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Abstract

Quantitative modeling in systems biology can be difficult due to the
scarcity of quantitative details about biological phenomenons, especially
at the subcellular scale. An alternative to escape this difficulty is qualita-
tive modeling since it requires few to no quantitative information. Among
the qualitative modeling approaches, the Boolean network formalism is
one of the most popular. However, Boolean models allow variables to
be valued at only true or false, which can appear too simplistic when
modeling biological processes. Consequently, this work proposes a mod-
eling approach derived from Boolean networks where fuzzy operators are
used and where edges are tuned. Fuzzy operators allow variables to be
continuous and then to be more finely valued than with discrete model-
ing approaches, such as Boolean networks, while remaining qualitative.
Moreover, to consider that in a given biological network some interactions
are slower and/or weaker relative to other ones, edge states are computed
in order to modulate in speed and strength the signal they convey. The
proposed formalism is illustrated through its implementation on a tiny
sample of the epidermal growth factor receptor signaling pathway. The
obtained simulations show that continuous results are produced, thus al-
lowing finer analysis, and that modulating the signal conveyed by the
edges allows their tuning according to knowledge about the modeled in-
teractions, thus incorporating more knowledge. The proposed modeling
approach is expected to bring enhancements in the ability of qualitative
models to simulate the dynamics of biological networks while not requiring
quantitative information.
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1 Introduction

Quantitative modeling in systems biology allows scientists to produce formal
models of biological systems and then to implement them on computers [1, 2].
With such computational models, scientists can perform in silico experiments
which have the advantage of being less costly in time and resources than the
traditional wet lab experiments. However, the stumbling block of in silico ap-
proaches is that they are built from the available knowledge: not all is known
about everything. Nevertheless, an impressive and ever increasing amount of
biological knowledge is already available in the scientific literature, databases
and knowledge bases such as KEGG [3] and Reactome [4]. In addition to the
difficulty of integrating an increasing body of knowledge comes the inherent
complexity of biological systems themselves [5–10]: this is where computational
tools can help owing to their integrative power [11–18]. This interplay between
wet lab and computational biology is synergistic rather than competitive [19].
Since wet lab experiments produce factual results, they can be considered as
trustworthy sources of knowledge. Once these factual pieces of knowledge are
obtained, computational tools can help to integrate them and infer new ones.
This computationally obtained knowledge can be subsequently used to direct
further wet lab experiments, thus mutually potentiating the whole.

One of the main difficulties encountered when quantitatively modeling bio-
logical systems with, for example, systems of differential equations [20] is that
the required quantitative parameter values are often not easy to obtain due to
experimental limitations, particularly at the subcellular scale. One solution to
overcome this barrier is qualitative modeling since it requires few to no quanti-
tative information while producing informative predictions [21]. Several quali-
tative modeling approaches already exist and are mostly based on logic [22–25]
such as Boolean networks [26, 27] which are based on Boolean logic [28]. How-
ever, this is at the cost of being qualitative: no quantification is performed.
This does not mean that qualitative modeling is a downgrade of the quantita-
tive one. This means that scientists have different approaches at their disposal,
each with its advantages and disadvantages, depending on the pursued goals
and available resources. If accurate numerical results are expected, quantita-
tive modeling is required. However, if tendencies and global properties are the
main concerns, qualitative modeling is entirely fitting and proved itself through
several works [29–54].

The present work proposes a logic-based modeling aimed at enhancing the
Boolean network formalism. The basic principles remain the same as in Boolean
networks: given a biological network [55–57], entities are modeled by variables
and their interactions by functions allowing their value to be updated at each
iteration of the simulation. However, Boolean operators are replaced by the
operators of fuzzy logic [58, 59], allowing variables to be valued at any real
number between 0 and 1, that is to consider all the possible truth degrees
between the absolutely true and the definitively false. Results obtainable with
fuzzy operators, while remaining qualitative, can be finer than those obtainable
with Boolean operators. In some cases, the ON/OFF nature of Boolean logic
is a relevant choice, as for example with gene regulatory networks where gene
expression level can be approximated by Boolean states [60–63]. However, in
some other cases where things are not necessarily binary, such as in signaling
pathways where enzymes can be more or less active, using fuzzy operators can
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be an interesting choice.
In addition to using fuzzy operators, some additional features are introduced

in order to capture more behavioral aspects of biological networks. These ad-
ditional features concern the edges of the network, which are seen as conveyors
of signals corresponding to influences exerted by entities of the network onto
other ones. This signal, together with its modulation, are taken into account
so that edges can be tuned. To do so, edge states are computed and the signal
they convey can be slowed or weakened. This results in a qualitative modeling
approach intended to bring a fine qualitative quantification of biological network
behaviors.

Talking about a qualitative quantification can appear somewhat contradic-
tory but is common in thinking processes, which are at the basis of any scientific
reasoning. Simple examples of such qualitative quantification could be to state
that an enzyme is more active than another one, or to state that an enzyme is
moderately active: quantification is expressed by perceptions and tendencies.
Indeed, qualitative quantification is expressed by words rather than measure-
ments, hence its qualitative nature, and is characteristic of fuzzy logic [64, 65].

It should be noted that fuzzy logic-based modeling is a promising approach
successfully developed in several works [66–74]. However, this work is not fuzzy
logic-based: there are no fuzzy sets, no fuzzy membership functions, no degrees
of membership and no fuzzy inference systems. Only the operators are taken
from fuzzy logic to replace the Boolean ones, the goal being to enhance the
Boolean network formalism by extending it to a continuous formalism and by
adding edge tuning.

2 Methods

This section introduces some basic principles, namely biological and Boolean
networks, introduces fuzzy operators and then describes how the proposed en-
hancement of Boolean networks is built. An example to illustrate it, together
with its implementation, are also described.

2.1 Basic principles

2.1.1 Biological networks

A biological network is a way to conceptualize a set of interacting biological
entities where entities are represented by nodes and interactions by edges. It
is based on graph theory [75–80], thus bringing formal tools to encode infor-
mation about biological systems, particularly their topology. Moreover, being
graphs, biological networks offer a convenient visualization [81] of the complex
interconnections lying in biological systems. As said Napoleon Bonaparte:

“A good sketch is better than a long speech.”

Several types of biological networks can be encountered, depending on the scale,
the involved entities and their interconnections. For example, at the ecological
scale, food webs are biological networks where nodes represent species and edges
represent trophic relations [82–84]. At the subcellular scale there is, for exam-
ple, gene regulatory networks where nodes represent gene products and edges
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represent gene expression modulations. Whatever the scale or entities, the prin-
ciple remains the same: given a biological system, nodes represent entities and
edges represent interactions between them.

Mathematically, a network can be seen as a digraph G = (V,E) where
V = {v1, . . . , vn} is the set of cardinality n containing exactly all the nodes
vi of the network and where E = {(vi,1, vj,1), . . . , (vi,m, vj,m)} ⊆ V 2 is the set
of cardinality m containing exactly all the edges (vi, vj) of the network. In
practice, nodes represent entities and edges represent binary relations R ⊆ V 2

involving them: vi R vj .

2.1.2 Boolean networks

Boolean networks, pioneered in biology by Kauffman [85], Ostrander [86], Thomas
[87] and Glass [88], are one of the existing qualitative modeling approaches.
While being conceptually simple, Boolean networks are able to predict and re-
produce features of biological systems and then to bring relevant insights [89–93].
This makes them an attractive and efficient approach, especially when the com-
plexity of biological systems renders quantitative approaches unfeasible due to
the amount of quantitative details they require.

As their name indicates, Boolean networks are based on Boolean logic and,
like biological networks, are also based on graph theory: nodes represent Boolean
variables and edges represent interdependencies between them. Boolean net-
works can be classified according to their updating scheme as synchronous or
asynchronous: if all the variables are updated simultaneously at each iteration
of the simulation then the network is synchronous, otherwise it is asynchronous.
While there is only one synchronous updating scheme, different asynchronous
updating schemes exist:

• the random order asynchronous updating scheme where, at each iteration,
an updating order for the variables is randomly selected

• the general asynchronous updating scheme where, at each iteration, a
randomly selected variable is updated

• the deterministic asynchronous updating scheme where a divisor is as-
signed to each variable and then, at each iteration, a variable is updated
if and only if the iteration is a multiple of its divisor

With the exception of deterministic asynchronous Boolean networks, only syn-
chronous Boolean networks are deterministic since, at each iteration, the vari-
ables have only one possible successor. This makes synchronous Boolean net-
works easier to compute than asynchronous ones [94].

Mathematically, a Boolean network is a network where nodes are Boolean
variables xi and where edges (xi, xj) represent the binary is input of relation:
xi is input of xj . Each xi has bi ∈ [[0, n]] inputs xi,1, . . . , xi,bi . The variables
which are not inputs of xi have no direct influence on it. If bi = 0 then xi is
a parameter and does not depend on other variables. At each iteration k ∈
[[k0, kend]] of the simulation, the value xi(k) ∈ {0, 1} of each xi is updated to the
value xi(k + 1) using a Boolean function fi and the values xi,1(k), . . . , xi,bi(k)
of its inputs, as in the following pseudocode:

1 for k ∈ [[k0, kend − 1]] do
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2 x1(k + 1) = f1(x1,1(k), . . . , x1,b1(k))
3 . . .
4 xn(k + 1) = fn(xn,1(k), . . . , xn,bn(k))
5 end for

which can be written in a more concise form:

1 for k ∈ [[k0, kend − 1]] do

2 x(k + 1) = f(x(k))
3 end for

where f = (f1, . . . , fn) is the Boolean transition function and x = (x1, . . . , xn)
is the state vector. In the particular case where k = k0, x(k0) = x0 is the
initial state. If the values of all the xi are updated simultaneously at each k,
as in the above pseudocode, then the network is synchronous, otherwise it is
asynchronous. With synchronous Boolean networks, x(k) has a unique possible
successor x(k + 1): synchronous Boolean networks are deterministic and then
easier to compute than asynchronous ones.

2.1.3 Fuzzy operators

The main difference between Boolean and fuzzy logic is that the former is dis-
crete, that is valued in [[0; 1]] ⊂ N, whereas the latter is continuous, that is
valued in [0; 1] ⊂ R. Fuzzy logic can be seen as a generalization of Boolean
logic, implying that the fuzzy counterparts of the Boolean operators have to
behave like them on [[0; 1]] but have to be defined on [0; 1]. The generalization of
the Boolean AND operator is the t-norm, the generalization of the Boolean OR
operator is the s-norm and the generalization of the Boolean NOT operator is
the complement:

t-norm : [0; 1]2→[0; 1] : (x, y) 7→ t-norm(x, y)

s-norm : [0; 1]2→[0; 1] : (x, y) 7→ s-norm(x, y)

complement : [0; 1] →[0; 1] : x 7→ complement(x)

where x, y ∈ [0; 1]. There exist different mathematical formulations of the
t-norm, s-norm and complement, all fulfilling the rules of Boolean algebra [95]
but defined on [0; 1]. For convenience, both the Boolean and fuzzy operators
can be named AND, OR and NOT , the context specifying which of them is
referred to.

Due to the ability of fuzzy operators to be continuous, variables can take
their value in [0; 1]. Therefore, they can be equal to 1 (true), 0 (false) or all the
other real numbers of [0; 1] (more or less true): all the truth degrees between
true and false are considered. This can be more realistic in a world where
things are not necessarily binary. For example, a Boolean model of a signaling
pathway allows enzymes to be ON or OFF and nothing between. However,
one can expect that an enzyme is allowed to be in an intermediate activity
level, an expectation not implementable with Boolean models but which is with
continuous ones. Whatever the truth degrees represent, using fuzzy operators
enables to consider all the intermediate levels of what is modeled without leaving
the qualitative modeling formalism.
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2.2 The proposed logic-based modeling

First of all, it should be mentioned that a distinction is made between quanti-
tative and qualitative parameters, this distinction residing in what parameters
translate. A quantitative parameter translates a quantification obtained by
experimental measurements whereas a qualitative parameter translates a per-
ception by means of truth degrees. For example, regarding the velocity of a
biochemical reaction, “slow” could be expressed by the truth degree 0.2 whereas
“fast” by 0.8: this is the truth degree of the statement “This biochemical reac-
tion is fast.”. Unlike an experimental quantification which is de facto objective,
a perception is subjective, so the same applies to its associated truth degree.
Incorporating qualitative parameters should not yield the scarcity of parame-
ter values encountered in quantitative modeling since qualitative information is
relatively easy to obtain.

To build the proposed logic-based modeling from Boolean networks, the
Boolean operators AND, OR and NOT have to be replaced by the fuzzy oper-
ators t-norm, s-norm and complement. Furthermore, the initial states xi(k0)
of the xi have to belong to [0; 1]. As a consequence, the value of the xi belongs
to [0; 1]: xi(k) ∈ [0; 1], the fi become functions from [0; 1]n to [0; 1]:

fi : [0; 1]
n → [0; 1] : x 7→ fi(x)

the value of x and x0 belongs to [0; 1]n: x(k),x0 ∈ [0; 1]n and f becomes a
function from [0; 1]n onto itself:

f : [0; 1]n → [0; 1]n : x 7→ f (x)

Finally, some additional features are added in order to capture more behavioral
aspects of biological networks. These features concern the edges of the network
and are presented separately for the sake of clarity before being integrated all
together.

2.2.1 Edge computation

As with node states, edge states are computed. For convenience, edges can be
notated eij instead of (xi, xj). An edge eij is seen as a channel conveying the
signal sent by its source xi to its target xj which uses it to compute its state
thanks to fj. Practically, eij conveys the value xi(k) of xi to xj and then fj
uses it to compute xj(k+1). This is implicitly done in Boolean networks where
xj(k + 1) = fj(. . . , xi(k), . . . ) but, in this work, this is made explicit in order
to modulate the signal conveyed by the edges. Consequently, the fj no longer
directly accept the xi(k) as arguments but accept the eij(k). Since eij conveys
xi(k), its value eij(k) should be xi(k), but this is where additional features are

added. Indeed, a function fedge
ij is attributed to each eij :

eij(k + 1) = fedge
ij (xi(k), eij(k))

It should be noted that, in addition to the value xi(k) of the source xi, f
edge
ij

also takes as argument the value eij(k) of eij itself. This is required for the
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additional feature edge reactivity described below. As mentioned above, the fj
have now to accept the eij(k) instead of the xi(k). For convenience, the fj are
renamed fnode

j :

xj(k + 1) = fnode
j (e(k))

where e = (. . . , eij , . . . ) is the counterpart of x = (. . . , xi, . . . ), namely the state
vector of the edges, its value at the iteration k being e(k) = (. . . , eij(k), . . . ).

Consequently, f becomes fnode = (. . . , fnode
i , . . . ):

x(k + 1) = fnode(e(k))

and its counterpart the transition function of the edges fedge = (. . . , fedge
ij , . . . )

is introduced:

e(k + 1) = f edge(x(k), e(k))

On the basis of the updating scheme of synchronous Boolean networks, the
computation becomes:

1 for k ∈ [[k0, kend − 1]] do

2 . . .
3 eij(k + 1) = fedge

ij (xi(k), eij(k))
4 . . .
5 xi(k + 1) = fnode

i (. . . , eij(k), . . . )
6 . . .
7 end for

which can be written in a more concise form:

1 for k ∈ [[k0, kend − 1]] do

2 e(k + 1) = fedge(x(k), e(k))
3 x(k + 1) = fnode(e(k))
4 end for

2.2.2 Edge reactivity

The additional feature edge reactivity is implemented by a qualitative parameter
pij ∈ [0; 1] attributed to each eij . pij is the portion of the signal conveyed by
eij which is updated at each k, namely the portion of the value eij(k) which is
updated to xi(k):

eij(k + 1) = (1− pij) · eij(k) + pij · xi(k)

The higher pij is, the higher is the portion of eij(k) which is updated: a highly
reactive edge has a pij close to 1 whereas a faintly reactive edge has a pij close
to 0. Biologically, edge reactivity can take into account that some biological
interactions can be slower, or of higher inertia, than other ones. For example,
an edge modeling a gene expression activation of a gene product by a tran-
scription factor should have a lower pij than an edge modeling an activating
phosphorylation of an enzyme by another one. Indeed, gene expression is a
complex mechanism involving several steps and then takes more time to be
accomplished and terminated than a simple phosphorylation.
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2.2.3 Edge weakening

The additional feature edge weakening is implemented by a qualitative param-
eter qij ∈ [0; 1] attributed to each eij . qij is a weakening coefficient applied at
each k to the signal conveyed by eij , that is to xi(k):

eij(k + 1) = qij · xi(k)

The higher qij is, the lower is the weakening of the signal xi(k) conveyed by
eij : a strong edge has a qij close to 1 whereas a weak edge has a qij close
to 0. Biologically, edge weakening can take into account that some biological
interactions can be weaker than other ones. For example, given a receptor, an
edge modeling its activation by a partial agonist should have a lower qij than
an edge modeling its activation by a full agonist.

2.2.4 Combining the all

Edge reactivity and edge weakening are described separately for the sake of
clarity but are both computed at each iteration:

eij(k + 1) = (1− pij) · eij(k) + pij · qij · xi(k)

hence the mathematical formulation of the fedge
ij :

fedge
ij (xi, eij) = (1− pij) · eij + pij · qij · xi

2.3 Implementation

In this work, k is not the time, it only represents the iterations performed dur-
ing a run. Although quantifying time through k is possible, here the goal is to
visualize sequences of events linked by causal connections without time quantifi-
cation. To do so, k0 = 1 and kend = 50: 49 iterations are performed during a run.
Furthermore, the initial state eij(k0) of each eij is assumed to be equal to the
initial state xi(k0) of its source xi: eij(k0) = xi(k0). To illustrate the proposed
logic-based modeling, it is implemented on an example with GNU Octave1. The
code is available on GitHub2 at https://github.com/arnaudporet/kali-sim.

2.3.1 Example

The used example is a tiny sample of the epidermal growth factor receptor
signaling pathway [96] adapted from [24]. It is chosen for its simplicity so that
it can be mentally computed in order to easily judge the produced results. A
digital electronic representation is shown in Figure 1 page 10. Below are the
corresponding Boolean functions where AND, NOT and OR stand for the
Boolean operators:

1http://www.gnu.org/software/octave/
2https://github.com/

https://github.com/arnaudporet/kali-sim
http://www.gnu.org/software/octave/
https://github.com/
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EGF (k+ 1) = input set manually

HRG(k + 1) = input set manually

EGFR(k + 1) = OR(EGF (k), HRG(k))

PI3K(k+ 1) = AND(EGFR(k), NOT (ERK(k)))

AKT (k + 1) = PI3K(k)

Raf(k + 1) = OR(EGFR(k), AKT (k))

ERK(k + 1) = Raf(k)

Figure 1: Digital electronic representation of the example. Nodes are rectangles whereas
logical gates are ellipses. This digraph should be read from left to right. For example, the
node PI3K is an input of the node AKT and the node ERK, due to a feedback loop, is an
input of the node PI3K. Logical gates are not nodes and, as such, edges only pass through
them. For example, the edge (ERK,PI3K) passes through a NOT and AND gate whereas
the edge (Raf, ERK) does not pass through any logical gate.

By applying the above-described methodology, below are the obtained fedge
ij

and fnode
i where AND, NOT and OR stand for the fuzzy operators:

(EGF,EGFR)(k + 1) = (1 − pEGF,EGFR) · (EGF,EGFR)(k)

+pEGF,EGFR · qEGF,EGFR ·EGF (k)

(HRG,EGFR)(k + 1) = (1 − pHRG,EGFR) · (HRG, EGFR)(k)

+pHRG,EGFR · qHRG,EGFR ·HRG(k)

(EGFR,PI3K)(k + 1) = (1 − pEGFR,PI3K) · (EGFR,PI3K)(k)

+pEGFR,PI3K · qEGFR,PI3K · EGFR(k)

(ERK,PI3K)(k + 1) = (1 − pERK,PI3K) · (ERK,PI3K)(k)

+pERK,PI3K · qERK,PI3K ·ERK(k)

(PI3K,AKT )(k + 1) = (1 − pPI3K,AKT ) · (PI3K,AKT )(k)

+pPI3K,AKT · qPI3K,AKT · PI3K(k)

(EGFR,Raf)(k + 1) = (1 − pEGFR,Raf ) · (EGFR,Raf)(k)

+pEGFR,Raf · qEGFR,Raf ·EGFR(k)

(AKT,Raf)(k + 1) = (1 − pAKT,Raf ) · (AKT,Raf)(k)

+pAKT,Raf · qAKT,Raf · AKT (k)

(Raf, ERK)(k + 1) = (1 − pRaf,ERK) · (Raf, ERK)(k)

+pRaf,ERK · qRaf,ERK · Raf(k)
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EGF (k + 1) = input set manually

HRG(k + 1) = input set manually

EGFR(k + 1) = OR((EGF,EGFR)(k), (HRG, EGFR)(k))

PI3K(k+ 1) = AND((EGFR, PI3K)(k), NOT ((ERK,PI3K)(k)))

AKT (k + 1) = (PI3K,AKT )(k)

Raf(k + 1) = OR((EGFR,Raf)(k), (AKT,Raf)(k))

ERK(k + 1) = (Raf, ERK)(k)

It should be noted that fnode
EGF and fnode

HRG do not accept any eij(k) as argument.
This is because they are associated to the two inputs EGF and HRG of the
network and are consequently set manually.

2.3.2 Fuzzy operators

As mentioned above, there exist different mathematical formulations of the fuzzy
operators, all fulfilling the rules of Boolean algebra but defined on [0; 1]. In this
work, the algebraic formulation is used:

AND(x, y) = x · y

OR(x, y) = x+ y − x · y

NOT (x) = 1− x

which is one of the most simple and convenient.

2.3.3 Additional features

Since pij ∈ [0; 1], its value can be set to any real number of [0; 1]. However,
pij is a qualitative parameter and rather than requiring to precisely valuate it
as in quantitative models, its value is randomly picked in specified intervals of
[0; 1] from a uniform distribution. By the way, this random selection introduces
a little of a rudimentary stochasticity, although introducing randomness is not
the purpose of this work. To do so, [0; 1] is split into intervals of truth degrees
reflecting various edge reactivities:

instantaneous pij = 1
faster pij ∈ [0.75; 1]
fast pij ∈ [0.5; 0.75]
slow pij ∈ [0.25; 0.5]
slower pij ∈ [0; 0.25]
down pij = 0

plus the entire interval [0; 1] in case of an undetermined edge reactivity. For
example, pij = fast means that the value of pij is randomly picked in [0.5; 0.75]
from a uniform distribution. This random selection occurs before each run and,
once selected, the value of pij remains the same during the run. To better
approach the behavior of the modeled biological network, replicates are made:
r runs are performed and the results are superposed. In this work, r = 10.
qij , xi(k0) ∈ [0; 1] are subjected to the same replication with the following splits
of [0; 1]:
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strong qij = 1
weak qij ∈ [0.75; 1]
weaker qij ∈ [0.5; 0.75]
faint qij ∈ [0.25; 0.5]
fainter qij ∈ [0; 0.25]
down qij = 0

and

full xi(k0) = 1
much more xi(k0) ∈ [0.75; 1]
much xi(k0) ∈ [0.5; 0.75]
few xi(k0) ∈ [0.25; 0.5]
fewer xi(k0) ∈ [0; 0.25]
none xi(k0) = 0

plus the entire interval [0; 1] in case of an undetermined edge weakening or initial
state.

3 Results

In this section, results obtained with the example through five simulations are
presented. Although the obtained curves are continuous due to the use of fuzzy
operators, they are not quantitative. As qualitative results, rather than looking
for numerical values, one can say, for example, that PI3K is totally inhibited or
that ERK is partly activated, two simple examples of qualitative quantification
expressed by words and perceptions.

3.1 Simulation 1

EGF and HRG are the two inputs of the example and, since both can activate
EGFR, one is sufficient to initiate the signaling cascade. It is assumed that, at
the resting state, both the inputs are down: ∀k, EGF (k) = HRG(k) = none.
However, at kEGF = kend/10, EGF is activated: ∀k > kEGF , EGF (k) = full.
Therefore, fnode

EGF and fnode
HRG become:

EGF (k + 1) =

{

full if k ≥ kEGF

none if k < kEGF

HRG(k + 1) = none

The network being assumed to be at the resting state, x0 = (. . . , none, . . . ).
The pij are set to fast and the qij to strong. The corresponding results are
shown in Figure 2 page 13. As expected, before EGF activation, the network
is at rest: the signaling cascade is not active. However, once EGF activated,
the signaling cascade activates. This ultimately activates ERK, hence the sub-
sequent inactivation of PI3K despite sustained EGFR activity. Since AKT is
activated by PI3K, it also deactivates.
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3.2 Simulation 2

In addition to the inputs described in simulation 1, a perturbation is intro-
duced. It consists in disabling the inhibitory effect of ERK on PI3K, that is
in disabling the edge (ERK,PI3K). It points out an advantage of comput-
ing the edge states: disturbing a node disturbs all its effects while selectively
disturbing the edges prevents this. To implement this perturbation, the param-
eter values are as in simulation 1, except qERK,PI3K which is set to weaker.
With qERK,PI3K = weaker, the signal conveyed by the edge (ERK,PI3K) is
weakened throughout this simulation. The corresponding results are shown in
Figure 3 page 14. As expected, weakening the edge (ERK,PI3K) results in a
weakened inhibition of PI3K by ERK: ERK does not totally inhibit PI3K.

3.3 Simulation 3

A perturbation is again applied to the edge (ERK,PI3K). However, in this
simulation the perturbation concerns its reactivity, namely pERK,PI3K , which
is set to slower. The other parameter values are as in simulation 1. With
pERK,PI3K = slower, the signal conveyed by the edge (ERK,PI3K) is slowed
throughout this simulation. The corresponding results are shown in Figure 4
page 14. As expected, slowing the edge (ERK,PI3K) results in a slowed in-
hibition of PI3K by ERK: although ERK totally inhibits PI3K, it does it
slower than in simulation 1 where pERK,PI3K = fast.
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Figure 2: Activation of the signaling cascade by EGF and subsequent inhibition of PI3K
by ERK.
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Figure 3: Weakening the inhibitory effect of ERK on PI3K.
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Figure 4: Slowing the inhibitory effect of ERK on PI3K.
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3.4 Simulation 4

In this simulation, no perturbations are applied and the parameter values are
as in simulation 1. However, rather than totally activating EGF , it is set to
few. Therefore, fnode

EGF and fnode
HRG become:

EGF (k + 1) =

{

few if k ≥ kEGF

none if k < kEGF

HRG(k + 1) = none

The corresponding results are shown in Figure 5 page 15. As expected, the
activation of EGF is not total and the same applies to the entire signaling
cascade. For example, PI3K does not totally activate since EGFR does not.
Furthermore, PI3K is not totally inhibited by ERK since ERK itself does not
totally activate.
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Figure 5: Consequences on the signaling cascade of a partial activation of EGF .

3.5 Simulation 5

In this simulation, both EGF and HRG are set to few. Therefore, fnode
EGF and

fnode
HRG become:
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EGF (k + 1) =

{

few if k ≥ kEGF

none if k < kEGF

HRG(k + 1) =

{

few if k ≥ kHRG

none if k < kHRG

with kHRG = kEGF , the other parameter values being as in simulation 1. The
corresponding results are shown in Figure 6 page 16. It points out that the
effect of EGF and HRG on EGFR is cumulative due to an OR gate. Indeed,
although both EGF and HRG are set to few, cumulating their effect on EGFR
makes the signaling cascade more active than in simulation 4 where only EGF
is set to few.
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Figure 6: Cumulative effect of partly activated EGF and HRG on the signaling cascade.

4 Conclusion

Owing to the use of fuzzy operators, the simulations performed with the example
show that the proposed logic-based modeling is able to produce continuous
results while remaining qualitative. This allows qualitative variables to be more
finely valued than with discrete approaches, such as Boolean networks, by taking
into account all the possible levels of what is modeled. Moreover, thanks to the
additional features edge reactivity and edge weakening attributed to each edge of
the network, it is possible to tune in speed and strength the interactions taking
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place in the modeled biological network according to knowledge about them.
This is expected to take into account that some interactions can be weaker or
slower relative to other ones and therefore to be more realistic in their qualitative
modeling.

These enhancements should enable to incorporate more knowledge, notably
about biological processes, and to obtain more accurate results. In exchange,
they require the parameters controlling how the signal flows in the edges to be
valued. These parameters are intended to be qualitative, that is parameters
whose the valuation is knowledge-based, by opposition to quantitative param-
eters whose the valuation is data-based. In other words, qualitative parame-
ters translate qualitative information, an information which should be easier
to obtain than the quantitative one. Indeed, quantitative models require their
parameters to be valued by data obtained through experimental measurements.
However, due to experimental limitations, such measurements can be challeng-
ing. Qualitative information is easier to obtain but at the cost of being quali-
tative, as its name indicates. This is the well-known trade-off between what is
wished and what is obtainable.

A little of stochasticity on the two additional features edge reactivity and edge
weakening is also realized through the random selection of their value in speci-
fied intervals followed by replication and superposition of the produced results.
This stochasticity, although very rudimentary, constitutes a line of improvement
which should yield more realism since events taking place in biological systems
are themselves subjected to stochasticity [97–101]. Another improvement could
be to apply information theory [102] on the signal conveyed by the edges, as
previously introduced for cell signaling [103–106]. This improvement should
enable to better model how the information flows in a biological network and
particularly, starting from its sender, how the information is altered by noise
before reaching its receiver. Such alterations of the information could have sig-
nificant consequences on the functionalities of a biological network, such as an
inappropriate response to an input. Altogether, starting from Boolean networks
and still founded on their basic principles, this work is expected to bring a fine
qualitative quantification of the behavior of biological networks.

It should be noted that a qualitative quantification remains qualitative and
should not be confused with a true quantification which involves experimental
measurements, values and units [107]. The qualitative quantification proposed
in this work has the goal of bringing enhancements in the ability of qualita-
tive models to simulate the behavior of biological networks. One of the main
goals, and advantages, of qualitative modeling remains to propose an alterna-
tive to, but not a replacement of, quantitative approaches when the frequently
encountered scarcity in quantitative information makes the work unreasonably
or unnecessarily difficult.

It is also possible to use qualitative and quantitative approaches in combina-
tion. For example, qualitative modeling can be used to explore global proper-
ties and then quantitative modeling can be used to focus on particular aspects.
Knowing the difficulty of quantitative modeling in systems biology, this two-
steps approach could make modeling more efficient by highlighting where to
deploy quantitative approaches. Qualitative and quantitative approaches can
also be merged into hybrid models [108–111] which attempt to exploit the ad-
vantages of these two approaches in one. Hybrid models, or semi-quantitative
models, can be good compromises between the convenience of qualitative mod-



4 CONCLUSION 18

eling and the accuracy of quantitative modeling.
Finally, continuous dynamical systems are mostly modeled by differential

equations for which advanced solvers are available, such as LSODE (the Liver-
more Solver for Ordinary Differential Equations) [112]. This work introduces
continuous dynamical systems made of logical equations, for which advanced
solvers do not seem to exist. However, mathematically speaking, it is likely
that these continuous logical equations are differential equations thought and
built in a different way. Consequently, it would be possible to mathematically
express them as differential equations and then to use available computational
tools aimed at analyzing continuous dynamical systems.
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