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

Abstract—In prostate brachytherapy, the analysis of the 3D 

pose information of each individual implanted seed is one of the 

critical  issues  for  dose  calculation  and  procedure  quality 

assessment.  This  paper  addresses  the  development  of  an 

automatic  image  processing  solution  for  the  separation, 

localization  and  3D  orientation  estimation  of  prostate  seeds. 

This  solution  combines  an  initial  detection  of  a  set  of  seed 

candidates in CT images (using a thresholding and connected 

component  method)  with  an  orientation  estimation  using 

principal components analysis (PCA). The main originality of 

the work is the ability to classify the detected objects based on a 

priori intensity and volume information and to separate groups 

of seeds using a modified k-means method. Experiments were 

carried out on CT images of a phantom and a patient aiming to 

compare the  proposed solution with  manual  segmentation or 

other  previous  work in  terms  of  detection  performance  and 

calculation time.

I. INTRODUCTION

ith   an  incidence  rate  of  152  per 100,000  men 

worldwide per year for 2006-2010, prostate cancer is 

the  second  most  frequently  diagnosed  cancer  in  men (cf. 

SEER Cancer Statistics  Review). The improvement of the 

diagnostic and therapeutic methods for prostate cancer has 

become  increasingly  important.  The  low-risk  prostate 

brachytherapy treatment, that uses low dose rate radioactive 

seeds, is a common and highly effective method to manage 

localized prostate cancer. Lines of seeds, loose or stranded, 

are  inserted  through  parallel  needles  into  the  prostate.  In 

practice,  the  number  of  seeds  implanted  in  the  prostate 

commonly range from 40 to 100. The goal of a successful 

operation is to position the seeds in order to get the proper 

dose coverage throughout the prostate while limiting the risk 

for the neighboring organs. In  theory, seeds are aligned in 

the needle insertion direction. However, in practice the seed 

implantation depends on many biomechanical factors as well 

as human experience. Hence, the seeds may be dropped out 

of position in spite of any special care or effort used when 

placing the needles and delivering the seeds. This may also 

result  in groups of closely spaced seeds.  We name such a 

group a union-seed (Fig.1). For treatment quality assessment, 

a  CT-based  post-implant dosimetry is  generally performed 

one  month  after  the  intervention  once  any  inflammatory 

modification  of  the  prostate  has  disappeared.  The  CT 

examination often shows that  seeds are  not  aligned in the 
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implantation direction with also a possible migration of the 

seeds  [1].  Although  it  has  been  recommended  by  the 

American  Association  of  Physicists  in  Medicine  [2]  to 

determine the 3D dose distributions of brachytherapy seeds 

based on real seed positions and orientations, most treatment 

planning  software  still  work  with  the  assumption  that  all 

seeds are aligned with the CT axis. The optimal location and 

orientation  of  the  seeds,  including  the  ability  to  separate 

union-seeds,  have  therefore  been  reported  as  a  major 

challenge for the evaluation of prostate brachytherapy [3-7]. 

Thus  seed  localization  has  been  largely  studied  and 

published. For example, a blob detection using Laplacian of 

Gaussian was considered in [6] to determinate the location of 

seeds  in  IRON  images  (Inversion-Recovery  with  On-

Resonant Water Suppression) with no explicit mention of the 

seed orientations.Wei et al [7] segmented the seeds from the 

subtraction  map  between  background  and  post-implant 

ultrasound  images and  then  applied  a  PCA  method  for 

orientation  detection.  Meaningful  advances  were  also 

reported  for  seed  localization  in  X-ray  images such  as 

volume reconstruction using Gaussian-blurred images in [3]. 

Chng  et  al.  [4]  estimated  the  seed  orientations  from  the 

tangent vector to the curve of a seed strand identified in post-

implant  CT at  each  seed's  position.  A large  collection  of 

papers  consider  stranded  seeds  whose  real  orientation  is 

generally closer to the planned one.  These types of seeds, 

however, limit the clinician’s ability to sculpt the dose to the 

treatment  constraints.  Moreover,  these  methods  do  not 

manage union-seeds.  

We have begun developing post-implant image processing 

software at our institution, emphasizing the need for small 

computational  complexity  and  high  effectiveness  of  seed 

detection.  In  this  study,  we  exploit  the  high  intensity 

appearance of radioactive seeds in CT images for a solution 

based  on  thresholding  and  connected  component 

segmentation  [8]. In  addition  to  the  main  objective  of 

Fig. 1.  Example of implanted seeds as visible in one slice of CT image.
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accurate seed localization and orientation, we also handle the 

separation of union-seeds. Here, the PCA method [9] is used 

for  orientation  estimation  and  the  k-means  segmentation 

method [10] is improved. This paper is organized as follows: 

in  Section  II,  the  materials  used  during  this  work  are 

presented. In Section III we described the proposed solution. 

Evaluation is reported for datasets coming from a phantom 

and one anonymous patient in Section IV. We then discuss 

the  main  contributions  and  potential  extensions  of  the 

proposed approach in Section V.

II.MATERIALS

The clinical team of the Grenoble University Hospital uses 

BEBIG  IsoSeed®I-125  seeds.  A  seed  is  made  of  a 

cylindrical-shaped  ceramic  material,  saturated  with 

radioactive iodine-125 compound and a gold marker located 

in  the  center,  which  are  all  enclosed  by  a  laser-sealed 

titanium tube. The outer physical dimensions of the seed are 

l=4.5±0.2mm  length  and  r=0.4±0.02mm  external  radius. 

The iodine-125 isotope emits photons at a maximum energy 

of 35keV and has a half-life of 59.46 days. This information 

is provided by the manufacturer [11].

The 3D CT images were obtained using a GE Lightspeed 

RT16  scanner  with  the  default  X-ray  tube  parameters: 

120kVp, 380-440mA.s. The slice width was 0.625mm with 

16frames/sec  for  each  slice.  The  image  reconstruction 

matrices were 512x512 archived in DICOM 3.0 format with 

16-bit gray-level intensities.

III. METHODS

A. Seed localization using connected object segmentation  

The initial  step consists  in  detecting a list  of  candidate 

seeds using segmentation methods. Numerous approaches in 

image processing have been proposed to segment individual 

objects  in  images,  e.g.  watershed  transformation  [12]  and 

Level  Set  [13].  In  this  paper,  the  connected  component  

labeling method [8] is considered because of its simplicity 

and  its  computational  efficiency  with  only  an  intensity 

threshold parameter t. Indeed, we first threshold the original 

volume in accordance with a value  t,  then each connected 

component (using 26-connectivity) is assigned a label i. All 

the voxels corresponding to a connected component have the 

same label, unique to its particular component. The location 

of each component is determined as its center of mass ci.

In  this  work,  the choice  of  intensity threshold  t can be 

heuristically set based on the image characteristics and the 

physical characteristics of the X-ray absorption of the seeds. 

Fig.2  shows  an  example  of  the  connected  components 

detected in the CT image of a patient. We can assume that 

the pelvic bones are the very large components with volumes 

more  100  times bigger  than the real  volume of  the seeds 

(denoted as RV=r2πl). In contrast, noise is composed of tiny 

components,  with volumes less than one third of RV. The 

pelvic bones and noise are removed. The other components 

are  kept  as  the  candidate  seeds  consisting  of  two  types: 

single seeds and union-seeds. The union-seeds are classified 

based on their volume compared to a single seed (denoted 

Vsingle). In practice, up to 4 or 5 seeds can be included in a 

union-seed.  In  this  first  stage,  the  union-seeds  cannot  be 

separated.  In  practice,  the  union-seeds  always  lead  to 

potential inaccuracies in location and orientation estimation. 

Hence,  we  propose  an  extension  of  this  method  with  a 

separation step presented in Section III.C.

B. Orientation estimation using PCA method

Considering  the  set  of  n detected  voxels  for  each 

component,  this  second  stage  aims  at  estimating  the  3D 

orientation of the components.  Numerous approaches have 

been proposed including 3D Hough plane transforms [14] or 

minimal  enclosing  bounding  boxes  [15].  However,  these 

methods  are  not  suited  for  recognition  in  medical  images 

because of their complexity and the high impact of image 

artifacts.  In  this  work,  we  focused  on  a  solution  for  3D 

orientation estimation that would improve both aspects, by 

investigating the PCA method [9]. The PCA method is the 

simplest  and  most  robust  mathematical  procedure  for 

compressing  and  extracting  the  description  of  a  set  of 

correlated  observations by rejecting low variance features. 

Considering p-dimensional feature vectors (in our case, 3D), 

the PCA method will be the projection of this data onto  q 

principal components. The first principal component v1 is the 

feature  space  along  which  projections  have  the  largest 

eigenvalue λ1  of the covariance matrix C of the point cloud. 

This is chosen as the orientation of the object. The second 

principal  component  v2 is  the  direction  which  maximizes 

variance among all directions orthogonal to the first one.

C. Union-seed separation using the clustering method  

Given the set of voxels of each union-seed detected by the 

connected  component  labeling,  we  investigate  an 

unsupervised  partitioning  method  using  the  k-means 

clustering method [10].  We separate the components into k 

single  seeds  by relabeling each  voxel  as  belonging to  the 

cluster  with  the  nearest  mean.  The  number  k of  seeds 

grouped  in  a  union-seed  is  obtained  by  comparing  the 

Fig. 2.   Example of connected component detection in a 3D CT image 

with 190 objects detected using an intensity threshold of 700 (16-bit gray-

level intensity).



component volume V to Vsingle  :  k=V/Vsingle,  rounded to the 

nearest integer value. We first randomly select k points as the 

initial cluster centroids. Then, each voxel is assigned to the 

closest centroid. We iterate this process until all centroids do 

not change any more. 

K-means algorithm shows its computational simplicity in 

many classification applications.  However,  there  are  some 

limitations of k-means because the resulting clusters strongly 

depend on the selection of the initial centroids and on size 

and shape differences of the regions shared by the clusters. 

In practice, the biggest inaccuracies of this classical k-means 

method occur when separating groups of parallel seeds (see 

Section IV).  Hence, we propose an improvement to choose 

the initial cluster of the k-means algorithm by exploiting the 

information given by the PCA. We denote k-means-FS (k-

means-for-seeds),  the method detailed as follows. We first 

estimate two main directions {v1,v2} of the union-seed using 

the PCA method. Then, (k-1) parallel planes are defined by 

the main direction v1  of the union-seed and the distance d = 

λ2/k between  them  (see  Fig.3),  where  λ2  the  second 

eigenvalue of covariance matrix C of the union-seed. These 

parallel  planes  divided  the  union-seed's  space  into  k 

partitions.  Finally,  we  apply  the  k-means  clustering 

algorithm with the initial cluster centers that are the centroids 

of these k partitions.

 In this work, we experimented with both the classical k-

means method with different initial cluster centroids and the 

k-means-FS method. The cylindrical form, corresponding to 

the model of the seed, was reconstructed from the  centroid 

and orientation information for each individual seed detected 

in the union-seed. The sum of the number of voxels common 

to  these  cylindrical  forms  and  the  union-seed  was  then 

calculated for each solution. The solution with the greatest 

sum was chosen as the best one.

IV. RESULTS

A. Experimental setup 

The validation of  the proposed  method was done using 

CT images of radioactive iodine-125 seeds implanted into: 

1) a specially created phantom and 2) data from a real patient 

provided by the Grenoble University Hospital. Eleven seeds 

were  manually  positioned  at  the  surface  of  the  one-slab 

phantom  (dimension  9x9x0.5cm3).  Pairs  of  seeds  were 

placed  in  contact  with each  other  at  different  orientations 

ranging from perpendicular to parallel, the main goal being 

to  evaluate  the  ability to  separate  various types  of  union-

seeds.  The reference  position of the seeds in the phantom 

was  based  on  manual  detection  (Fig.4).  The  patient  data 

consisted  of  72  seeds  implanted  during  a  prostate 

brachytherapy.  The  CT  scanner  image  considered  in  this 

second  experiment  was  taken  one  month  after  the  seed 

implantation (Fig.1). The reference position of the seeds in 

the  prostate  was  manually  reconstructed  using  clinical 

treatment planning software.

Image size(mm) Voxel size(mm) Max intensity Min intensity

(1) 512 x 512 x 61 0.19 x 0.19 x 0.625 7431 -3024

(2) 512 x 512 x 111 0.24 x 0.24 x 0.625 6122 -3024

Table I: The characteristics of the phantom (1) and patient (2) images.

The implementation of the proposed solution was built on 

our open-source framework CamiTK [16] (using C++ with 

VTK and ITK libraries)  on a 3.4GHz Intel  Core i7- 2600 

CPU. More  information about the DICOM images can be 

found in Tab.I. The voxel intensity, in Hounsfield Units, for 

each  type  of  material  in  the  CT  images  were:  phantom 

material  [0,400], patient soft tissues  [0,400], patient bones 

[0,1350] and seeds [500,max].

In order to compare the reference location and orientation 

of seeds to their detected position and orientation, we used 

the Euclidean distance between their centroids c1,c2 and the 

dot product of their orientation vectors v1,v2 (Eq.1). 

      
Δd =√∑i=1

3 (c1i−c2i)
2 Δθ=acos (

v1 . v2

∥v1∥∥v2∥
)

    (1)

where  ||vi||  is  the  magnitude  of  the  vector  vi,  the  unit  of 

distance Δd  is mm, and of Δθ is degrees. 

B. Phantom experiment

Table II shows the details of the orientation difference Δθ 

and  distance  Δd of  detected  seeds  compared  to  their 

reference  positions using the intensity threshold t  =  1400. 

Fig. 4: 3D CT scanner image of the phantom (left) and the distribution of 

the 11 seeds (right): the reference position (respectively detected position) 

of the seeds are painted in green (respectively, red). The seeds located from 

left to right at the bottom are numbered from 1 to 10. The single seed on  

top is numbered 11.

 
(a)                                      (b)                                  (c)

Fig. 3: Example of one CT slice wherein an union-seed is the longest white  

object (a). (b) Illustration of the choice of the initial centroid to improve 

the performance of k-mean method, where the crosses x are the centroids 

of  k  partitions,  c  the  centroid  of  union-seed,  {p1,p2} the  point  used  to 

determine the  k-1 parallel planes w.r.t the distance  d= λ2/k. (c) Obtained 

result.



The best detection was obtained with the single seed no.11 

where  Δθ=0.23o and  Δd=0.02mm.  In  contrast,  the  most 

difficult  case  for  orientation  estimation  was  the  parallel 

union-seeds,  i.e.  the  seeds  are  nearly aligned  in  the  same 

orientation (in our case, seeds no.5 and 6). The greatest error 

in distance occurred with the “T” configuration, where one 

seed was orthogonal to the other (seeds no.1 and 2).  

No. 1 2 3 4 5 6 7 8 9 10 11

Δθo 1.13 0.68 1.10 0.72 2.25 3.02 0.79 0.44 1.35 1.93 0.23

Δd  0.14 0.27 0.08 0.14 0.25 0.06 0.14 0.12 0.14 0.07 0.02

Table  II:  The  details  of  the  orientation  difference  Δθ  and  distance  Δd 

between the detected seeds and their reference positions and orientations 

(t=1400).

The orientation difference Δθ and distance Δd with their 

standard  deviations  are  also  reported  in  Table  III  for  3 

different choices of the intensity threshold spanning through 

the range of seed intensities ([500,1400,7431]). Overall, we 

ran  this  experiment  for  over  20  choices  of  t.  The  mean 

distance was 0.13±0.07mm compared  to 0.3mm of Chng's 

method [4]. The mean orientation was 1.32o±0.9 compared 

to 2o of Chng's method.  The calculation time was 3.15s±0.3 

compared to 9s of Chng's method and more than 30 minutes 

of  manual  determination  of  reference  data.  These 

comparisons  must  be  interpreted  carefully  since  the 

phantoms and computer systems are different. Note also that 

union-seed separation was not considered in Chng's method.

C. Patient experiment 

Table  III  and  Fig.5  show  the  results  of  the  proposed 

method of  seed  localization in the case  of  a  real  prostate 

brachytherapy.  All 72 seeds were detected. The best result 

was  obtained  with  t=1400,  where  there  was  no  false 

detection and the orientation difference and distance to their 

reference values were smallest.  The mean calculation time 

was 10.1s over 20 runs with different intensity thresholds t. It 

is  a  fast  solution  when compared  to  the  half  day  of  the 

manual  detection  used  for  the  determination  of  reference 

data. From these experiment results, we suggest choosing the 

intensity threshold in the interval of [1300,1700].

t Δθo Δd  
(mm) Single seeds Union-seed FD

(1)

600 1.47±0.8 0.14±0.06 1 5 0

1400 1.24±0.8 0.13±0.07 1 5 0

2000 1.50±0.9 0.12±0.06 5 3 0

(2)

750 3.30±1.15 0.88±0.05 64 4 34

1100 2.40±1.10 0.81±0.06 64 4 5

1400 1.95±1.06 0.71±0.06 64 4 0

2100 2.57±1.13 1.07±0.05 66 3 0

Table  III: The orientation  difference  Δθ, distance  Δd with  their  standard 

deviations and the number of single seeds, union-seeds and false detection  

(FD) using the different choices of intensity threshold t for: phantom(1) and 

patient(2). The false detection will be manually deleted in our software.

V. CONCLUSION

In this study, an accurate,  reliable and fast approach for 

location and orientation estimation of brachytherapy seeds in 

CT  images  has  been  presented.  It  also  enables  to 

automatically  and  reliably  separate  union-seeds.  These 

results provide the potential for improving dose calculation 

accuracy and procedure quality assessment. The dose impact 

of such accuracy has still  to be demonstrated and a study 

with this objective in mind has been launched based on a 

series  of  patients.  It  will  be  separately  published.  Future 

work  will  extend  to  an  automatic  choice  of  an  optimal 

intensity threshold and a robust solution of seed localization 

for other prostate image modalities such as ultrasound. 
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