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Abstract

Quantitative modeling in biology can be difficult due to parameter

value scarcity. An alternative is qualitative modeling since it requires few

to no parameters. This article presents a qualitative modeling derived

from boolean networks where fuzzy logic is used and where edges can

be tuned. Fuzzy logic being continuous, its variables can be finely valued

while remaining qualitative. To consider that some interactions are slower

or weaker than other ones, edge states are computed to modulate in speed

and strength the signal they convey. The proposed formalism is illustrated

through its implementation on an example network. Simulations show

that continuous results are produced, thus allowing fine analysis, and

that modulating the signal conveyed by the edges allows their tuning

according to knowledge about the interaction they model. The present

work is expected to bring enhancements in the ability of qualitative models

to simulate biological networks.
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1 Introduction

Quantitative modeling in systems biology allows scientists to produce formal
models of biological systems and then to implement them on computers [1, 2].
With such computational models, scientists can perform in silico experiments
which have the advantage of being less costly in time and resources than the
traditional in vitro and in vivo ones. However, the stumbling block of in silico
experiments is that their validity depends on the knowledge used to build the
model: not all is known about everything.

Nevertheless, an impressive and ever increasing amount of biological knowl-
edge is already available in scientific literature, databases and knowledge bases
such as, to name a few, DrugBank [3], KEGG [4], PharmGKB [5], Reactome [6]
and TTD [7]. In addition to the complexity of integrating an increasing body of
knowledge comes the inherent complexity of biological systems themselves [8]:
this is where computational tools can help [9].

The interplay between traditional and computational biology is synergistic
rather than competing [10]. Since in vitro and in vivo experiments produce
rather factual results, they are relatively trustworthy sources of knowledge.
Once these factual pieces of knowledge are obtained, computational models can
help to integrate them and infer new knowledge through in silico experiments.
This computationally obtained knowledge can be subsequently used to direct
further in vitro or in vivo experiments, hence mutually potentiating the whole.

One of the main difficulties encountered when quantitatively modeling bio-
logical systems with, for example, systems of differential equations [11], is that
the required parameter values are not straightforward to obtain. One solution
to overcome this barrier is qualitative modeling since it requires few to no pa-
rameters [12]. Several qualitative modelings already exist and are mostly based
on logic [13, 14] such as boolean networks [15, 16] which are based on boolean
logic [17]. However, this is at the cost of being qualitative: no quantification is
performed. This does not mean that qualitative modeling is a downgrade of the
quantitative one. This means that scientists have different approaches at their
disposal, each with its advantages and disadvantages, depending on the pur-
sued goals and available resources. If accurate numerical results are expected,
quantitative modeling is required. However, if tendencies and global properties
are the main concerns, qualitative modeling is entirely fitting and proved itself
through several work [18–29] to cite a few.

The present work starts from boolean networks, pioneered in biology by
Kauffman [30], Glass [31], Ostrander [32] and Thomas [33]. However, boolean
logic is replaced with fuzzy logic [34,35]. The basic principles remain the same:
given a biological network [36,37], entities are modeled by variables and interac-
tions by functions of these variables allowing their value to be updated at each
iteration of the simulation.

Fuzzy logic is continuous and allows its variables to be valued at any real
between 0 and 1, that is to consider all the possible truth degrees between
the absolutely true and the definitively false. This is the basis of possibility
theory [38] which considers this continuum of truth degrees as possibilities. The
results provided by fuzzy logic, while remaining qualitative, can be finer than
those provided by the boolean one where variables can only be valued at 0
or 1, namely at true or false. In some cases, the ON/OFF nature of boolean
logic is a relevant choice as, for example, with gene regulatory networks where
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gene expression level can be approximated by boolean states [39]. However, in
some other cases where things are not necessarily binary, such as in signaling
pathways where enzymes can be more or less active, fuzzy logic can be an
interesting choice.

In addition to the use of fuzzy logic to qualitatively model biological net-
works, some additional features are added in order to capture more aspects of
their possible behaviors. These additional features concern the edges of the net-
work, that is the interactions taking place between the entities composing it. In
this case, edges are seen as conveyors of signals corresponding to the influences
exerted by entities of the network onto other ones. This signal, together with its
modulation, are taken into account: edges can be tuned. To do so, edge states
are computed, in addition to node states, and the signal they convey can be
slowed or weakened. The result is a logic-based qualitative modeling intended
to bring a fine qualitative quantification of biological network behaviors.

Talking about qualitative quantification can appear somewhat contradictory
but is common in thinking processes which are, needless to say, at the basis
of any scientific reasoning. Simple examples of such qualitative quantification
could be to state that an enzyme is more active than another one, or to state
that this enzyme is active is moderately true: quantification is expressed but
only with perceptions and tendencies. Indeed, qualitative quantification is ex-
pressed by words rather than measurements, hence its qualitative nature, and
is characteristic of fuzzy logic [40, 41].

2 Methods

This section briefly introduces some basic principles and then describes how
the proposed logic-based modeling is built. An example network to illustrate it
together with its implementation are also described.

2.1 Basic principles

The proposed logic-based modeling is introduced starting from boolean net-
works. This section briefly introduces i) biological networks, what is modeled,
ii) boolean networks, the starting point and iii) fuzzy logic, an added value.

2.1.1 Biological networks

A network can be seen as a graph G = (V,E) where V = {v1, . . . , vn} is the
set of size n containing exactly all the nodes vi of the network and where E =
{(vi,1, vj,1), . . . , (vi,m, vj,m)} ⊆ V 2 is the set of size m containing exactly all the
edges (vi, vj) of the network [42, 43]. In practice, nodes represent things and
edges represent binary relations R ⊆ V 2 involving these things: vi R vj . For
example, in gene regulatory networks, nodes represent gene products and edges
represent gene expression modulations.

2.1.2 Boolean networks

A boolean network is a network where nodes are boolean variables xi and where
edges (xi, xj) represent the binary is input of relation: xi is input of xj . Each
xi has bi ∈ [[0, n]] inputs xi,1, . . . , xi,bi . The variables which are not input of xi



2 METHODS 5

have no direct influence on it. In the case where bi = 0, xi is a parameter, or an
input, and does not depend on other variables. At each iteration k ∈ [[k0, kend]]
of the simulation, the value xi(k) ∈ {0, 1} of each xi is updated to the value
xi(k + 1) thanks to a boolean function fi and to the values xi,1(k), . . . , xi,bi(k)
of its inputs:

1 for k ∈ [[k0, kend − 1]] do

2 x1(k + 1) = f1(x1,1(k), . . . , x1,b1(k))
3 . . .
4 xn(k + 1) = fn(xn,1(k), . . . , xn,bn(k))
5 end for

which can be written in a more concise form:

1 for k ∈ [[k0, kend − 1]] do

2 x(k + 1) = f(x(k))
3 end for

where f = (f1, . . . , fn) is the boolean transition function and x = (x1, . . . , xn)
is the state vector. In the particular case where k = k0, x(k0) = x0 is the initial
state. If the values of all the xi are updated simultaneously at each k then the
network is synchronous, otherwise it is asynchronous.

2.1.3 Fuzzy logic

The main difference between boolean and fuzzy logic is that the first one is
discrete, that is valued in [[0; 1]] ⊂ N, whereas the second one is continuous, that
is valued in [0; 1] ⊂ R. Fuzzy logic can be seen as an extension, a generalization,
of the boolean one. To do so, the fuzzy counterparts of the boolean operators
have to behave like them on [[0; 1]] but have to be defined on [0; 1]. With fuzzy
logic, the generalization of the boolean AND operator is the t-norm, the gen-
eralization of the boolean OR operator is the s-norm and the generalization of
the boolean NOT operator is the complement:

t-norm : [0; 1]2 → [0; 1] : (x, y) 7→ t-norm(x, y)

s-norm : [0; 1]2 → [0; 1] : (x, y) 7→ s-norm(x, y)

complement : [0; 1] → [0; 1] : x 7→ complement(x)

where x, y ∈ [0; 1]. There exist different mathematical formulations of the
t-norm, s-norm and complement, all fulfilling the rules of boolean algebra [44]
but defined on [0; 1]. For convenience, both the boolean and fuzzy operators
can be named AND, OR and NOT , the context specifying which of them is
referred to.

Due to the ability of the variables of fuzzy logic to take their value in [0; 1]
they can be equal to 1 (true), 0 (false) or all the other reals of [0; 1] (more or
less true): all the truth degrees between true and false are considered. This
could be more realistic in a world where things are not necessarily binary. For
example, a boolean model of a signaling pathway allows enzymes to be ON or
OFF and nothing between. However, one can expect that an enzyme is allowed
to be in an intermediate activity level, an expectation not implementable with
boolean models but which is with fuzzy ones.
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Whatever truth degrees represent, dealing with fuzzy logic enables to con-
sider all the intermediate levels/states of what is modeled without leaving the
qualitative framework.

2.2 The proposed logic-based modeling

To build the proposed logic-based modeling from boolean networks, the boolean
operators AND, OR and NOT have to be replaced with the fuzzy operators
t-norm, s-norm and complement. Furthermore, the initial states xi(k0) of the
xi have to belong to [0; 1]. As a consequence, the value of the xi belongs to
[0; 1]: xi(k) ∈ [0; 1], the fi become functions from [0; 1]n to [0; 1]:

fi : [0; 1]
n → [0; 1] : x 7→ fi(x)

the value of x and x0 belongs to [0; 1]n: x(k),x0 ∈ [0; 1]n and f becomes a
function from [0; 1]n on itself:

f : [0; 1]n → [0; 1]n : x 7→ f (x)

Algorithmically, the computation remains the same as the one of boolean net-
works.

2.2.1 Additional features

In the present work, some additional features are added in order to capture
more aspects of biological network behaviors. These features concern the edges
and are presented separately for the sake of clarity before being integrated all
together.

Edge computation In the same way as for node states, edge states are com-
puted. For convenience, edges can be notated eij instead of (xi, xj). An edge
eij is seen as a channel conveying the signal sent by its source xi to its target
xj which uses it to compute its state thanks to fj. Practically, eij conveys the
value xi(k) of xi to xj and then fj uses it to compute xj(k+1). This is implic-
itly done in boolean networks where xj(k + 1) = fj(. . . , xi(k), . . . ) but, in the
present work, this is made explicit in order to modulate the signal conveyed by
the edges.

As a consequence, the fj no longer directly accept the xi(k) as arguments but
accept the eij(k). Since eij conveys xi(k), its value eij(k) should be xi(k) but
this is where additional features are added in order to tune the signal conveyed
by the edges. Indeed, a function fedge

ij is attributed to each eij :

eij(k + 1) = fedge
ij (xi(k), eij(k))

It should be noted that, in addition to the value xi(k) of the source xi, f
edge
ij also

accepts the value eij(k) of eij itself as argument to compute its state eij(k+1)
at the next iteration. This is required for the additional feature edge reactivity
described below.
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As mentioned above, the fj have now to accept the eij(k) instead of the
xi(k). For convenience, the fj are renamed fnode

j :

xj(k + 1) = fnode
j (e(k))

where e = (. . . , eij , . . . ) is the counterpart of x = (. . . , xi, . . . ), namely the state
vector of the edges, its value at iteration k being e(k) = (. . . , eij(k), . . . ). As a
consequence, f becomes fnode = (. . . , fnode

i , . . . ):

x(k + 1) = fnode(e(k))

and its counterpart the transition function of the edges fedge = (. . . , fedge
ij , . . . )

is introduced:

e(k + 1) = f edge(x(k), e(k))

On the basis of the boolean network computation described above, the compu-
tation becomes:

1 for k ∈ [[k0, kend − 1]] do

2 . . .
3 eij(k + 1) = fedge

ij (xi(k), eij(k))
4 . . .
5 xi(k + 1) = fnode

i (. . . , eij(k), . . . )
6 . . .
7 end for

which can be written in a more concise form:

1 for k ∈ [[k0, kend − 1]] do

2 e(k + 1) = fedge(x(k), e(k))
3 x(k + 1) = fnode(e(k))
4 end for

Edge reactivity The additional feature edge reactivity is implemented by a
parameter pij ∈ [0; 1] attributed to each eij . pij is the portion of the signal
conveyed by eij which is updated at each k, namely the portion of the value
eij(k) which is updated to xi(k):

eij(k + 1) = (1− pij) · eij(k) + pij · xi(k)

The higher pij is, the higher is the portion of eij(k) which is updated: a high
reactive edge has a pij close to 1 while a low reactive edge has a pij close to 0.

Biologically, edge reactivity can model the fact that some biological interac-
tions can be slower, or of higher inertia, than other ones. For example, an edge
representing a gene expression activation of a gene product by a transcription
factor should have a lower pij than an edge representing an activating phospho-
rylation of an enzyme by another enzyme. Indeed, gene expression is a more
complex mechanism than an activating phosphorylation and then takes more
time to be accomplished.
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Edge weakening The additional feature edge weakening is implemented by
a parameter qij ∈ [0; 1] attributed to each eij . qij is a weakening coefficient
applied at each k to the signal conveyed by eij , that is to xi(k):

eij(k + 1) = qij · xi(k)

The higher qij is, the lower the signal xi(k) conveyed by eij is weakened: a
strong edge has a qij close to 1 while a weak edge has a qij close to 0.

Biologically, edge weakening can model the fact that some biological inter-
actions can be weaker than other ones. For example, an edge representing an
activation of a receptor by a partial agonist should have a lower qij than an
edge representing an activation of a receptor by a full agonist.

Combining the all Edge reactivity and edge weakening are described sepa-
rately for the sake of clarity but are both computed at each iteration:

eij(k + 1) = (1− pij) · eij(k) + pij · qij · xi(k)

hence the mathematical formulation of the fedge
ij :

fedge
ij (xi, eij) = (1− pij) · eij + pij · qij · xi

2.3 Implementation

To illustrate the proposed logic-based modeling at work, it is implemented on
an example network with GNU Octave1. The code is available on GitHub2 at
https://github.com/arnaudporet/kali-sim under a BSD 3-Clause License3.

It should be noted that, in the present work, k is not the time, it only repre-
sents the iterations performed during a run. Although quantifying time through
k is possible, here the goal is simply to visualize sequences of events linked by
causal connections without true time quantification, a sort of qualitative time.
To do so, k0 = 1 and kend = 50: 50 iterations are performed during a run.
Furthermore, the initial state eij(k0) of each eij is assumed to be equal to the
initial state xi(k0) of its source xi: eij(k0) = xi(k0).

2.3.1 Example network

The example network is a tiny sample of the epidermal growth factor receptor
signaling pathway [45] adapted from [13]. A digital electronic like representation
of it is shown in figure 1 page 9. This example network is chosen for its simplicity:
simple enough to be mentally computed in order to easily judge the produced
results. The boolean equations of the example network plus the corresponding
fedge
ij and fnode

i are listed in annexes page 16.

1https://www.gnu.org/software/octave/
2https://github.com/
3https://raw.githubusercontent.com/arnaudporet/kali-sim/master/BSD_3-Clause

https://github.com/arnaudporet/kali-sim
https://www.gnu.org/software/octave/
https://github.com/
https://raw.githubusercontent.com/arnaudporet/kali-sim/master/BSD_3-Clause
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Figure 1: Digital electronic like representation of the example network. Nodes are rectangles

whereas logical gates are ellipses. The graph should be read from left to right. For example,

the node PI3K is an input of the node AKT and the node ERK, due to a feedback loop, is

an input of the node PI3K. Logical gates are not nodes: as such, edges only and eventually

pass through them. For example, the edge (ERK,PI3K) passes through a NOT gate then

an AND gate whereas the edge (Raf, ERK) does not pass through any logical gate.

2.3.2 Fuzzy operators

As mentioned above, there exist different mathematical formulations of the fuzzy
operators, all fulfilling the rules of boolean algebra but defined on [0; 1]. In the
present work, the algebraic formulation is used:

AND(x, y) = x · y

OR(x, y) = x+ y − x · y

NOT (x) = 1− x

which is one of the most simple and convenient mathematical formulations of
the fuzzy operators.

2.3.3 Additional features

pij ∈ [0; 1]: its value can be set to any infinitely accurate real of [0; 1]. But pij
is a parameter belonging to qualitative modeling, particularly suitable to es-
cape parameter value scarcity frequently encountered in biological quantitative
modeling. Rather than requiring to precisely valuate pij as with quantitative
modeling, its value is randomly picked in specified intervals of [0; 1] along a
uniform distribution introducing, at the same time, a little of a rudimentary
stochasticity. To do so, [0; 1] is split into intervals reflecting possible edge reac-
tivities:

instantaneous pij = 1
faster pij ∈ [0.75; 1]

fast pij ∈ [0.5; 0.75]
slow pij ∈ [0.25; 0.5]

slower pij ∈ [0; 0.25]
down pij = 0

plus the entire interval [0; 1] in case of an undetermined edge reactivity. For
example, pij = fast means that the value of pij is randomly picked in [0.5; 0.75]
along a uniform distribution. Of course, one can split [0; 1] in a different way.

This random selection occurs before each run and, once selected, the value
of pij remains the same during the run. To better approach the behavior of the
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modeled biological network, replicates are made: r ∈ N
∗ runs are performed

and the results are superposed. In the present work, r = 10.
qij , xi(k0) ∈ [0; 1] are subjected to the same replication with the following

splits of [0; 1]:

strong qij = 1
weak qij ∈ [0.75; 1]

weaker qij ∈ [0.5; 0.75]
faint qij ∈ [0.25; 0.5]

fainter qij ∈ [0; 0.25]
down qij = 0

and

full xi(k0) = 1
much more xi(k0) ∈ [0.75; 1]

much xi(k0) ∈ [0.5; 0.75]
few xi(k0) ∈ [0.25; 0.5]

fewer xi(k0) ∈ [0; 0.25]
none xi(k0) = 0

plus the entire interval [0; 1] in case of an undetermined edge weakening/initial
state. Again, one can split [0; 1] in a different way.

3 Results

This section presents results produced with the implementation of the example
network through five simulations. Although the obtained curves are continuous
due to the use of fuzzy logic, they are not quantitative. As qualitative results,
rather than looking for numerical values, one can say, for example, that PI3K
is totally inhibited, or that ERK is partly activated, two simple examples of
qualitative quantification expressed by words and perceptions.

3.1 Simulation 1

EGF and HRG are the two inputs of the example network and, since both can
activate EGFR, one is sufficient to initiate the signaling cascade. It is assumed
that, at the resting state, both the inputs are down: ∀k, EGF (k) = HRG(k) =
none. However, at kEGF = kend/10, EGF is activated: ∀k > kEGF , EGF (k) =
full. Therefore, fnode

EGF and fnode
HRG become:

EGF (k + 1) =

{

full if k ≥ kEGF

none if k < kEGF

HRG(k + 1) = none

The network is assumed to be at the resting state: x0 = (. . . , none, . . . ). The pij
are set to fast and the qij are set to strong. Results are shown in figure 2 page
11. As expected, before EGF activation, the network is at rest: the signaling
cascade is not active. However, once EGF activated, the signaling cascade
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Figure 2: Activation of the signaling cascade by EGF and subsequent inhibition of PI3K
by ERK.

activates. This ultimately activates ERK, hence the subsequent inactivation of
PI3K despite sustained EGFR activity. Since AKT is activated by PI3K, it
also deactivates.

3.2 Simulation 2

In addition to the inputs, a perturbation is applied to the network. It consists
in disabling the inhibitory effect of ERK on PI3K, that is in disabling the edge
(ERK,PI3K). It points out an advantage of computing edge states: disturbing
a node disturbs all its effects in the network while selectively disturbing edges
prevents it.

Parameter values are the same as in simulation 1 except qERK,PI3K which
is set to weaker. With qERK,PI3K = weaker the signal conveyed by the edge
(ERK,PI3K) is weakened throughout this simulation. Results are shown in
figure 3 page 12. As expected, weakening the edge (ERK,PI3K) results in a
weakened inhibition of PI3K by ERK: ERK does not totally inhibit PI3K.

3.3 Simulation 3

A perturbation is again applied to the edge (ERK,PI3K). However, in this
simulation, the perturbation concerns its reactivity, namely pERK,PI3K , which
is set to slower. The other parameter values remain the same as in simulation
1. With pERK,PI3K = slower the signal conveyed by the edge (ERK,PI3K)
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Figure 3: Weakening the inhibitory effect of ERK on PI3K.

is slowed throughout this simulation. Results are shown in figure 4 page 13.
As expected, slowing the edge (ERK,PI3K) results in a slowed inhibition of
PI3K by ERK: although ERK totally inhibits PI3K, it does it slower than
in simulation 1 where pERK,PI3K = fast.

3.4 Simulation 4

In this simulation, no perturbations are applied and parameter values are the
same as in simulation 1. However, rather than totally activating EGF , it is set
to few. Therefore, fnode

EGF and fnode
HRG become:

EGF (k + 1) =

{

few if k ≥ kEGF

none if k < kEGF

HRG(k + 1) = none

Results are shown in figure 5 page 13. As expected, activation of EGF is not
total and therefore the same applies to the signaling cascade. For example,
PI3K does not totally activate since EGFR does not. Furthermore, PI3K is
not totally inhibited by ERK since ERK itself does not totally activate.

3.5 Simulation 5

In this simulation both EGF and HRG are set to few. Therefore, fnode
EGF and

fnode
HRG become:
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Figure 4: Slowing the inhibitory effect of ERK on PI3K.
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Figure 5: Consequences on the signaling cascade of a partial activation of EGF .
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Figure 6: Cumulative effect of partly activated EGF and HRG on the signaling cascade.

EGF (k + 1) =

{

few if k ≥ kEGF

none if k < kEGF

HRG(k + 1) =

{

few if k ≥ kHRG

none if k < kHRG

with kHRG = kEGF , the other parameter values remaining the same as in sim-
ulation 1. Results are shown in figure 6 page 14. It points out that the effect of
EGF and HRG on EGFR is cumulative due to an OR gate. Indeed, although
both EGF and HRG are set to few, cumulating their effect on EGFR makes
the signaling cascade more active than in simulation 4 where only EGF is set
to few.

4 Conclusion

Simulations performed with the example network implementation show that
the proposed logic-based modeling produces continuous results while remain-
ing qualitative. The continuous nature of produced results is due to the use of
fuzzy logic and allows qualitative variables to be more finely valued than with
discrete qualitative modelings such as boolean networks. Moreover, thanks to
the additional features edge reactivity and edge weakening attributed to each
edge of the network, it is possible to tune in speed and strength the interactions
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taking place in the modeled biological network. This is expected to take into
account that, in a given biological system, some interactions can be weaker or
slower relative to other ones and therefore be more realistic in their qualitative
modeling. A little of stochasticity on the two additional features edge reactiv-
ity and edge weakening is also realized through random selection of their value
in specified intervals followed by replication and superposition of the produced
results. This stochasticity, although very rudimentary, should yield some more
realism since events taking place in biological systems can themselves be sub-
jected to stochasticity [46, 47]. It probably represents one of the most relevant
lines of further improvements which could be done on the present work. Another
relevant line of further improvement could be to apply information theory [48]
to the signal conveyed by the edges as previously introduced for cell signal-
ing [49, 50]. Altogether, starting from boolean networks and still founded on
their basic principles, the present work is expected to bring a fine qualitative
quantification of biological network behaviors.

A qualitative quantification remains qualitative and should not be confused
with a true quantification which involves measurements, values and units [51].
The qualitative quantification proposed by the present work has the goal to
bring some enhancements in the ability of qualitative models to simulate bio-
logical network behaviors. One of the main goals, and advantages, of qualitative
modeling remains to propose an alternative to, but not a replacement of, quan-
titative modeling when the frequently encountered parameter value scarcity in
systems biology makes the work unreasonably, or unnecessarily, difficult. The
choice between a qualitative and quantitative modeling is up to the modeler,
depending on its needs and resources.

It is also possible to use qualitative and quantitative modeling in combina-
tion. For example, qualitative modeling can be used to explore global properties
of the biological system of interest and then quantitative modeling can be used
to focus on particular aspects. Knowing the relative difficulty of quantitative
modeling in systems biology, this two-steps approach could make modeling more
efficient by highlighting where to deploy quantitative modeling. Qualitative and
quantitative modeling can also be merged into hybrid models [52,53] which at-
tempt to exploit advantages of these two modelings in one. Hybrid models, or
semi-quantitative models, can be good compromises between the convenience of
qualitative modeling and the accuracy of quantitative modeling.
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Annexes

Boolean equations of the example network. AND, NOT and OR stand for the
boolean operators.

EGF (k+ 1) = input set by the modeler

HRG(k + 1) = input set by the modeler

EGFR(k + 1) = OR(EGF (k), HRG(k))

PI3K(k+ 1) = AND(EGFR(k), NOT (ERK(k)))

AKT (k + 1) = PI3K(k)

Raf(k + 1) = OR(EGFR(k), AKT (k))

ERK(k + 1) = Raf(k)

The fedge
ij built from the boolean equations of the example network. AND,

NOT and OR stand for the fuzzy operators.

(EGF,EGFR)(k + 1) = (1 − p(EGF,EGFR)) · (EGF,EGFR)(k)

+p(EGF,EGFR) · q(EGF,EGFR) ·EGF (k)

(HRG,EGFR)(k + 1) = (1 − p(HRG,EGFR)) · (HRG, EGFR)(k)

+p(HRG,EGFR) · q(HRG,EGFR) ·HRG(k)

(EGFR,PI3K)(k + 1) = (1 − p(EGFR,PI3K)) · (EGFR,PI3K)(k)

+p(EGFR,PI3K) · q(EGFR,PI3K) · EGFR(k)

(ERK,PI3K)(k + 1) = (1 − p(ERK,PI3K)) · (ERK,PI3K)(k)

+p(ERK,PI3K) · q(ERK,PI3K) ·ERK(k)

(PI3K,AKT )(k + 1) = (1 − p(PI3K,AKT )) · (PI3K,AKT )(k)

+p(PI3K,AKT ) · q(PI3K,AKT ) · PI3K(k)

(EGFR,Raf)(k + 1) = (1 − p(EGFR,Raf)) · (EGFR,Raf)(k)

+p(EGFR,Raf) · q(EGFR,Raf) ·EGFR(k)

(AKT,Raf)(k + 1) = (1 − p(AKT,Raf)) · (AKT,Raf)(k)

+p(AKT,Raf) · q(AKT,Raf) · AKT (k)

(Raf, ERK)(k + 1) = (1 − p(Raf,ERK)) · (Raf, ERK)(k)

+p(Raf,ERK) · q(Raf,ERK) · Raf(k)

The fnode
i built from the boolean equations of the example network. AND,

NOT and OR stand for the fuzzy operators.

EGF (k + 1) = input set by the modeler

HRG(k + 1) = input set by the modeler

EGFR(k + 1) = OR((EGF,EGFR)(k), (HRG, EGFR)(k))

PI3K(k+ 1) = AND((EGFR, PI3K)(k), NOT ((ERK,PI3K)(k)))

AKT (k + 1) = (PI3K,AKT )(k)

Raf(k + 1) = OR((EGFR,Raf)(k), (AKT,Raf)(k))

ERK(k + 1) = (Raf, ERK)(k)

It should be noted that fnode
EGF and fnode

HRG do not accept any eij(k) as argument.
This is because fnode

EGF and fnode
HRG are associated to the inputs of the network:

having themselves no inputs, they are set by the modeler through their fnode.
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