with a limit of εFSI = 10−4 and 10−6. For the former
reasonable results but partially overlayed by minor perturbations on the lift and drag curves
were obtained. For the latter the same results as for εFSI = 10−5 were noticed which motivates
the current choice.
Finally, it should be noted that the present coupling algorithm was also tested as a loosely
coupled scheme by setting the number of FSI–subiterations to zero. However, as expected the
scheme becomes unstable after a few time steps owing to the artificial added–mass effect, see,
e.g., Causin et al. (2005); Förster et al. (2007); Förster (2007).

X

Y

Z

Figure 6: Coarse grid for the FSI3 test case in the x–y cross–section, about half of the computational
domain in the wake region omitted.

5.2. FSI Benchmark for Turbulent Flow including CFD–LES

For the flow prediction based on LES (i.e., the cases CFD–LES and FSI–LES) a block–
structured grid with about 17 million CVs is used, whereas 48 CVs are applied in the spanwise
direction. The grid points are clustered towards the rigid cylinder and the flexible structure
using geometric stretching. The stretching factors are kept below 1.1 with the first cell center
located at a distance of ∆y/D = 1.5 · 10−3 from the flexible structure. The prediction CFD–
LES for a rigid structure served as a source for the determination of time–averaged wall shear
stresses on the cylinder and the structure. Based on that the average y+ values are predicted
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on the structure and found to be below 1, mostly even below 0.2. Thus, the viscous sublayer
is adequately resolved. In contrast to the former case no grid clustering is required at the slip
channel walls. The elastic plate is resolved by the use of 10 × 10 four–node shell elements.
For the turbulent case the restrictions concerning the time–step size are less restrictive as
forecasted above. Thus a time–step of ∆tf = 10−4 s is chosen and again the same time–step
size is applied for the structural solver based on the generalized–α method with ̺∞ = 0.8.
Again a constant underrelaxation factor of ω = 0.5 is considered for the displacements and the
loads are transferred without underrelaxation. Based on the experiences with the second–order
extrapolation in the laminar case, here solely the first–order extrapolation for the estimation
of the structural displacements at the beginning of each time step is used. In accordance with
the laminar case the FSI convergence criterion is set to εFSI = 10−5 for the L2 norm of the
displacement differences according to eq. (10).
For the LES predictions the national supercomputer SGI ALTIX 4700 3 was used applying in
total 142 processors for the CFD part plus one processor for the coupling code and the CSD
code, respectively.

6. Results

6.1. Validation of the Methodology based on Laminar Flow

In the following, first the results of the validation procedure for both subtasks (CFD and CSM)
are briefly shown. Then the coupled laminar case FSI3 is discussed in more detail.

6.1.1. Benchmark CFD3

As mentioned above, replacing the flexible structure in Fig. 5 by a rigid plate, the FSI3 bench-
mark reduces to the pure CFD test case CFD3 (Turek and Hron, 2006). It considers the laminar
flow around a cylinder with a splitter plate at the backside. The comparison will be done for
fully developed flow, and particularly for one full period of the oscillation. Forces exerted by
the fluid on the whole submerged body, i.e. lift and drag forces acting on the cylinder and the
beam structure together, are taken into account for comparison. Although unusual, in order to
be consistent with the reference data (Turek and Hron, 2006) provided by a fully implicit FEM
method with a coupled multigrid solver, the results are provided by dimensional quantities.
Furthermore, the forces are given per unit length since the problem is two–dimensional.
Despite the splitter plate behind the cylinder, vortex shedding occurs at Re = 200. The
shed vortices travel downstream and interact with the structure (not shown here, see similar
behavior for the flexible structure in Fig. 7). The time history of the lift force shows a sinusoidal
signal where the mean value is not equal to zero due to the slightly off–centered position of the
structure in the channel. To quantify the results for comparison purposes, the minimal and
maximal values are provided in Table 1 for the three successive grids applied. It is obvious
that the values of the minimal and the maximal lift converge step by step towards the reference
data when the grid is refined consecutively. Regarding the corresponding frequencies of the
oscillating lift force the predicted values are about 1% higher than in the reference case and
that does not change with grid refinement. Since the scheme applied is second–order accurate
in time and the time–step sizes are 50 to 500 times smaller than in the reference case, this
minor deviation is still astonishing. As usual for the vortex shedding phenomenon past bluff
bodies, the frequency of the drag force is doubled with respect to the lift force. Besides the
absolute minimum and maximum the time history of the drag (not shown here) depicts a local

3http://www.lrz.de/services/compute/hlrb/
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Table 1: Results of the CFD3 benchmark.

Resolution Drag [N] Lift [N] Frequency

[×103 CVs] Min. Max. Min. Max. of Lift [Hz]
Coarse 27 437 447 -427 397 4.439
Medium 90 435 446 -448 421 4.443
Fine 360 434 445 -451 426 4.444

Turek and Hron (2006) highly resolved FE 434 445 -450 426 4.396

minimum and a local maximum. Table 1 provides the values of the absolute extrema. Again
it is observed that the values of the present predictions converge towards the reference data
when the grid is refined. Consequently, the grid refinement study was successful and the CFD
solver is validated.

6.1.2. Benchmarks CSM1 to CSM3

The next step is to validate the CSD tool in an uncoupled environment using the benchmarks
CSM1 to CSM3 suggested by Turek and Hron (2006). The setup solely includes the elas-
tic beam without the surrounding fluid. The tests CSM1 and CSM2 are steady–state cases,
whereas CSM3 has to be computed as a time–dependent case starting from the undeformed
configuration. Tables 2 and 3 summarize the predicted steady–state deflections in both direc-
tions in comparison with the reference data (Turek and Hron, 2006). In all cases an error of less
than 0.6% is found. Table 4 summarizes the comparison for the unsteady case CSM3 based
on the minimal and maximal deflections and the frequency of the oscillation. A maximum
deviation of about 1.1% is observed for the deflection in x–direction. The minimum deflection
in y–direction fits well to the reference data, whereas for the maximal deflection a value larger
than the initial position is provided in (Turek and Hron, 2006) which is hard to explain. The
predicted frequency is in close agreement with the reference data. In conclusion, based on
minor deviations observed also the CSD solver is successfully validated.

Table 2: Results of the CSM1 benchmark.

dx [×10−3 m] dy [×10−3 m]
present -7.187 -66.10
Turek and Hron (2006) -7.144 -65.90

Error 0.598% 0.303 %

6.1.3. Benchmark FSI3

The natural extension of the previous case is to release the flexible structure again and to
tackle the coupled FSI problem. Fig. 7 depicts contours of the pressure and the streamwise
velocity at an arbitrarily chosen time instant. Similar as before vortex shedding is observed
at the cylinder4. Vortices detach from the cylinder in an alternating manner. They travel

4See FSI3 videos in the online version of the paper!
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Table 3: Results of the CSM2 benchmark.

dx [×10−3 m] dy [×10−3 m]
present -0.4690 -16.97
Turek and Hron (2006) -0.4663 -16.92

Error 0.576% 0.295%

Table 4: Results of the CSM3 benchmark.

dx [×10−3 m] dy [×10−3 m] Frequency

Min. Max. Min. Max. [Hz]
present -28.934 0.0 -128.670 ≈ 10−4 1.0980
Turek and Hron (2006) -28.610 0.0 -128.767 1.553 1.0995

Error 1.132% 0.0% 0.075% - 0.13%

downstream and start to interact with the flexible structure leading to an oscillating structure.
In Fig. 7 the unbalanced pressure distribution on both sides of the flexible structure as the
source for the oscillations as well as the shedding phenomenon are clearly visible.

(a) Pressure

(b) Streamwise velocity

Figure 7: Instantaneous flow field for benchmark FSI3 (fine grid).

The time history of the lift force on the entire structure is displayed in Fig. 8. After a transition
phase the amplitudes of the oscillation reaches constant values which are again asymmetric
around the zero axis due to the asymmetry of the configuration. The values of the extrema
obtained on the three grid levels are summarized in Table 5. It is obvious that the agreement
with the reference data (Turek et al., 2010) provided by a monolithic, fully implicit ALE–
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Table 5: Results of the FSI3 benchmark.

Resolution Drag [N] Lift [N] Frequency

[×103 CVs] Min. Max. Min. Max. of Lift [Hz]
Coarse 27 427.7 526.2 -184.7 196.9 5.190
Medium 90 423.9 515.4 -172.8 184.3 5.165
Fine 360 424.0 505.0 -160.0 172.0 5.164

Turek et al. (2010) monolithic FE 432.7 488.2 -151.4 156.4 5.46
Gallinger (2010) partitioned FV–FE 446.8 503.0 -162.0 169.8 5.51

FEM method with a coupled multigrid solver, strongly improves when the grid is refined.
Nevertheless, on the finest grid level a deviation with respect to Turek et al. (2010) remains.
Concerning the frequency of the lift force the results obtained on the different grid levels are
nearly constant and thus do not converge towards the data in Turek et al. (2010). A deviation
of about 5.4% remains.

t (s)

L
if

t 
(N

)

13 14 15 16
-300

-200

-100

0

100

200

300

(a) Full scale

t (s)

L
if

t 
(N

)

15.7 15.8 15.9 16 16.1
-300

-200

-100

0

100

200

300

(b) Zoom

Figure 8: Time history of the lift force for benchmark FSI3 (fine grid).

With respect to the drag force (see Fig. 9) the present results are in closer agreement with the
reference data than the lift. When refining the grid the extrema converge towards the data in
Turek et al. (2010) and on the finest grid level a deviation of about 3.5% or less is noticed.
In Bungartz et al. (2010) the paper by Turek et al. (2010) also summarizes results of a variety
of different groups applying a wide spectrum of various numerical schemes, coupling conditions,
resolutions and convergence criteria. It can be observed that the mean values and amplitudes of
the lift and drag forces show a wide spreading of the results. Somehow that has to be expected
since a highly non–linear and complex case is considered. Exemplarily, the results of Gallinger
(2010)5 are included in Table 5. These predictions used for comparison rely on a partitioned

5Method also published in Hojjat et al. (2010) and results also available in Turek et al. (2010)!
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coupling scheme. The open source cell–based finite–volume solver OpenFOAM applies an im-
plicit backward–differencing time–marching scheme, the PISO pressure–correction algorithm
and the ALE formulation for the solution of the incompressible Navier–Stokes equations. That
is combined with the same CSD solver and coupling tool as used in the present investigation,
i.e., the finite–element solver Carat++ and CoMA, respectively. Furthermore, a similar res-
olution as in the present study is applied. Hence a comparison between both predictions is
appreciated. Owing to the implicit time–stepping scheme a 5 to 50 times larger time–step size
than in the present case was used. Furthermore, a fully implicit partitioned coupling algorithm
based on fixed–point iterations with Aitken relaxation or a quasi–Newton method was applied
in Gallinger (2010). For more details, please refer to Gallinger (2010) and Hojjat et al. (2010).
Concerning the lift forces a very good level of agreement with the additional reference data
(Gallinger, 2010) is achieved. However, for the drag force a better agreement regarding the
mean value is observed in the present study, whereas the frequency of the lift is predicted in
closer accordance with Turek et al. (2010) by Gallinger (2010).
By performing this test case the proper behavior of the whole partitioned FSI setup is proven.
Despite some differences the overall agreement is satisfactory.
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Figure 9: Time history of the drag force for benchmark FSI3 (fine grid).

6.1.4. Comparison of Fixed and Dynamic Underrelaxation Factors

As described in § 3.2 the structural deformations predicted by the CSD solver are underrelaxed
before the grid adaptation is carried out within the CFD code. For that purpose fixed or
dynamically predicted values of the underrelaxation factor ω can be applied in eq. (13). In
order to investigate the convergence behavior of the newly developed coupling scheme for
different options concerning the underrelaxation factor, the FSI3 benchmark on the coarse grid
is studied in detail. For these tests again the linear version (11) of the displacement estimator
is used since no significant differences were found between both options described. Based
on 40,000 time steps and the usual convergence criterion (i.e., L2 norm of the displacement
differences < εFSI = 10−5) the mean value of the required number of FSI subiterations is
considered. Table 6 summarizes the results for four fixed values in the range 0.1 ≤ ω ≤ 0.6 and
two slightly different Aitken methods. The standard Aitken version relies on the formulation
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of Irons and Tuck (1969) and Mok (2001). The special version consists of the Aitken method
by Mok (2001) but applied just in every second FSI–subiteration as suggested by Macleod
(1986). Otherwise, a fixed value of ω = 1 is applied.

ω = 0.1 ω = 0.2 ω = 0.5 ω = 0.6 Aitken Aitken Special

Refs. Aitken (1926) Macleod (1986)

Irons and Tuck (1969) Mok (2001)

Mok (2001)

# iter. 55.21 29.51 9.38 14.00 9.48 8.85

Comments
about
history of
forces

smooth smooth smooth perturb. perturbations perturbations

Table 6: Comparison between different coupling algorithms; the FSI iteration number is the mean
value of the complete simulation on the coarse grid.

As expected, small (fixed) values of ω lead to convergence but the number of subiterations
required is quite large. By increasing ω up to about 0.5 the number of iterations until the
convergence criterion is reached decreases to less than 10. However, a further mild increase
towards ω = 0.6 already yields to a worse convergence behavior and thus more iterations.
Interestingly, the deterioration of the convergence is accompanied by visible perturbations of
the time histories of the lift and drag forces. Although the convergence criterion is reached,
these curves are no longer smooth but show minor perturbations which are superimposed on
the signal. The same applies for both versions of the Aitken method. Based on the standard
Aitken version the mean number of required subiterations is very similar to the version with
a fixed value of ω = 0.5. However, in contrast to the fixed version the dynamic variant
shows perturbations on the signal of the forces depicted in Fig. 10. Regarding the number of
subiterations astonishingly the special Aitken method with a recomputation of ω every second
iteration is the best choice, but again the resulting signals are not smooth. Reducing the
convergence criterion to a lower value, e.g., εFSI = 10−7, the perturbations observed disappear
for all underrelaxation factors and both Aitken schemes. However, a higher number of iterations
is required to reach smooth curves, which is an obvious disadvantage.
Owing to the minor differences in the number of necessary iterations and the smooth signals,
presently the version with fixed ω values found by numerical experiments is favored. Nev-
ertheless, this issue requires further detailed investigations since in contrast to the present
semi–implicit scheme fully implicit coupling schemes have shown the superiority of the adap-
tive stabilization, see, e.g., Wüchner (2006); Wüchner et al. (2007); Kupzok (2009); Küttler
(2009); Degroote et al. (2008). One explanation might be the differences in the time–marching
scheme and time–step size (c.f. discussion on stability in Förster et al. (2007) and Förster
(2007)), which is much smaller in the present algorithm designed to resolve turbulent fluid
flow in time.

6.2. Turbulent Cases using LES

First the results of the LES prediction for the rigid structure (CFD–LES) are discussed. Sub-
sequently, the case of the principal objective of the present investigation, i.e., the turbulent
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Figure 10: Comparison of the time history of the drag force for the Aitken scheme and a con-
stant relaxation parameter ω = 0.5, convergence criterion: L2 norm of the displacement
differences < εFSI = 10−5 (see eq. (10)).

FSI case (FSI–LES) is considered. In the following all results are presented in dimensionless
manner using u∞ and D as reference quantities.

6.2.1. Rigid Structure: CFD–LES

For the turbulent case, the simulation was started again with a rigid structure, thus a pure LES
without coupling. For the flow around a cylinder a variety of experimental as well as numerical
investigations are available, see, e.g., Breuer (1998, 2000, 2002). Owing to remarkably complex
flow features such as thin separating shear layers, transition and large–scale vortex motion
in the wake, the cylinder flow can be considered as the paradigm of complex flows and thus
as a challenging test case for flow predictions. At the present Reynolds number of Re = 104

the flow is still sub–critical, i.e. the boundary layers at the cylinder separate laminarly and
transition takes place in the free shear layers induced by a Kelvin–Helmholtz instability. In
the wake strong vortex shedding is observed for the free cylinder flow.
In the present case the structure behind the cylinder acts like a splitter plate of length l/D = 3.5
attenuating the generation of a vortex street behind the cylinder. Nevertheless, quasi-periodic
vortex shedding is still observed. Fig. 11 depicts an arbitrarily chosen snapshot of the distribu-
tion of the pressure and the streamwise velocity in a x–y plane showing the shear layers with
the Kelvin–Helmholtz instability leading to transition and large vortices originating from the
shedding process6. The time history of the lift and drag coefficients depicted in Fig. 12 con-
firms that the splitter plate does not suppress vortex shedding completely. The lift coefficient
strongly oscillates around a slightly positive mean values with amplitudes of about ±2. These
are significantly larger than observed for the pure cylinder flow (Breuer, 1998, 2000, 2002). The
cause for this observation is the splitter plate since the pressure distributions on both sides

6See CFD–LES videos in the online version of the paper!
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significantly contribute to the resulting lift forces on the entire structure. The drag coefficient
shows much lower amplitudes and varies around a mean values of about 1.2 which is in the
range of values expected for the single cylinder in this Reynolds number range. Thus the drag
is much less influenced by the splitter plate than the lift coefficient. Since the surface of the
splitter plate is oriented in the direction of the main flow, this outcome has to be expected.
Except on the rear panel solely the shear forces on the splitter plate contribute to the drag
force and since these are comparably small (≈ 1% of the total force), the effect of the splitter
plate is minor.
Compared to a pure cylinder in free flow the Strouhal number decreases from about St = 0.2
to St = 0.175 which is the result of two opposing effects: the splitter plate typically decreases
the Strouhal number, while due to the blockage effect of the channel St is slightly increased
again.

(a) Pressure

(b) Streamwise velocity

Figure 11: Instantaneous flow field for the turbulent case with a rigid structure (x–y plane).
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Figure 12: Time history of the lift and drag coefficient for the turbulent case with a rigid structure.

In order to further investigate the flow field, the instantaneous flow was averaged over a long
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time period of about 540 dimensionless time units7 which is equivalent to about 100 vortex
shedding cycles. Fig. 13(a) displays the time–averaged flow by streamlines, whereas Fig. 13(b)
depicts the distribution of the time–averaged velocity u in mainstream direction. The LES
computation predicts an attached recirculation region behind the cylinder on both sides of the
plate. The length of the recirculation region (Lr/D ≈ 3.25) is much longer than for cases
without a splitter plate (Breuer, 1998, 2000, 2002) as expected. It ends shortly before the
trailing edge of the plate, i.e., reattachment is observed at about D/4 before the edge.
In addition to the mean flow field, higher–order moments have been investigated. In Figs. 13(c)
to 13(e) the total resolved Reynolds stresses u′u′, v′v′ and u′v′ are plotted8. Except the fact
that due to the splitter plate the entire flow is somehow stretched in streamwise direction as
already observed for the streamlines and u, the distribution of the streamwise Reynolds stress
u′u′ as well as the shear stress u′v′ are qualitatively in close agreement with data obtained
for the single cylinder (Breuer, 1998, 2000, 2002). An exception represents the cross–stream
Reynolds stress shown in Fig. 13(d). Whereas for the pure cylinder the maximum values
are found on the symmetry axis owing to the vortex shedding motion, in the present case
this maximum is intersected by the splitter plate. Furthermore, a second maximum develops
behind the backside of the plate.
The distributions of the Reynolds stresses also confirm the statement that the flow is in the
sub–critical regime. On the entire cylinder vanishing values are found. Hence the flow is
laminar. Transition to turbulence occurs in the free shear layer as obvious from Figs. 13(c)
to 13(e). Since also in the case of the flexible plate to be discussed in the next section, the
cylinder will be kept rigid, the situation will not change for the coupled case.

6.2.2. Flexible Structure: FSI–LES

Starting from the LES prediction of the flow around the rigid structure (CFD–LES), the plate
is released and a fully coupled FSI–LES prediction is started. Owing to different loads on both
sides the structure directly starts to deflect in one direction. After a short initial phase, in
which the amplitudes of the deflections successively increase, a new quasi–periodic mode of
oscillation is reached9. In Fig. 14 the time history of the lift and drag coefficients are depicted
in the same manner as for the pure LES case (Fig. 12). At t = 20 the coupled simulation is
started. After about three initial oscillations a new dynamic state is visible. Compared to the
rigid case the magnitudes of the lift coefficient are reduced to about 75%, whereas neither for
the amplitudes nor for the mean values of the drag coefficient a significant change is found.
A FFT of the lift signal furthermore shows that the main frequency is dramatically reduced
leading to a Strouhal number of St = 0.103 compared to 0.175 before.
In Figs. 15 and 16 a complete cycle of the structural oscillation is shown based on the distri-
bution of the pressure and the streamwise velocity component in a x–y plane. T0 denotes the
time instant when the plate is about in its original position and ∆T ≈ 9.7 stands for the time
interval of a complete cycle. Similar to the uncoupled case the shear layers developing out
of the separated boundary layers at the cylinder are visible. Furthermore, vortices with low
pressure kernels are generated in these shear layers and travel downstream.
In the first snapshot (Fig. 15(a)) a large region of low pressure is visible at the upper side of the
plate. That is the remainder of an even stronger pressure minimum observed about a quarter
of an interval before (see, e.g., Fig. 15(d)). That represents the main cause for the bending

7Time normalized by u∞ and D.
8The overbar denotes the time average and the prime u′ stands for the fluctuating velocity component.
9See FSI–LES videos in the online version of the paper!
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(a) Streamlines

(b) Streamwise velocity u

(c) Streamwise Reynolds stress u′u′

(d) Cross–stream Reynolds stress v′v′

(e) Reynolds shear stress u′v′

Figure 13: Time–averaged flow field for the turbulent case with a rigid structure.

motion noticeable in the second subfigure. At this instant the bending of the plate reaches
about its maximum. Due to the bending of the structure the lower side of the structure forms a
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Figure 14: Time history of the lift and drag coefficient for the turbulent case with a flexible structure.

convex surface similar to an airfoil leading to a new pressure minimum on the lower side visible
in Fig. 15(b). That is mainly responsible for the bending–back motion of the structure to its
initial position depicted in Fig. 15(c). Then the entire process is continued mirror–inverted
in the other direction but of course based on the same mechanism. The plate is deflected
downwards and a low pressure region on the upper side is generated due to the convex surface
of the plate on this side, see Fig. 15(d). Consequently, owing to inertia, a phase shift of about
∆T/2 between the appearance of the pressure minimum on the convex side and the occurrence
of the maximal deflection is observed.
The deflection of the structure also influences the development of the wake region as visible in
Figs. 16(a) to 16(d). The wake follows the bent structure as expected.
In Fig. 17 the deformed plate is shown in three–dimensions. Furthermore, a snapshot of iso-
surfaces of the pressure colored by the streamwise velocity component is depicted. Although
the flow field strongly varies in spanwise direction, a bending of the flexible structure in span-
wise direction is hardly visible. Thus the variation of the pressure and shear forces in this
spatial direction are too weak to be noticed as resulting deflections.

(a) T0 (b) T0 + 1/4∆T

(c) T0 + 1/2∆T (d) T0 + 3/4∆T

Figure 15: Temporal development of the flow field and the structure for the turbulent case with a
flexible structure, pressure distribution in a x–y plane.
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(a) T0 (b) T0 + 1/4∆T

(c) T0 + 1/2∆T (d) T0 + 3/4∆T

Figure 16: Temporal development of the flow field and the structure for the turbulent case with a
flexible structure, streamwise velocity distribution in a x–y plane.

Figure 17: Snapshot of the turbulent flow around the flexible structure showing iso-surfaces of the
pressure colored by the streamwise velocity component.

7. Conclusions

Since in many practically relevant fluid–structure interactions turbulence plays a dominant role,
the time is ripe to tackle this problem with modern eddy–resolving schemes. Besides direct
numerical simulation these are LES and with increasing potential also hybrid LES–RANS
methods. The resolution of the large–scale structures in time typically requires small time–
step size within the range of the stability limits of explicit schemes, e.g., predictor–corrector
schemes. In the present study a partitioned coupling scheme for the marriage of FSI and
LES (or related methods) is proposed which takes the specific needs of both disciplines into
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account, i.e., resolution in time and stability at high fluid-to-structure density ratios inducing
the added–mass effect. The scheme involves an explicit solution of the non–linear terms in
the Navier–Stokes equations and an implicit coupling between the computation of the pressure
field and the displacements of the structure. Thus a repeated solution of expensive parts
is avoided and a fast convergence of the FSI–subiterations is observed. The fluid solver is
coupled to a structure solver especially designed for light thin–walled structures such as shells
and membranes. Thus an appropriate tool for the time–resolved prediction of lightweight
structures exposed to turbulent flows results.
For a thorough validation of the entire scheme, in a first step the solvers for each single fields
were considered separately. For that purpose benchmark cases suggested in the literature
were taken into account (CSM1–3 and CFD3). In a second step the entire methodology and
the coupling scheme were investigated based on a fully coupled laminar benchmark case FSI3
including a grid independence study. The comparison yielded a close agreement with the
reference data although the algorithms are totally different between the present study and
the reference case. In a third step the study was extended into the turbulent regime starting
with the prediction of the instantaneous and time–averaged flow field around the fixed rigid
structure (CFD–LES). In a final step the coupling scheme was applied to the flexible structure
in turbulent flow denoted FSI–LES. The resulting flow field and structural deflections were
analyzed. The test cases clearly demonstrates that the proposed coupling scheme works in a
robust and efficient manner, requiring only about 5 to 10 subiterations between the pressure and
the displacement predictions to reach the FSI convergence criterion. The scheme is applicable
to all other eddy–resolving schemes and the algorithm can be fully scheduled in parallel. Next
steps will be the usage of improved grid adaptation schemes and eddy–resolving LES predictions
of more complex FSI cases for lightweight structures (see, e.g., Wüchner (2006); Wüchner et al.
(2007); Kupzok (2009); Gallinger (2010) for corresponding RANS predictions).
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tion. Vol. 53 of Lecture Notes in Computational Science and Engineering, LNCSE. Springer,
Heidelberg, pp. 336–355.



REFERENCES 32

Breuer, M., 1998. Large–eddy simulation of the sub–critical flow past a circular cylinder:
Numerical and modeling aspects. International Journal for Numerical Methods in Fluids
28 (9), 1281–1302.

Breuer, M., 2000. A challenging test case for large–eddy simulation: High Reynolds number
circular cylinder flow. International Journal of Heat and Fluid Flow 21 (5), 648–654.

Breuer, M., 2002. Direkte Numerische Simulation und Large–Eddy Simulation turbulenter
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