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, the topological gradient is not only a filament detector but it also allows to restore images containing filaments. Then we extend the approach to surfaces and filament detection in 3D. We experiment all of the presented methods on synthetic and real images and compare our results with some classical methods.

1. Introduction. The main goal of this paper is to propose a topological gradient based method for the detection of fine structures in 2D (filaments and points). This article is a companion paper of [START_REF] Aubert | Topological gradient for a fourth order operator used in image analysis[END_REF] and more precisely it is its numerical and applied version. Before presenting the model, let us recall the notion of topological gradient and the problem of detection of fine structures in 2D images. The topological sensitivity analysis is the study of the variations of a cost function with respect to a topological modification of an open domain of R 2 , such as the creation of a hole or a crack. In order to fix ideas, let Ω ⊂ R 2 be the image domain, of boundary ∂Ω = Γ, and let j(Ω) = J(Ω, u Ω ) be a cost function where u Ω is the solution of a partial differential equation defined on Ω. For small ǫ > 0, let (a) Ω ǫ = Ω\{x 0 + ǫω} or (b) Ω ǫ = Ω\{x 0 + ǫσ( n)} be the perturbed domain, where x 0 ∈ Ω, ω = B(O, 1) is the unit ball of R 2 and σ( n) is a straight segment (crack) with normal n (see Figure 1). Generally in 2D and for Neumann problems, we have the following expansion with respect to ǫ : j(Ω ǫ ) = j(Ω) + ǫ 2 I(x 0 ) + o(ǫ 2 ) where I(x 0 ) is the topological gradient defined by I(x 0 ) = lim ǫ→0 j(Ωǫ)-j(Ω) ǫ 2

negative". Initially defined in [START_REF] Sokolowski | On the topological derivative in shape optimization[END_REF][START_REF] Masmoudi | The topological asymptotic[END_REF] and used in mechanics for crack detection [START_REF] Amstutz | Crack detection by the toplogical gradient method[END_REF] or engineering design, the notion of topological gradient has been recently applied to imaging problems such as restoration/segmentation or classification of images ( [START_REF] Auroux | From restoration by topological gradient to medical image segmentation via an asymptotic expansion[END_REF][START_REF] Belaid | Application of the topological gradient to image restoration and edge detection[END_REF][START_REF] Auroux | Image restoration and classification by topological asymptotic expansion, Variational Formulations in Mechanics: Theory and Ap-plications[END_REF]). For example in restoration/segmentation, if f denotes the observed image (possibly noised and/or blurred) we look for a couple (u, γ), where γ is the set of edges of the image and u is a regularized version of f on Ω\γ. Many variational methods have been proposed in the literature ( [START_REF] Aubert | Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations[END_REF]) and the most famous one is the Mumford and Shah [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] model. A recent alternative was the introduction of the topological gradient method. For edge detection the simplest model [START_REF] Auroux | From restoration by topological gradient to medical image segmentation via an asymptotic expansion[END_REF][START_REF] Belaid | Application of the topological gradient to image restoration and edge detection[END_REF][START_REF] Auroux | Image restoration and classification by topological asymptotic expansion, Variational Formulations in Mechanics: Theory and Ap-plications[END_REF] is based on the Laplace operator. The associated energy uses the spatial gradient of u Ω : J(Ω, u Ω ) =

Ω |∇u Ω | 2 dx.
The main difference between edges and filaments is that for edges the singularity is associated with a jump of the intensity across edges while for filaments there is no jump (see Figure 2). If for edge detection the usual spatial gradient is classically used, it is inefficient for the detection of points or filaments. To give a heuristic illustration of this fact let us consider in 1D the function f (x) = 0 if x = 0 and f (0) = 1. This function can be simply approximated by the function f η (x) = 0 if |x| ≥ η and f η (x) = 2 η 3 |x| 3 -3 η 2 |x| 2 + 1 if |x| ≤ η. We have f ′ η (0) = 0 but f ′′ η (0) = -6 η 2 , thus f ′ η "does not see" 0 but f ′′ η becomes singular at 0. In fact, it is known ( [START_REF] Steger | An unbiased detector of curvilinear structures[END_REF][START_REF] Morales | Vesselness enhancement diffusion[END_REF]) that if we want to detect fine structures by using differential operators, we must use at least second order operators. For these reasons, in [START_REF] Aubert | Topological gradient for a fourth order operator used in image analysis[END_REF], we have chosen a variational model using second order derivatives. We will describe this model in section 2. Other variational models have been proposed in the literature according to applications, see [START_REF] Jacob | 3D shape estimation of DNA molecules from stereo cryo-electron micro-graphs using a projectionsteerable snake[END_REF] for the detection of biological filaments or [START_REF] Rochery | New higher-order active contour energies for network extraction[END_REF] for road network detection. In [START_REF] Aubert | Detecting Codimension -Two Objects in an Image with Ginzburg-Landau Models[END_REF][START_REF] Baudour | Detection and Completion of Filaments: A Vector Field and PDE Approach[END_REF] and [START_REF] Baudour | Détections de Filaments dans des images 2D et 3D; modélisation, étude mathématique et algorithmes[END_REF] the authors propose a model for detecting objects of codimension two and one in 2D images. Their method is inspired by Ginzburg-Landau models. In [START_REF] Graziani | A formal Gamma-convergence approach for the detection of points in 2-D biological images[END_REF] a variational model involving second order differential operators is developed for detecting point-like singularities. There exists of course other approaches not based on variational calculus. In [START_REF] Mendona | Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction[END_REF][START_REF] Zana | Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation[END_REF] morphological methods are presented. In [START_REF] Zana | Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation[END_REF], authors propose a method for automatic detection of vessel-like patterns using morphological filters and curvature evaluation. The method is sensitive to the noise type (uniform noise destructs small vessels) and the computation time is not negligible. In [START_REF] Lacoste | Point Processes for Unsupervised Line Network Extraction in Remote Sensing[END_REF][START_REF] Tupin | A Graph-Based Representation to Detect Linear Features[END_REF][START_REF] Stoica | A Gibbs Point Process for Road Extraction from Remotely Sensed Images[END_REF], stochastic methods are used. Here filaments are defined as the realization of random processes. These methods are costly in terms of CPU time. In [START_REF] Stoica | A Gibbs Point Process for Road Extraction from Remotely Sensed Images[END_REF] a thin network is simulated by a point process which penalizes not connected segments and favors aligned segments. The estimate of the network is obtained by minimising an energy function. Finally let us mention the wavelet approach [START_REF] Antoine | Directional Wavelets Revisited: Cauchy Wavelets and Symmetry Detection in Patterns[END_REF][START_REF] Liew | Application of Wavelet Theory for Crack Identification in Structures[END_REF][START_REF] Berlemont | Combining Local Filtering and Multiscale Analysis for Edge, Ridge, and Curvilinear Objects Detection[END_REF].

The remainder of this paper is organized as follows. In section 2 we present the variational model and we justify thanks to a heuristic reasoning, the choice of the cost function and associated PDE. Then in section 3 we recall the theoretical value of the topological gradient given in [START_REF] Aubert | Topological gradient for a fourth order operator used in image analysis[END_REF]. We extend the result to a more general model of image degradation in section 4. We will see in section 5 that the topological gradient is not only a detector but it also allows to restore images. To compare our indicator with other ones, in section 6 we present a classical indicator often used in filament and point detection [START_REF] Steger | Estimating the fundamental matrix under pure translation and radial distortion[END_REF][START_REF] Steger | An unbiased detector of curvilinear structures[END_REF][START_REF] Morales | Vesselness enhancement diffusion[END_REF] . In section 7 we develop the numerical analysis of the topological gradient method. In section 8 and section 9 we give some experimental results on filament and point detection for possibly noisy images. We numerically justify the pertinence of the model, and compare the results obtained by the topological gradient method with the ones given by the indicator introduced in section 6. In section 10, we experiment the segmentation given in section 4 for blurred and noisy images and we illustrate the restoration previously presented in section 5. Finally, in section 11 we give the value of the topological gradient in the 3D case and we present some numerical results.

2. Definition of the cost function and variational model. In this section we give a lemma explaining why we need a cost function using second order derivatives to detect fine structures in 2D images and then we set the chosen model defined on Ω ǫ .

2.1.

What is the good operator for detecting fine structures?. We denote by D(R 2 ) the space of C ∞ -functions with compact support in R 2 and D ′ (R 2 ) the space of distributions on R 2 . For the proof of this lemma we refer to [START_REF] Drogoul | Applications of the topological gradient in the detection of fine structures in imaging[END_REF].

Lemma 2.1. Let ϕ : R 2 -→ R be a Lipschitz continuous function, and let (g h ) h>0 be a sequence of functions defined by

g h (x) = 1 θ 1 (h) e -ϕ 2 (x) θ 2 (h)
where θ i : R + -→ R + and lim

h→0 θ i (h) = 0. (1) Let a ∈ R 2 , ϕ(x) = x -a , θ 1 (h) = πh and θ 2 (h) = h, then g h -→ h→0 δ a , in D ′ (R 2 )
Moreover we have

∇g h (a) = [0, 0] T , ∇ 2 g h (a) = - 2 πh 2 I
where I denotes the identity matrix in R 2 . (2) Let Γ be a smooth closed curve or a smooth infinite curve of R 2 delimiting two sub-domains R 2 Γ -and R 2 Γ + forming a partition of R 2 . Let ϕ be the signed distance to Γ defined by :

ϕ(x) = dist(x, R 2 Γ -) -dist(x, R 2 Γ + ) R 2 Γ + (resp. R 2 Γ -) indentifies to the sub-domain {ϕ > 0} (resp. {ϕ < 0}).
Taking the following scalings : θ 1 (h) = √ πh and θ 2 (h) = h, then we have

g h -→ h→0 δ Γ , in D ′ (R 2 )
Moreover for all x ∈ Γ :

∇g h (x) = [0, 0] T , spec(∇ 2 g h (x)) = - 2 h 3/2 , 0
where spec(M ) denotes the eigenvalues of the matrix M. The associated eigenvectors on Γ are (∇ϕ(x), ∇ϕ(x) ⊥ ) where ∇ϕ(x) = n(x) is the unit normal of Γ.

In 2D images, filaments can be roughly modeled by an indicator function supported by a smooth curve Γ. Lemma 2.1 shows by a heuristic manner that we can approximate the filament by a sequence of smooth functions, whose Hessian matrices blow up in the perpendicular direction to Γ while their gradient are null. Hence this shows that the appropriate operator for detecting such structures must involve second order derivatives of the image we want to recover.

Remark 1. This lemma is heuristic because it only deals with punctual values of the smooth functions approximating the Dirac measures. If we modify the sequence (g h ) h∈R (e.g by replacing g h (x) by g h (x+hv) with v a constant vector), the convergence to the Dirac measures is fulfilled but the gradient can be not null. However :

• For the point, by setting

W h = {(x 1 , 0), x 1 ∈ [-hη, hη]} with η > 0 : 1 |W h | W h ∂g h ∂x i = 0 1 |W h | W h ∂ 2 g h ∂x i ∂x j = O 1 h 2
• For the curve, if γ is a circle of radius R > 0, by setting for η > 0 and θ 0 > 0

W h = (rcos(θ), rsin(θ), (r, θ) ∈ [R - √ hη, R + √ hη] × [0, θ 0 h] : 1 |W h | W h ∂g h ∂x i = O(1) 1 |W h | W h ∂ 2 g h ∂x i ∂x j = O 1 h
Similar results hold for a large class of functions approximating Dirac measures, which heuristically justifies that the detection of fine structures needs second order derivatives.

2.2. Definition of the cost function and the fourth order PDE. Now we introduce the cost function and the PDE studied in [START_REF] Aubert | Topological gradient for a fourth order operator used in image analysis[END_REF]. The model is inspired by the Kirchhoff thin static plate model subject to pure bending (see [START_REF] Chen | Boundary Element Methods with Applications to Nonlinear Problems[END_REF]) with a Poisson ratio ν = 0. The cost function is defined by :

(2.1) J ǫ (u) = J Ωǫ (u) = Ωǫ ∂ 2 u ∂x 2 1 2 + ∂ 2 u ∂x 2 2 2 + 2 ∂ 2 u ∂x 1 ∂x 2 2 = Ωǫ ∇ 2 u 2 ,
and Ω ǫ is either (a) Ω ǫ = Ω\{x 0 + ǫω} or (b) Ω ǫ = Ω\{x 0 + ǫσ( n)}. For a matrix M we denote M 2 = tr(M T M ). Let u Ωǫ = u ǫ be a regularization of the observed image f ∈ L 2 (Ω ǫ ) solution of the following minimization problem :

(2.2) min u∈H 2 (Ωǫ) αJ ǫ (u) + u -f 2 L 2 (Ωǫ) (P ǫ )
where α > 0 is a parameter to be tuned. The variational formulation of (P ǫ ) writes as : find

u ǫ ∈ H 2 (Ω ǫ ) such that (2.3) a ǫ (u ǫ , v) = l ǫ (v) ∀v ∈ H 2 (Ω ǫ )
where a ǫ (u, v) and l ǫ (v) denote the bilinear and linear forms:

(2.4) a ǫ (u, v) = Ωǫ α 1≤i,j≤2 ∂ 2 u ∂x i ∂x j ∂ 2 v ∂x i ∂x j + uv l ǫ (v) = Ωǫ f v.
The Euler equations associated with (P ǫ ) are

(2.5) (P ǫ )      α∆ 2 u ǫ + u ǫ = f on Ω ǫ B 1 (u ǫ ) = 0 on ∂Ω ǫ B 2 (u ǫ ) = 0 on ∂Ω ǫ where B 1 (u) = ∂ n (∆u) -∂ σ n 1 n 2 ∂ 2 u ∂x 2 1 - ∂ 2 u ∂x 2 2 -(n 2 1 -n 2 2 ) ∂ 2 u ∂x 1 ∂x 2 B 2 (u) = n 2 1 ∂ 2 u ∂x 2 1 + n 2 2 ∂ 2 u ∂x 2 2 + 2n 1 n 2 ∂ 2 u ∂x 1 ∂x 2 n = (n 1 , n 2 )
is the outer normal to the domain, and σ = (σ 1 , σ 2 ) the tangent vector such that ( n, σ) forms an orthonormal basis. In mechanics B 1 (u) is the transverse force (shear force and twisting moment), B 2 (u) represents the bending moment and u is the deflection of the thin plate. For more details on this problem we refer the reader to [START_REF] Drogoul | Applications of the topological gradient in the detection of fine structures in imaging[END_REF][START_REF] Chen | Boundary Element Methods with Applications to Nonlinear Problems[END_REF].

Remark 2. By using a maximum a posteriori estimator (MAP estimator), we can show that the data fidelity term in (2.2) is adapted to the model f = u + b where f is the observed image, u the image to recover and b a Gaussian noise.

3. Computation of the topological gradient in cases (a) of a perforated domain and (b) of a cracked domain. The following theorem is taken from [START_REF] Aubert | Topological gradient for a fourth order operator used in image analysis[END_REF][START_REF] Aubert | Topological gradient for fourth-order PDE and application to the detection of fine structures in 2D images[END_REF] and adapted to a numerical objective. In [START_REF] Aubert | Topological gradient for a fourth order operator used in image analysis[END_REF][START_REF] Aubert | Topological gradient for fourth-order PDE and application to the detection of fine structures in 2D images[END_REF] we give the topological gradient expression in the cases of perforated and cracked domains. The calculus of the topological gradient relies upon the evaluation of the difference J ǫ (u ǫ ) -J 0 (u 0 ) when ǫ → 0. This evaluation is very technical but (and it is remarkable) only needs the computation of two solutions : u 0 the solution of the direct problem (P 0 ) and v 0 the solution of the adjoint problem (Q 0 ) defined by

(3.1) (P 0 ) α∆ 2 u 0 + u 0 = f in Ω B 1 (u 0 ) = B 2 (u 0 ) = 0 on ∂Ω and (3.2) (Q 0 ) α∆ 2 v 0 + v 0 = 2u 0 -f in Ω B 1 (v 0 ) = B 2 (v 0 ) = 0 on ∂Ω Remark 3.
In the adjoint problem, the source term is 2u 0 -f and so v 0 is closed to f if u 0 is closed to f.

We refer the reader to [START_REF] Aubert | Topological gradient for fourth-order PDE and application to the detection of fine structures in 2D images[END_REF][START_REF] Drogoul | Topological gradient for a fourth order PDE and application to the detection of fine structures in 2D and 3D images[END_REF] to to get an idea on the computation of the topological gradient for a cracked domain (b).

Theorem 3.1.

The topological gradients of the cost function (2.1) associated with the PDE (2.5) in the cases of a perforated domain (denoted by I b ) and a cracked domain (denoted by I c ) are:

I b (x 0 ) = π α (f (x 0 ) -u 0 (x 0 )) (v 0 (x 0 ) -u 0 (x 0 )) -M(u 0 , v 0 )(x 0 ) with M(u, v) = π∆u∆v+ 2π 3 ∂ 2 u ∂x 2 1 - ∂ 2 u ∂x 2 2 ∂ 2 v ∂x 2 1 - ∂ 2 v ∂x 2 2 + 4 ∂ 2 u ∂x 1 ∂x 2 ∂ 2 v ∂x 1 ∂x 2 and (3.3) I c (x 0 , n) = - 2π 3 ∇ 2 u 0 (x 0 )( n, n)∇ 2 v 0 (x 0 )( n, n)
where n is the normal to the crack, u 0 and v 0 are the solutions of the direct and dual problems (P 0 ) and (Q 0 ) given by (3.1) and (3.2) respectively. We define the topological indicators at point x 0 for a perforated and cracked domain as

I b Bilap (x 0 ) = |I b (x 0 )| I c Bilap (x 0 ) = max n =1 |I c (x 0 , n)|
We can notice that the computation of the topological gradient for the two models (crack and ball) only needs the resolution of two linear problems (P 0 ) and (Q 0 ). In section 7 we propose two ways to discretize these problems.

Remark 4. I c Bilap and I b Bilap are called topological indicators because they do not give the information of an increasing or decreasing of the energy (2.1). For the definition of I c Bilap we take the maximum value of |I c (x 0 , n)| with respect to n because we have noticed that numerically the sign of I c (x 0 , n) depends on α (it is mostly negative when α is quite small (α ≤ 0.1) and positive if α is quite large (α ≥ 2)). The same remark holds for I b Bilap . 4. Adaptation for a more general problem of deblurring. In most imaging applications the optical material, or the motion of the camera or of the target introduce blur on the observed image (see [START_REF] Pawley | Handbook of Biological Confocal Microscopy[END_REF]). Generally, spatially invariant blur is modeled as a positive convolution operator u → Ku with K1 = 0. We assume that the observed image is of the form f = Ku + b where K is the blur operator, u the image to recover and b a Gaussian additive noise. Thus, we can take into account the blurring by replacing u by Ku into the data fidelity terms of the cost function of the variational problem (2.2). Hence, Euler equations become:

(4.1) (P 0 ) α∆ 2 u 0 + K ⋆ Ku 0 = K ⋆ f, in Ω B 1 (u 0 ) = B 2 (u 0 ) = 0, on ∂Ω and (4.2) (Q 0 ) α∆ 2 v 0 + K ⋆ Kv 0 = K ⋆ (2Ku 0 -f ), in Ω B 1 (v 0 ) = B 2 (v 0 ) = 0, on ∂Ω.
For the well posedness of (4.1) and (4.2) we refer the reader to [START_REF] Aubert | Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations[END_REF] chapter 3. It is straightforward to see that the topological gradient for the cracked domain is still given by the same expression obtained without blur while for a perforated domain its expression is a little bit changed. By still denoting by I b Bilap and I c Bilap the two topological indicators associated to (2.1) and to the problem deduced from (2.2) by replacing u by Ku, we have (see section 3 for notations and [START_REF] Drogoul | Applications of the topological gradient in the detection of fine structures in imaging[END_REF] for more details) :

(4.3a) I b Bilap (x 0 ) = |I b (x 0 )| (4.3b) I c Bilap (x 0 ) = max n =1 |I c (x 0 , n)| with I b (x 0 ) = π α (K ⋆ f (x 0 ) -K ⋆ Ku 0 (x 0 )) (v 0 (x 0 ) -u 0 (x 0 )) -M(u 0 , v 0 )(x 0 ) I c (x 0 ) = - 2π 3 ∇ 2 u 0 (x 0 )( n, n)∇ 2 v 0 (x 0 )( n, n)
and where u 0 and v 0 are given respectively by (4.1) and (4.2). The illustration of these two topological indicators is performed in section 8 and 9 for K = I (no blur) and in section 10 for K = I (with blur).

Restoration using the topological gradient.

In this section we present a restoration algorithm preserving edges and filaments. As said in the introduction, the difference between edges and fine structures can be characterized as follows : an edge is a discontinuity with a jump of the intensity and a filament is a discontinuity without jump. The continuous definition of these structures is clear but for numerical images it is no more true. Generally we consider as fine structure, a structure of maximum 4 or 5 pixels width (point or filament). A structure of width more than 5 pixels can be considered as a volume object delimited by edges. We assume that the observed degraded image f writes as f = Ku + b where u is the image to recover, b the Gaussian noise and K the blur operator (generally a convolution such that K1 = 0, see [START_REF] Aubert | Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations[END_REF] chapter 3). We still denote by I c Bilap the topological indicator for a cracked domain (4.3b) where u 0 and v 0 are given by (4.1) and (4.2) (section 4), and we introduce the topological indicator I c Lap defined in [START_REF] Belaid | Application of the topological gradient to image restoration and edge detection[END_REF][START_REF] Drogoul | The topological gradient method for semi-linear problems and application to edge detection and noise removal[END_REF] for edge detection :

(5.1)

I c Lap = min n =1 J c (x 0 , n) with J c (x 0 , n) = -π∇u 0 (x 0 ). n∇v 0 (x 0 ). n
where u 0 and v 0 are given by (5.2)

-γ∆u 0 + K ⋆ Ku 0 = K ⋆ f in Ω ∂ n u 0 = 0 on ∂Ω and -γ∆v 0 + K ⋆ Kv 0 = K ⋆ (2Ku 0 -f ) in Ω ∂ n v 0 = 0 on ∂Ω.
with γ > 0 a parameter to tune. As a by-product, the calculus of the topological indicators for a cracked domain I c Bilap (4.3b) and I c Lap (5.1) allows to restore images degraded by blur or/and Gaussian noise. We propose a restoration preserving both edges and filaments. Once I c Bilap and I c Lap are computed, we define for two fixed thresholds

δ 1 , δ 2 > 0, the sets E Lap δ1 = x ∈ Ω; I c Lap ≤ -δ 1 and E Bilap δ2 = x ∈ Ω; I c Bilap ≥ δ 2 and the characteristic functions χ Lap η (x) = η if x ∈ E Lap δ1 1 otherwise and χ Bilap η (x) = η if x ∈ E Bilap δ2 1 otherwise
where η is a small positive parameter. From the computation of I c Bilap and I c Lap , we also get the normalized direction τ = n ⊥ of the discontinuity. For edges, n is given by the associated vector to I c Lap (5.1) and for filaments it is computed by using

I c Bilap (4.3b). If n = (cos(ϕ), sin(ϕ))
is the normal to the minimum crack performed by either I c Bilap or I c Lap , we denote τ = (sin(ϕ), -cos(ϕ)). Then if f is the degraded observed image, the idea is to find a restored version u of f as the solution of the following anisotropic PDE :

(5.3) -div(βP ϕ η (x)∇u) + K ⋆ Ku = K ⋆ f on Ω ∂ n u = 0 on Γ where P ϕ η (x) is a tensor constructed from ϕ(x), χ Bilap η (x)
and χ Lap η (x); K is the blur operator and β is a parameter to tune. More precisely, we choose P ϕ η (x)∇u(x) = (∇u. τ ) τ +χ η (x)(∇u. n) n where χ η denotes either χ Lap η or χ Bilap η if we want to preserve respectively edges or filaments. A simple identification shows that P ϕ η (x) is the matrix (5.4)

P ϕ η (x) = sin 2 (ϕ(x)) + χ η (x)cos 2 (ϕ(x)) sin(ϕ(x))cos(ϕ(x))(χ η (x) -1) sin(ϕ(x))cos(ϕ(x))(χ η (x) -1) cos 2 (ϕ(x)) + χ η (x)sin 2 (ϕ(x))
The interpretation of this matrix P ϕ η (x) is as follows : • if x belongs to the background thanks to the definition of χ η (x), P ϕ η (x) writes as P ϕ η (x) = 1 0 0 1 so div(P ϕ η (x)∇u) = ∆u and the smoothing is isotropic.

• if x belongs to an edge (i.e.

x ∈ E Lap δ1 ) and if χ η (x) = χ Lap η (x), then χ η (x) is close to zero and P ϕ η (x)∇u(x) ≈ (∇u. τ ) τ . The diffusion is in the direction of the edge.

• if x belongs to a filament (i.e. x ∈ E Bilap δ2 ) and if χ η (x) = χ Bilap η (x), then χ η (x) is close to zero and P ϕ η (x)∇u(x) ≈ (∇u. τ ) τ .
The diffusion is in the direction of the filament. Remark 5. In the case of χ η = χ Lap η , for a more general framework with different kind of noise and blur, we refer the reader to [START_REF] Drogoul | The topological gradient method for semi-linear problems and application to edge detection and noise removal[END_REF].

Remark 6. If we want to preserve edges and filaments we can choose χ η (x) = min(χ Lap η (x), χ Bilap η (x)) (see section 10.2).

Remark 7. To compute a solution of (5.3), we use a finite difference scheme [START_REF] Aubert | Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations[END_REF] (pp. 76-77) with the matrix (5.4) and we represent the blur operator by a block circulant matrix.

As we will see in section 10.2 on numerical examples, the restoration results obtained when applying equation (5.3) are very good both for filaments and edges.

Comparison with a classical indicator.

In [START_REF] Steger | Estimating the fundamental matrix under pure translation and radial distortion[END_REF][START_REF] Steger | An unbiased detector of curvilinear structures[END_REF][START_REF] Morales | Vesselness enhancement diffusion[END_REF] the authors use for detecting the center of vessels an indicator defined from the Hessian matrix of a regularized version of the image. We denote by f the observed image, G σ the Gaussian function of scale σ and 

H σ = ∇ 2 f * G σ = f * ∇ 2 G σ . If
H σ,ρ = G ρ * f * ∇ 2 G σ (1 + |f * ∇G σ | 2 ) 1/2
where σ and ρ are called respectively the differentiation and the integration scales. In our experiments we set ρ = 0.5 and σ is tuned with respect to the size of the structures we want to detect. This direction is used in [START_REF] Morales | Vesselness enhancement diffusion[END_REF] to recover the tangent to the filament (or to the center line of the vessel). It is known that the eigenvectors of H σ are very sensitive to noise and numerical experiments show that v 1 matches better the tangent filament direction than the vector associated to the smallest eigenvalue of H σ . We will compare this direction with the one given by (4.3b)(see section 8.3).

The scale σ in all of the pictures is chosen manually in order to have the best result and depends on the size of the structures we want to detect.

7. Discretization of the PDEs (3.1) and (3.2) and numerical calculus of the topological gradient. In this section we present two methods for computing the solutions u 0 and v 0 of problems (3.1) and (3.2). The first method uses the P2-Morley finite elements and the second one uses the DCT (Discrete Cosine Transform). On the one hand, the convergence of the first method towards the theoretical solution is well known and we will see that it is the least expensive finite elements method in terms of number of variables. On the other hand, we will numerically show that if we cannot prove that the second method converges to the solution of problems (3.1) and (3.2), the results are similar and the computing time is much shorter. In this section we denote by u m,Ω the norm u H m (Ω) where H m (Ω) is the Sobolev space : u, D α u ∈ L 2 (Ω), 0 ≤ |α| ≤ m where α ∈ N d and |α| = α i . All calculus are implemented in Matlab 7.5.0 (for the DCT choice and finite difference scheme) and in Freefem ++ (for the P 2 Morley choice). The experiments are performed on a computer equipped with a processor Intel Core 1.9 GHz. 

u 0 ∈ H 2 (Ω) such that (7.1) a 0 (u 0 , v) = f, v ∀v ∈ H 2 (Ω) and find v 0 ∈ H 2 (Ω) such that (7.2) a 0 (u, v 0 ) = -f -2u 0 , u ∀u ∈ H 2 (Ω)
where u, v denotes the L 2 (Ω)-scalar product. To discretize these two problems we use the nonconforming quadratic Morley finite element (see [START_REF] Ming | Nonconforming tetrahedral finite elements for fourth order elliptic equations[END_REF] and [START_REF] Brenner | The Mathematical Theory of Finite Element Methods[END_REF] pp 148-151 and p 305). It is defined by the triplet (K, P K , Σ K ) where (i) K is a triangle (ii) P K is the space of polynomial functions of degree less than or equal to 2 defined on K. (iii) Σ K is the set of the following linear maps v → v(a i ), where a i for i ∈ {1, 2, 3} are the vertices of K v → ∂ n v(b i ), where b i for i ∈ {1, 2, 3} are midpoints of K edges and where b i is on the opposite edge of the vertex a i (see Figure 3). Let (T h ) h be a regular triangulation of Ω. For all h > 0, we denote by X h the Morley finite element space associated with (T h ) h . We introduce the scalar product on X h :

u h , v h h = T ∈T h T u h v h and the discrete norms: v h m,h = T ∈T h v h 2 m,T 1/2 for v h ∈ X h . Let a h 0 (u h , v h ), l h 0 (v h
) and L h 0 (v h ) be the following bilinear and linear forms on X h :

a h 0 (u h , v h ) = α i,j∈{1,2} ∂ 2 u h ∂x i ∂x j , ∂ 2 v h ∂x i ∂x j h + u h , v h h , ∀u h , v h ∈ X h , l h 0 (v h ) = f, v h h , ∀v h ∈ X h , L h 0 (v h ) = -f -2u 0,h , v h h , ∀v h ∈ X h .
We denote by P h 0 and Q h 0 the two following discrete problems approximating (7.1) and (7.2):

(7.3) find u h 0 ∈ X h such that: a h 0 (u h 0 , v h ) = l h 0 (v h ), ∀v h ∈ X h P h 0 (7.4) find v h 0 ∈ X h such that: a h 0 (u h , v h 0 ) = L h 0 (u h ), ∀u h ∈ X h Q h 0
We have the following convergence result (see [START_REF] Ming | Nonconforming tetrahedral finite elements for fourth order elliptic equations[END_REF]): Theorem 7.1. Let u 0 and v 0 be the solutions of (7.1) and (7.2) respectively and let u h 0 and v h 0 be the solutions of (7.3) and (7.4) respectively, we have the following estimations:

(7.5) u 0 -u h 0 2,h ≤ Ch (|u 0 | 3,Ω + h f 0,Ω ) v 0 -v h 0 2,h ≤ Ch (|u 0 | 3,Ω + |v 0 | 3,Ω + h f 0,Ω + h u 0 0,Ω )
where C is a constant independent of h. Proof. For the first inequality see [START_REF] Ming | Nonconforming tetrahedral finite elements for fourth order elliptic equations[END_REF]. For the second one we split v h 0 in v h 0 = p h 0 + q h 0 , where p h 0 and q h 0 are solutions of

a h 0 (u h , p h 0 ) = -f -2u 0 , u h , ∀u h ∈ X h , a h 0 (u h , q h 0 ) = -2 u 0 -u h 0 , u h , ∀u h ∈ X h .
Thanks to [START_REF] Ming | Nonconforming tetrahedral finite elements for fourth order elliptic equations[END_REF], it is straightforward to see that

p h 0 -v 0 2,h ≤ Ch (|v 0 | 3,Ω + h f -2u 0 0,Ω ) . Since a h
0 is coercive on X h and by setting u h = q h 0 , we get

q h 0 2,h ≤ C u 0 -u h 0 2,h . By using the fact that v h 0 -v 0 2,h ≤ p h 0 -v 0 2,h + q h 0 
2,h and the first estimation, we get the result. This finite element has 6 degrees of freedom which corresponds to the number of P 2 elements in 2D. There are O(2N ) elements if N denotes the number of vertices. The matrix of the linear system is sparse and so the solving cost of the system is O(N ) if we use for example a LU method with band matrices.

Remark 8. It is known (see [START_REF] Brenner | The Mathematical Theory of Finite Element Methods[END_REF], pp 148-151 and p 305) that this non-conform finite element has the advantage of being less expansive than a conform one (the P 5 Argyris finite element, which has 21 degrees of freedom).

Discretisation by the DCT.

As said in the introduction of this section, the DCT does not solve exactly the real problems (7.1) and (7.2) (Neumann conditions are a priori not fulfilled), but looking at the results (see section 8 and 9) and the computational time (see Figure 4), this method presents the serious advantage of being very fast. The theoretical computational time consists in O(N log(N )) operations for the DCT if N denotes the number of pixels (or voxels) in the image while for the quadratic Morley finite element the cost is O(N ). However, Figure 4 shows that the DCT is much faster than the P2-Morley finite element method for N ≤ 10 9 . Considering that the image is a periodic signal, we choose to discretize (3.1) and (3.2) with a DCT2 because of the symmetry properties guaranted by this algorithm. Moreover it is the most classical algorithm used in image processing. We can see the image as a half part of a periodic and symmetric signal. To fix ideas, in 1D if the input image is the sequence of N points [x 0 x 1 ...x N -1 ], the associated signal is the sequence of 2N -2 points [x 0 x 1 ...x N -1 x N -2 ...x 1 ]. In 1D the trigonometric function associated with a vector of DCT2 coefficients is

(7.6) u N (x) = N -1 k=0 y N k cos 2π(k + 1 2 )
x T where y N ∈ R N is the vector such that y N = DCT 2(y N ), y N = u N (lT /2N ) l is the vector composed by the values of the interpolating function u.

From (7.6), it is straightforward to see that the derivatives of u(x) evaluated at points x l = lT 2N are given by the Fourier coefficients of the function. To fix ideas let us write the fourth derivative with respect to x of the function u given by (7.6) :

du N dx 4 (x) = N -1 k=0 y N k 2π(k + 1 2 ) T 4 cos 2π(k + 1 2 )x T Hence by setting x = lT N , we get du N dx 4 lT N
as a function of y N k . Let us do the same thing in 2D. By considering the image as a signal 2(N x -1)-periodic with respect to x, and 2(N y -1)-periodic with respect to y, we define the frequency domain by π(kx+ 1 2

) (Nx-1) , π(ky+ 1 2 ) (Ny-1)
, (k x , k y ) ∈ E x × E y with E x = {0, ..., N x -1} and E y = {0, ..., N y -1}. We denote by Λ x and Λ y the 2(N y -1) × 2(N x -1) mesh grids associated with this discrete space. The vector of Fourier coefficients associated to a discrete signal x ∈ R N is denoted by X.

Algorithm 1 Computation of the solutions (3.1) and (3.2)

Given an image f ij defined for (i,

j) ∈ [[0, N y -1)] × [[0, N x -1]] 1. Use a DCT2 to compute F kl for (k, l) ∈ [[0, N y -1]] × [[0, N x -1]].
2. Given Λ the meshgrid associated to the frequencies domain described in section 7.2 compute :

∆ 2 kl = Λ x 4 kl + 2Λ x 2 kl Λ y 2 kl + Λ y 4 kl U kl = F kl 1 + α∆ 2 kl and V kl = 2U kl -F kl 1 + α∆ 2 kl 3. Use an inverse DCT2 to compute u ij and v ij for (i, j) ∈ [[0, N y -1]]×[[0, N x -1]].
7.3. Algorithm for the computation of the topological indicators. One of the advantages of the topological gradient method is the simplicity of the final algorithm. To compute (4.3b), we rewrite the topological gradient for a crack of normal n = (cos(ϕ), sin(ϕ)) as

I c (x 0 , ϕ) = - 2π 3 P (∂ xx u N 0 (x 0 ), ∂ yy u N 0 (x 0 ), ∂ xy u N 0 (x 0 ), ϕ) × P ∂ xx v N 0 (x 0 ), ∂ yy v N 0 (x 0 ), ∂ xy v N 0 (x 0 ), ϕ
where P : R 4 -→ R is the following π-periodical function with respect to the last variable ϕ

P (a, b, c, ϕ) = 1 2 (a + b) + 1 2 (a -b) cos(2ϕ) + c sin(2ϕ).
Then the computation of (4.3b) comes from the minimization of I c (x 0 , ϕ) with respect to ϕ ∈ [0, π]. Derivatives of u N 0 and v N 0 are computed by a convolution with derivative filters which is faster than using of matrices/vector product. It is easier to compute 

Application to filament detection on images possibly noisy.

In this section we give some numerical results on synthetic images and real images. In all of this section we assume that there is no blur (K = I). In this section we compare the four indicators I b Bilap (4.3a), I c Bilap (4.3b), I c Lap (5.1) and I f Hes (6.1) on images containing filaments, road or vessel-like structures. We will display these different indicators on edges and on filaments in order to illustrate Lemma 2.1. Then, we study the robustness of I b Bilap , I c Bilap and I f Hes with respect to noise. To visualize positive indicators on gray level images, we display their opposite value rescaled in [0, 255] in order to have the detected structures in black and the rest in white.

Structures detected by the topological indicators.

In this section we compare the fourth indicators on a simple synthetic image and on a real one containing edges and filaments. Figure 5 compares, in a simple case, the bilaplacian and the Laplacian indicators with the indicator I f

Hes on an edge and on a filament.

I b

Bilap , I c Bilap and I f Hes are more sensitive to filaments than to edges, contrary to I c Lap . This simple case numerically justifies the second order derivatives in the cost function (2.1) and it is also a numerical validation of Lemma 2.1. In a similar way, Figure 6 shows a real initial image with the three indicators. I b Bilap and I c Bilap mainly detect the center of the road network. I f Hes is also higher on roads than on edges but a lot of noise and texture are detected. I c Lap is high on edges and on the boundaries of the road. 8.2. Robustness of the topological gradient with respect to Gaussian noise and comparisons. An important quality of an indicator is its robustness with respect to noise. In this section, we compare the robustness with respect to noise of I b Bilap , I c Bilap and I f Hes . Figure 7 displays a profile of a noisy filament, the direct solution (3.1), the adjoint solution (3.2) and I c Bilap (4.3b). We see that some aliasing appears for the direct and adjoint solutions. This is due to the truncation in the Fourier serie. Figure 8 displays these three indicators for a synthetic image with three different PSNR (peak signal-to-noise ratio). We recall that in all experiments only Gaussian noise is used. This study shows that I c Bilap and I b Bilap are more robust with respect to noise than the indicator I f Hes . Next I c Bilap is more robust than I b Bilap . The tuning of α depends on the size of the structures to detect and to the level of noise. The more α is increased the more the topological gradient is spread and smooth. 

Additional information given by the computation of I c

Bilap (4.3b). Two important data for filament detection are its location and its direction. In this section we present another advantage of the crack model : its computing (4.3b) leads to finding an optimal crack direction that matches the filament direction. We recall that the computation of I f Hes gives also an approximation of the direction but it is sensitive to noise. In [START_REF] Morales | Vesselness enhancement diffusion[END_REF] the authors compute the associated vector to the smallest eigenvalue of the normalized Hessian matrix recalled in section 6. We still use the same notations in section 6, and we denoted by v 1 the vector obtained with this method. In this subsection we compare this vector field with the orthogonal direction of the vector maximizing (4.3b).

Figure 9 displays the vectors field performed by (4.3b) and the vectors field v 1 . We can see that the vectors given by (4.3b) match better the filament tangent vectors and seems more robust with respect to noise than the vectors v 1 . Moreover the computation of v 1 needs to tune two parameters ρ and σ. Besides this method is efficient only for images degraded by Gaussian noise while the topological gradient method can be adapted to the more general problem of deblurring by changing the data fidelity term in (2.1) (see sections 4 and 10). Fig. 9. The tangent vectors field given by (4.3b) compared to the vectors field v 1 [START_REF] Morales | Vesselness enhancement diffusion[END_REF]. For (b) the length of the vectors is proportional to I c Bilap and for (c) it is proportional to I f Hes (6.1).

Applications to point detection on images possibly noisy.

In this section we focus on point detection. In all of this section we consider that there is no blur i.e. K = I. We assume here that points are circular structures of few pixels (2 or 3 pixels). We focus on structures that do not have a privileged direction (isotropic structures). In this section we will compare the indicators I c Lap (5.1), I b Bilap (4.3a), I c Bilap (4.3b) and I p Hes (6.1). We first compare these fourth indicators on a non noisy and simple image containing a small and a big circular structures. Then we compare their robustness with respect to Gaussian noise. We recall that to visualize positive indicators on gray level images, we display their opposite value rescaled in [0, 255]. Bilap for α = 0.1 and I c Bilap for α = 10 -3 are more sensitive to small objects (about 2 or 3 pixels, e.g. small cells ) than to big ones, while I c Lap is more sensitive to big objects (about 10 pixels) than to small ones. I p Hes for σ = 5/4 detects at the same level the center of the small structure and the edges of the big one.

Figure 10 and Figure 11 show that by increasing α, the size of structures detected by I b Bilap and I c Bilap increases. Hence we deduce that α must be tuned with respect to the size of the structures we want to detect. I p Hes is singular on both small and big structures but the contrast between the background and the detected structures is lower than for the topological indicators. All of this shows that the choice of the topological model (2.1)-(2.2) is adapted to the point detection. Hes for an image containing two circular objects of different sizes with different levels of noise. Figure 13 shows similar results but for a real non noisy image that we have noised by an additive Gaussian noise. While the results in the case of a non noisy image are similar for I b Bilap and I c Bilap , it is no more true when we add noise. Indeed if we compare I b Bilap with I c Bilap , we remark that the fact of increasing α destroys more small structures for I c Bilap than for I b Bilap . We tune the value of the parameter α with the level of noise. When the noise level is high, we increase the value of the parameter α in order to give more importance to the regularization term in (2.2). The tuning of this parameter is very easy with respect to noise. The indicator I p Hes is more sensitive to noise than the topological indicators. According to Figure 12 and Figure 13 the indicator I b Bilap is the most adapted indicator to detect small isotropic structures. It is quite robust with respect to noise and small structures are detected without a change of their form. I c Bilap seems to lengthen big structures in one direction while they have not privileged directions. Moreover we must notice that it is easier and faster to compute I b Bilap (4.3a) than I c Bilap which is performed by minimizing an expression over the normal n of the crack. 10.1. Discretisation by FFT. One property not fullfilled by the DCT2 is that the DCT2 of a convolution product of two functions is not the DCT2 product of each function. However we know that the property is guaranted by the DCT1. A DCT1 of N points is equivalent to a DFT of 2N -2 points. To fix ideas in 1D for N = 5, the DCT1 of the row vector [x 0 , x 1 , x 2 , x 3 , x 4 ] is equivalent to an FFT of the row vector [x 0 , x 1 , x 2 , x 3 , x 4 , x 3 , x 2 , x 1 ]. Hence we extend the initial N y × N x image to an 2(N y -1) × 2(N x -1) image. We consider that the image is a signal 2(N x-1)-periodic with respect to x and 2(N y -1)-periodic with respect to y. As said in section 7.2 the advantage of this extension is that the trigonometric interpolation of the signal is regular across the boundary of the extended image and symmetric by construction. It is the most classical extension in image processing and it allows to avoid "edge effect". In the sequel we denote by X the Fourier coefficient vector of the vector x. To avoid aliasing introduced by the bilaplacian operator we take the following space of frequencies (see [START_REF] Johnson | Notes on fft-based differentiation[END_REF]): πkx (Nx-1) , πky (Ny-1) , (k x , k y ) ∈ E x × E y with E x = {0, ..., N x -1, -(N x -2), ..., -1} and E y = {0, ..., N y -1, -(N y -2), ..., -1}. We denote by Λ x and Λ y the 2(N y -1) × 2(N x -1) mesh grids associated with this discrete space. To compute the DFT of the convolution kernel we can either

• extend the kernel k ij defined on [[0, 2n x ]] × [[0, 2n y ]] centered at (n x , n y ) in a kernel defined on [[0, 2(N x -1) -1]] × [[0, 2(N y -1) -1]
] and centered at (N x -1, N y -1) • use an FFT to calculate K ij • use the translation formula of vector (N x -1, N y -1) :

K ij ← K ij (-1) i+j
for 0 ≤ i < 2(N y -1) and 0 ≤ j < 2(N x -1) or

• extend directly the kernel in a symmetric and periodic kernel defined on

[[0, 2(N x -1) -1]] × [[0, 2(N y -1) -1]]. To fix ideas, in 1D the extension of the vector [x -2 , x -1 x 0 , x 1 , x 2 ] is [x 0 , x 1 , x 2 , 0, ..., 0, x -2 , x -1 ].
• use an FFT to compute K ij Now let us compute the DFT of the dual convolution operator. In 1D, if we denote by k a N-periodic discrete signal associated with a convolution operator, the dual operator is defined by the signal

k ⋆ (i) = k(N -i) for 1 ≤ i < N and k ⋆ (0) = k(0)
The DFT associated with K ⋆ is then K ⋆ i = K i . The result generalizes easily in 2D and we deduce that K ⋆ ij = K ij (in general k is symmetric and so K ⋆ = K). To compute solutions of (4.1) and (4. use the procedure described in section 10.1 to calculate K kl for 0 ≤ k < 2(N y -1) and 0 ≤ l < 2(N x -1).

3. Use an FFT to compute

F kl for (k, l) ∈ [[0, 2(N y -1) -1]] × [[0, 2(N x -1) -1]].
4. Given Λ x and Λ y , the mesh grids associated to the frequency space described in section 10.1, compute :

∆ 2 kl = Λ x 4 kl + 2Λ x 2 kl Λ y 2 kl + Λ y 4 kl U kl = K kl F kl |K kl | 2 + α∆ 4 kl and V kl = K kl (2K kl U kl -F kl ) |K kl | 2 + α∆ 4 kl 5. Use an inverse FFT to compute u ij and v ij for (i, j) ∈ [[0, 2(N y -1) -1]] × [[0, 2(N x -1) -1]]. 6. Restrict u and v to the grid [[0, N y -1]] × [[0, N x -1]]
10.2. Numerical results. In this section we test our filaments and points detectors as well the restoration process (5.3) on blurred and noisy images. We separately illustrate the filament detection given by I c Bilap (4.3b), the filaments and edges restoration (5.3), and the point detection set by (4.3a).

Filament detection and restoration

We test two kinds of blurring: the Gaussian blurring and the motion one. A Gaussian blurring is performed by a convolution by a Gaussian of scale σ (in our example σ = 2.1). This blur can be caused by a bad lense adjustement. It can model a blurring caused by the material. A motion blurring models the effect of the motion of the target or of the camera. It is computed by a convolution with a symmetrical kernel depending on a length parameter (commonly an odd number) and on the angle θ between the direction of the motion and the horizontal. For more details on the blur origins we refer the reader to [START_REF] Pawley | Handbook of Biological Confocal Microscopy[END_REF]. Here the kernel of the motion blur is performed by using the Matlab function fspecial. On Figure 14 and Figure 15 we compare I c Bilap (4.3b) and I f Hes (6.1) on a blurred and noisy image. For the Gaussian blurring, blur effects occur in a similar manner on the whole filament while for the motion blurring, the horizontal part of the filament (perpendicular direction to the motion) is the most degraded. We notice that I c Bilap still is efficient on blurred and noisy images but that I f Hes does not allow to detect such degraded filaments. On Figure 16 and Figure 17, we compare the restoration (5.3) with χ η = χ Bilap η to a TV (total variation) method (see [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]) on respectively a Gaussian blurred and a motion blurred noisy image containing a filament. We see that (5.3) restores very well the filament and the restored version (5.3) is closer to the image to recover than the image obtained by using the TV method. Particularly, the filament restored by (5.3) is quite well preserved while it is spread out by the TV model. Moreover the computational time of (5.3) is shorter than the TV model (about 5 seconds for (5.3) and 20 seconds for the TV model performed by a basic explicit scheme and for a 170 × 200 image).

Remark 9. We see on Figure 16 that some curved parts of the filament are not well restored. Indeed if the filament is very curved in the sense of the initial resolution of the image, its tangent is not a good aprroximation. Hence, we can first increase the resolution of the image by interpolating the data on the new grid (vectors, image and I c Bilap ) by using for example bilinear or spline interpolation. Then, it suffices to solve problem (5.3) on the new mesh and then come back to the initial one by an averaging. Bilap detects the filament. However I c Bilap has two picks at both side of the filament. We can explain this phenomena as follows. First let us suppose that the continuous image to recover is a Gaussian function that writes as f (x) = e -x 2 /η 2 . We remark that its curvature is maximal at point x = 0 and it has two local minima at points x = ± 3 2 η ( the respective values are -2 η 2 and 4 η 2 e -3/2 ). Then the convolution is implemented by Fourier transform and it is known that the truncation in the Fourier sum generates an aliasing effect that is increased by the multiplication in the Fourier domain. Finally, on Figure 20 we display the restoration (5.3) for different choices of χ η for a Gaussian blurred and noisy image containing both filaments and edges. We see that if we take χ η = χ Lap η then edges are preserved but filament are spread out. Conversely if we take χ η = χ Bilap η , then filament are quite well restored but edges are spread out. Finally by taking χ η = min(χ Bilap η , χ Lap η ), then both edges and filaments are well restored. For all experiments the choice of the thresholds δ 1 and δ 2 defining χ η are such that 3% of points are in E δ1 and 7% of points are in E δ2 . However on Figure 20 (g)-(h) we see that some halo remains on filaments. Indeed filaments are more degraded by blur and noise than edges. Thus, χ Bilap η detects very contrasted edges (more exactly both side of it), instead of very damaged part of filaments. On Figure 5 we can easily imagine that if the edge contrast is higher than the filament one, the two picks of I c Bilap at both side of the edge may become higher than the one on the filament. All of this explain the reason for which some parts of filaments are not very well restored. 11. Application to a 3D image. In [START_REF] Aubert | Topological gradient for a fourth order operator used in image analysis[END_REF], the topological gradient of (2.1) for the problem (2.5) is explicitly given in 2D. In 3D, B 1 and B 2 for ν = 0 generalize as

B 2 (u) = ∂ 2 u ∂x i ∂x j n i n j B 1 (u) = div s P ∂ 2 u ∂x i ∂x j n i e j + ∂ 3 u ∂x 2 i ∂x j n j
where we use the repeated subscript notation and where div s is the surface divergence operator defined by div s ( q) = P : Jac( q), P is the projector P ij = (δ ij -n i n j ) and Jac( q) is the Jacobian matrix of q(x). A : B denotes the scalar product of matrices A and B. Then the only change (in comparison with the 2D case) is the scaling parameter factor in the topological gradient expression which is ǫ 3 (instead ǫ 2 in 2D). For more details we refer the reader to [START_REF] Drogoul | Applications of the topological gradient in the detection of fine structures in imaging[END_REF]. We define the following planar circular crack σ = {(rcos(θ), rsin(θ), 0), 0 ≤ r < 1, 0 ≤ θ < 2π} .

Then a crack of normal n = (sin(ϕ)cos(ξ), sin(ϕ)sin(ξ), cos(ϕ)) T is deduced from this definition by writing the same thing in the orthonormal basis ( v, w, n) with v = (-sin(ξ), cos(ξ), 0) T and w = (-cos(ϕ)cos(ξ), -cos(ϕ)sin(ξ), sin(ϕ)) T for 0 ≤ ϕ < π and 0 ≤ ξ < 2π. Thus, the topological gradient for a cracked domain in 3D is (see [START_REF] Drogoul | Applications of the topological gradient in the detection of fine structures in imaging[END_REF]) :

(11.1)

I c Bilap (x 0 ) = max n =1 |I c (x 0 , n)|
where

I c (x 0 , n) = - 4π 3 ∇ 2 u 0 (x 0 )( n, n)∇ 2 v 0 (x 0 )( n, n)
In this section, in order to shorten notations, we still denote by I c Bilap (11.1) the bilaplacian topological gradient for a cracked domain in 3D. On Figure 23 we display I c Bilap on two noisy images. We precise that results displayed here are obtained by using the 3D DCT and the 3D inverse DCT in Algorithm 1 (see section 7.2). Initial images contain two kinds of structures : filament of dimension 1 in 3D (modeled by a cylinder of radius 3 pixels of axis the z-axis) and surfaces of dimension 2 in 3D (modeled by two concentric spheres of width 4 or 5 pixels). We denote by (x c , y c , z c ) the coordinates of the center of the spheres. Remark 10. We can show that I c Bilap (11.1) detects also points in 3D (modeled by small spheres). But, the topological indicator for a perforated domain seems more adapted to do this. Its computation is very technical and it will be done in future works.
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 2 (4.3a) than (4.3b) (for K = I) since the formula is an explicit function of the discrete solutions u N 0 and v N 0 . Finally we sum up the computation of the topological indicators I b Bilap (4.3a) and I c Bilap (4.3b) for K = I in Algorithm 2: Computation of I b Bilap (4.3a) and I c Bilap (4.3b) (K = I) 1. Computation of u N 0 and v N 0 the numerical approximation of the solutions of (3.1) and (3.2) by using finite elements or DCT. 2. Computation of the topological indicator by using (4.3a) or (4.3b) for K = I.
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 56 Fig. 5. Visualization of I b Bilap (4.3a),I c Bilap (4.3b), I c Lap (5.1) and I f Hes (6.1) on an edge and a filament on a synthetic image
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 788 Fig. 7. A transverse cut displaying (a) the initial image, (b) its noisy version (PSNR=26dB), (c) the direct and adjoint solutions and (d) I c Bilap for α = 0.8

  (a) Initial noisy image (PSNR=26dB) (b) Vectors field associated with I c Bilap (4.3b) (c) Vectors field v 1 [26]
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 1 Structures detected by the topological gradient. Figure 10 illustrates Lemma 2.1. It displays I c Lap , I c Bilap , I b Bilap and I p Hes on an image containing a big and a small isotropic structure. As expected we see that I c Lap is inefficient to detect small structures : only the edges are detected and not the center. For respectively different values of α, I b Bilap and I c Bilap give similar results in the case of a non noisy image. Indeed we observe that I b
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 1011 Fig. 10. Comparison of I c Lap (5.1), I b Bilap (4.3a), I c Bilap (4.3b) and I p hes (6.1) on a simple synthetic image without noise
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 1213 Fig. 12. Study of the robustness with respect to noise of I b Bilap (4.3a), I c Bilap (4.3b) and I p hes (6.1) on a synthetic image. Each row matches a level of noise and each column is associated to an indicator

2 ) we use Algorithm 3 Algorithm 3

 233 Computation of (4.1) and (4.2) 1. Given an image f ij defined for (i,j) ∈ [[0, N y -1]] × [[0, N x -1]], extend it to a periodic and symmetric image defined on [[0, 2(N y -1) -1]] × [[0, 2(N x -1) -1]]. 2. Given a blurring Kernel convolution k ij , defined for (i, j) ∈ [[0, 2n y ]] × [[0, 2n x ]],

Fig. 14 .Fig. 15 .

 1415 Fig. 14. Comparison of I c Bilap (4.3b) and I f Hes (6.1) for a Gaussian blurred (σ = 2.1) and noisy (PSNR=15.7dB) image

Fig. 16 .Fig. 17 .Figure 18 and

 161718 Fig. 16. Comparison of the restoration (5.3) (β = 1) with the TV model for a Gaussian blurred (σ = 1.5) and Gaussian noisy (PSNR=15.7dB) synthetic image

Fig. 18 .Fig. 19 .

 1819 Fig. 18. (a) A transverse cut displaying the Gaussian blurring (σ = 2.1) and the Gaussian noise effects (PSNR=15.7dB), (b) the initial image and the restored version (5.3) (β = 1) and (c) I c Bilap (4.3b) for α = 0.1

Fig. 20 .

 20 Fig. 20. Comparison of the restoration process (5.3) (β = 2) with different choices of function χη for a Gaussian blurred and noisy image (σ = 3, PSNR=15.7dB)

Fig. 21 .Fig. 22 .

 2122 Fig. 21. Point detection by the topological indicator I b Bilap (4.3a) and the indicator I Hes (6.1) on a synthetic image blurred by a Gaussian convolution (σ = 1.5) and noised by a Gaussian noise (PSNR=15.7dB)

Fig. 23 .Fig. 24 .

 2324 Fig. 23. Isosurfaces of I c Bilap (11.1) for two Gaussian noisy images (PSNR=16dB)

Fig. 25 .

 25 Fig. 25. A 1D cut (y = yc) and (z = zc) of I c Bilap (11.1) for two Gaussian noisy images (PSNR=16dB) .

  we set λ 1 and λ 2 the eigenvalues of H σ such that 0 ≤ |λ 1 | ≤ |λ 2 |, then we define the two following point and filament indicators : ) is high if x belongs to both points or filaments. I f Hes (x) is high only if there is a discontinuity in exactly one direction i.e. on a filament. With I f Hes , we set v 1 as the associated vector to the smallest eigenvalue of the normalized Hessian matrix[START_REF] Morales | Vesselness enhancement diffusion[END_REF] 

	(6.1)	I p Hes = |λ 2 | (points indicator) I f Hes = |λ 2 | -|λ 1 | (filaments indicator)
	I p Hes (x