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Topological gradient for fourth order PDE and application to the detection of fine structures in 2D images

In this paper we describe a new approach for the detection of fine structures in an image. This approach is based on the computation of the topological gradient associated to a cost function defined from a regularization of the data (possibly noisy). We get this approximation by solving a fourth order PDE. The study of the topological sensitivity is made both in the cases of a circular inclusion and a crack. We illustrate our approach by giving two experimental results.

les plus simples adaptés à l'étude de structures fines sont ω ǫ = B(x 0 , ǫ) la boule de centre x 0 et de rayon ǫ et ω ǫ = x 0 + ǫσ(n) où σ(n) est un segment de droite de normale n. Nous montrons pour ces exemples que j(Ω ǫ ) admet le développement asymptotique (1) où I(x 0 ) est, par définition, le gradient topologique au point x 0 . Par conséquent si on veut minimiser j(Ω ǫ ) il est souhaitable d'insérer des petites boules ou des cracks aux points x 0 où I(x 0 ) est "le plus négatif" possible. D'un point de vue de l'analyse d'images ces petites structures correspondent aux structures fines qu'on veut détecter. La question est : quelles fonction coût et EDP doit on utiliser pour détecter de telles structures ? Si pour la détection de contours d'objets dans une image il est classique d'utiliser des opérateurs construits à partir du gradient spatial, ce choix est complètement inopérant pour la détection de structures fines : le gradient "ne voit pas" ces structures. Pour détecter ce type de structures il est connu ( [START_REF] Steger | An Unbiased Detector of Curvilinear Structures[END_REF], [START_REF] Morales | Vesselness enhancement diffusion[END_REF]) qu'il faut utiliser des opérateurs différentiels d'ordre 2. Nous avons choisi pour cela la fonction coût définie en (2) liée à la modélisation de l'équilibre d'une plaque mince soumise à des forces extérieures. Le calcul très technique du gradient topologique revient à estimer la différence

J ǫ (u ǫ ) -J 0 (u 0 ) où J ǫ (u) = J Ωǫ (u). u ǫ est l'unique solution du problème variationnel a ǫ (u ǫ , v) = l ǫ (v), pour tout v dans H(Ω ǫ ) = u ∈ L 2 (Ω ǫ ), ∇ 2 u ∈ L 2 (Ω ǫ ) où a ǫ (u, v) et l ǫ (v)
sont définis respectivement par (3) et [START_REF] Belaid | Application of the topological gradient to image restoration and edge detection[END_REF]. L' expression du gradient topologique est donnée en ( 16), (15) pour le cas du crack et (17) pour le cas d'une inclusion circulaire. On conclut cette note en illustrant l'approche par deux résultats expérimentaux.

Introduction

In medical, biological or satellite imaging the detection of fine structures (filaments, particles ...) is an important task. In this note we show how it is possible to solve this problem by using topological optimization tools. Initially used for cracks detection [START_REF] Amstutz | Crack detection by the toplogical gradient method[END_REF] the notion of topological gradient has been recently applied in imaging problems such as the restoration, the segmentation or the classification of images ( [START_REF] Belaid | Application of the topological gradient to image restoration and edge detection[END_REF], [START_REF] Auroux | Image restoration and classification by topological asymptotic expansion, Variational Formulations in Mechanics: Theory and Applications[END_REF]). Roughly speaking, the topological gradient approach performs as follows : let Ω be an open bounded set of R 2 and j(Ω) = J(Ω, u Ω ) be a cost function where u Ω is the solution of a given PDE. For small ǫ > 0, let (a) Ω ǫ = Ω\{x 0 + ǫω} or (b) Ω ǫ = Ω\{x 0 + ǫσ(n)}, where x 0 ∈ Ω, ω = B(O, 1) is the unit ball of R 2 and σ(n) is a straight segment with normal n (a crack). The topological sensitivity provides an asymptotic expansion of j(Ω ǫ ) when ǫ → 0. In many cases it takes the form :

j(Ω ǫ ) = j(Ω) + ǫ 2 I(x 0 ) + o(ǫ 2 ) (1) 
I(x 0 ) is called the topological gradient at x 0 . Thus if we want to minimize j(Ω ǫ ) it would be preferable to insert small balls or cracks at points x 0 where I(x 0 ) is "the most negative " . In imaging applications, the main question is the choice of the cost function and the PDE that u Ω has to verify. If for edge detection the usual spatial gradient is classicaly used, it is totally inefficient for the detection of points or filaments. It "does not see"these structures. It is known ( [START_REF] Steger | An Unbiased Detector of Curvilinear Structures[END_REF], [START_REF] Morales | Vesselness enhancement diffusion[END_REF]) that for the detection of fine structures we need to use algorithms based on second order derivatives. In section 2 we introduce the cost function j(Ω ǫ ) and the variational formulation for u Ω . Then in section 3 we give the expression of the associated topological gradient in cases (a) and (b). In section 4, we briefly describe the numerical approximation of the problem and we conclude by giving two experimental results.

Definition of the cost function and of the variational formulation for the detection of fine structures

Let Ω ⊂ R 2 be the image domain and f ∈ L 2 (Ω) the grey levels of a 2-D image for which we want to detect fine structures that we liken to points or straight lines. The simplest choice of the cost function would be J Ω (u) = Ω |∇ 2 u| 2 but for eventual other applications, we introduce a more general cost function stemming from the Kirchhoff model in the theory of thin plates (0 ≤ ν < 1 denotes the Poisson ratio) :

J Ω (u) = Ω (∆u) 2 + 2(1 -ν) ∂ 2 u ∂x 1 ∂x 2 2 - ∂ 2 u ∂x 2 1 ∂ 2 u ∂x 2 2 dx (2) 
We remark that for ν = 0 we retrieve the square of the norm of the Hessian matrix. In the sequel Ω ǫ is defined as in (a) or (b); for ǫ = 0, Ω 0 = Ω. We denote u ǫ = u Ωǫ . Now, for the definition of u ǫ , in order to study the variations of J Ωǫ (u ǫ ) it is coherent and natural to search for u ǫ = argmin

u∈H 2 (Ωǫ) J Ωǫ (u) + f -u 2 L 2 (Ωǫ)
or equivalently as the solution of the variationnal problem :

find u ǫ ∈ H 2 (Ω ǫ ) such that a ǫ (u ǫ , v) = l ǫ (v), ∀v ∈ H 2 (Ω ǫ ) a ǫ (u, v) = Ωǫ ∆u∆v + (1 -ν) 2 ∂ 2 u ∂x 1 ∂x 2 ∂ 2 v ∂x 1 ∂x 2 - ∂ 2 u ∂x 2 1 ∂ 2 v ∂x 2 2 - ∂ 2 u ∂x 2 2 ∂ 2 v ∂x 2 1 + uv (3) 
l ǫ (v) = Ωǫ f vdx (4) 
Thanks Lax-Milgram Lemma, u ǫ is unique in H 2 (Ω ǫ ). Moreover u ǫ satisfies the Euler equation

∆ 2 u ǫ + u ǫ = f, in Ω ǫ B 1 (u ǫ ) = 0, B 2 (u ǫ ) = 0 on ∂Ω ǫ (5) 
with

       B 1 (u) = ∂ n (∆u) -(1 -ν)∂ σ n 1 n 2 ∂ 2 u ∂x 2 1 - ∂ 2 u ∂x 2 2 -(n 2 1 -n 2 2 ) ∂ 2 u ∂x 1 ∂x 2 B 2 (u) = ν∆u + (1 -ν) n 2 1 ∂ 2 u ∂x 2 1 + n 2 2 ∂ 2 u ∂x 2 2 + 2n 1 n 2 ∂ 2 u ∂x 1 ∂x 2 (6)
where n = (n 1 , n 2 ) is the outside normal to ∂Ω ǫ and σ = (σ 1 , σ 2 ) is the tangent vector with |n| = |σ| = 1. Remark 1 The study of topological sensitivity for fourth order operators is not new. In [START_REF] Amstutz | Topological asymptotic analysis of the Kirchhoff plate bending problem[END_REF], the authors in a different context, compute the topological gradient for the Kirchhoff plate bending problem in case (a) of a circular inclusion. Our model is simpler and we are able to give explicit expressions of the topological gradients both in the cases of circular inclusions and of cracks.

Computation of the topological gradient associated to J Ωǫ (u ǫ )

We denote J ǫ (u) = J Ωǫ (u) and to shorten the presentation we only give the main idea in case (b) : Ω ǫ = Ω\{x 0 + ǫσ}, with x 0 = 0 i.e Ω ǫ = Ω\{ǫσ} where σ is the straight crack σ = {(s, 0), -1 < s < 1}. We denote σ ǫ = ǫσ. For a detailed version of the calculus we refer the reader to [START_REF] Aubert | A topological gradient based model for the detection of fine structures in 2D images[END_REF]. We have to estimate the difference J ǫ (u ǫ ) -J 0 (u 0 ). By using equations ( 5) and ( 6) for u ǫ and u 0 , we get

J ǫ (u ǫ ) -J 0 (u 0 ) = L ǫ (u ǫ -u 0 ) + I ǫ with L ǫ (v) = Ωǫ (f -2u 0 )vdx and I ǫ = - Ωǫ (u ǫ -u 0 ) 2 dx (7)
The first key point is to introduce v ǫ ∈ H 2 (Ω ǫ ) as the unique solution of the dual problem (see [START_REF] Sokolowski | On the Topological Derivative in Shape Optimization[END_REF] and [START_REF] Amstutz | Crack detection by the toplogical gradient method[END_REF])

a ǫ (u, v ǫ ) = -L ǫ (u), ∀u ∈ H 2 (Ω ǫ ) (8) 
By extending σ to a closed curve, by using integration by parts and the equation verified by u 0 , we obtain

J ǫ (u ǫ ) -J 0 (u 0 ) = σǫ (B 1 (u 0 ) -α∂ n u 0 ) [v ǫ ] -B 2 (u 0 )[∂ n v ǫ ] + I ǫ (9)
where [v ǫ ] and [∂ n v ǫ ] denote respectively the jump of v ǫ and ∂ n v ǫ across σ ǫ . Then we set w ǫ = v ǫv 0 where v 0 is the solution of ( 8) with ǫ = 0 (Ω 0 = Ω), thus :

J ǫ (u ǫ ) -J 0 (u 0 ) = σǫ (B 1 (u 0 ) -α∂ n u 0 ) [w ǫ ] -B 2 (u 0 )[∂ n w ǫ ] + I ǫ = I A -I B + I ǫ ( 10 
)
with

I A = σǫ (B 1 (u 0 ) -α∂ n u 0 ) [w ǫ ] , I B = σǫ B 2 (u 0 )[∂ n w ǫ ] ( 11 
)
The estimation of the two terms of (11) needs to approximate w ǫ . It is classical (see [START_REF] Amstutz | Crack detection by the toplogical gradient method[END_REF]) to approximate w ǫ by the solution of the exterior problem

∆ 2 P = 0, in R 2 \σ B 1 (P ) = g 1 , B 2 (P ) = g 2 on σ (12)
where g 1 end g 2 are known functions defined from second derivatives of v 0 at point 0. The solution of (12) is the sum of triple and quadruple layer potentials (see [START_REF] Aubert | A topological gradient based model for the detection of fine structures in 2D images[END_REF] for more details). We can show that w ǫ = v ǫv 0 can be written as w ǫ (x) = ǫ 2 P x ǫ + e ǫ with e ǫ 2,Ωǫ = 0(-ǫ 2 log(ǫ)) and then the three terms in [START_REF] Steger | An Unbiased Detector of Curvilinear Structures[END_REF] have the following expansion :

I A = o(ǫ 2 ) , I B = ǫ 2 γ σ λ 2 (y)dσ y + o(ǫ 2 ) , I ǫ = o(ǫ 2 ) (13) with γ = ∂ 2 u0 ∂x 2 2 (0) + ν ∂ 2 u0 ∂x 2 1 (0) and λ 2 (s) = -4β (1-ν)(3+ν) √ 1 -s 2 , ∀s ∈] -1, 1[, where β = ∂ 2 v0 ∂x 2 2 (0) + ν ∂ 2 v0
∂x 2 1 (0). Gathering estimates [START_REF] Steger | An Unbiased Detector of Curvilinear Structures[END_REF] and (13) we get the expression of the topological gradient for the case Ω ǫ = Ω\σ ǫ and x 0 = 0:

I(0) = - 2π (1 -ν)(3 + ν) ∂ 2 u 0 ∂x 2 2 (0) + ν ∂ 2 u 0 ∂x 2 1 (0) ∂ 2 v 0 ∂x 2 2 (0) + ν ∂ 2 v 0 ∂x 2 1 (0) (14) 
Remark 2 Thanks to a basis change, the topological gradient for a straight crack centered at x 0 ∈ Ω and of normal n is given by

I(x 0 , n) = -2π (1 -ν)(3 + ν) ∇ 2 u 0 (x 0 )(n, n) + ν∇ 2 u 0 (x 0 )(τ, τ ) ∇ 2 v 0 (x 0 )(n, n) + ν∇ 2 v 0 (x 0 )(τ, τ ) (15)
with τ the tangent vector such as (τ, n) is an orthonormal basis of R 2 and the topological gradient at point x 0 ∈ Ω is defined as :

I(x 0 ) = min n =1 I(x 0 , n) (16) 
Remark 3 In the case of the ball : Ω ǫ = Ω\x 0 + ǫB(0, 1), the computation is identical (see [START_REF] Aubert | A topological gradient based model for the detection of fine structures in 2D images[END_REF] and [START_REF] Amstutz | Topological asymptotic analysis of the Kirchhoff plate bending problem[END_REF]) :

I(x 0 ) = π (f (x 0 ) -u 0 (x 0 )) (v 0 (x 0 ) -u 0 (x 0 )) - π(1 + ν) 1 -ν ∆u 0 (x 0 )∆v 0 (x 0 ) - 2π(1 -ν) 3 + ν ∂ 2 u 0 ∂x 2 1 (x 0 ) - ∂ 2 u 0 ∂x 2 2 (x 0 ) ∂ 2 v 0 ∂x 2 1 (x 0 ) - ∂ 2 v 0 ∂x 2 2 (x 0 ) + 4 ∂ 2 u 0 ∂x 2 ∂x 1 (x 0 ) ∂ 2 v 0 ∂x 2 ∂x 1 (x 0 ) (17)

Numerical approximation and experimental results

The computation of the topological gradient only need to compute the solutions of the two following variational problems :

a 0 (u 0 , v) = l 0 (v), ∀v ∈ H 2 (Ω) a 0 (u, v 0 ) = -L 0 (u), ∀u ∈ H 2 (Ω) (18) 
where l 0 and L 0 are respectively defined by ( 4) and ( 7) with ǫ = 0. To discretize (18), we used Morley finite elements (see [START_REF] Brenner | The Mathematical Theory of Finite Element Methods[END_REF] and [START_REF] Ming | Nonconforming tetrahedral finite elements for fourth order elliptic equations[END_REF]). If (T h ) h is a regular triangulation of Ω, let X h be the Morley finite elements space associated with (T h ) h . We define on X h the bilinear and linear forms :

a 0,h (u, v) = K∈T h K 2 i,j=1 ∂ 2 u ∂x i ∂x j ∂ 2 v ∂x i ∂x j dx l 0,h = K∈T h K f vdx L 0,h (v) = K∈T h K (f -2u 0,h )vdx
We denote respectively by u 0,h and v 0,h the solution of the problems

a 0,h (u 0,h , v h ) = l 0,h (v h ), ∀v h ∈ X h a 0,h (u h , v 0,h ) = -L 0,h (u h ), ∀u h ∈ X h
Then the discrete topological gradient is computed thanks to formula (16) evaluated at vertices of (T h ) h . We illustrate our approach by giving two experimental results in Figure 1 and Figure 2. To determine the size of the structures to be detected, we add in front of the bilaplacian operator a regularizing parameter α > 0 to be tuned by the user; for example for structures of size 1 to 6 pixels α = 0.1 and for structures of size 6 to 17 pixels α = 3. Note also that our topological gradient (TG) is able to distinguish between fine structures and jumps (edges). In a neighborhood of an edge the TG is not equal to 0 but it is weak. On the other hand in a neighborhood of a fine structure it is big, so with a correct threshold we can easily detect fine structures and eliminate jumps. 
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 12 Figure 1. Robustness of the topological gradient with respect to noise on a synthesis image using (16), (a) : Image without noise, (b) : Noisy image with Gaussian noise, PSNR=26dB, (c) : Noisy image with Gaussian noise, PSNR=14dB, top : Initial image, down : Topological gradient using (16), Robustesse du gradient topologique par rapport au bruit pour une image synthétique en utilisant (16),(a) : Image sans bruit, (b) : Image bruitée par du bruit Gaussien, PSNR=26dB, (c) : Image bruitée par du bruit Gaussien, PSNR=14dB, en haut : Image initiale, en bas : Gradient topologique utilisant (16)