
HAL Id: hal-01018204
https://hal.science/hal-01018204v2

Submitted on 7 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NUMERICAL ANALYSIS OF THE TOPOLOGICAL
GRADIENT METHOD FOR FOURTH ORDER

MODELS AND APPLICATIONS TO THE
DETECTION OF FINE STRUCTURES IN IMAGING

Audric Drogoul

To cite this version:
Audric Drogoul. NUMERICAL ANALYSIS OF THE TOPOLOGICAL GRADIENT
METHOD FOR FOURTH ORDER MODELS AND APPLICATIONS TO THE DETEC-
TION OF FINE STRUCTURES IN IMAGING. SIAM Journal on Imaging Sciences, 2014,
http://dx.doi.org/10.1137/140967374. �10.1137/140967374�. �hal-01018204v2�

https://hal.science/hal-01018204v2
https://hal.archives-ouvertes.fr


NUMERICAL ANALYSIS OF THE TOPOLOGICAL GRADIENT
METHOD FOR FOURTH ORDER MODELS AND APPLICATIONS

TO THE DETECTION OF FINE STRUCTURES IN IMAGING

AUDRIC DROGOUL†

Abstract. In this paper we present the numerical analysis of the topological gradient method
developed in [4] for the detection of fine structures (filaments and points in 2D). First used in
mechanics of structures [1], this method has been then applied in imaging for edge detection and
image restoration [11, 16]. The model involves second order derivatives and leads to fourth order
PDEs. We first develop the case of Gaussian noisy images and then we extend the method to the
more general case of blurred and Gaussian noisy images. We show that as for edge detection [16],
the topological gradient is not only a filament detector but it also allows to restore images containing
filaments. Then we extend the approach to surfaces and filament detection in 3D. We experiment all
of the presented methods on synthetic and real images and compare our results with some classical
methods.
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1. Introduction. The main goal of this paper is to propose a topological gra-
dient based method for the detection of fine structures in 2D (filaments and points).
This article is a companion paper of [4] and more precisely it is its numerical and
applied version. Before presenting the model, let us recall the notion of topological
gradient and the problem of detection of fine structures in 2D images. The topological
sensitivity analysis is the study of the variations of a cost function with respect to a
topological modification of an open domain of R2, such as the creation of a hole or a
crack. In order to fix ideas, let Ω ⊂ R

2 be the image domain, of boundary ∂Ω = Γ,
and let j(Ω) = J(Ω, uΩ) be a cost function where uΩ is the solution of a partial dif-
ferential equation defined on Ω. For small ǫ > 0, let (a) Ωǫ = Ω\{x0 + ǫω} or (b)
Ωǫ = Ω\{x0 + ǫσ(~n)} be the perturbed domain, where x0 ∈ Ω, ω = B(O, 1) is the
unit ball of R2 and σ(~n) is a straight segment (crack) with normal ~n (see Figure 1).

(a) Perforated domain (b) Cracked domain

Fig. 1.

Generally in 2D and for Neumann problems, we have the following expansion
with respect to ǫ : j(Ωǫ) = j(Ω) + ǫ2I(x0) + o(ǫ2) where I(x0) is the topological

gradient defined by I(x0) = limǫ→0
j(Ωǫ)−j(Ω)

ǫ2 . Thus if we want to minimize j(Ωǫ) it
would be preferable to create holes or cracks at points x0 where I(x0) is “the most
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negative”. Initially defined in [31, 23] and used in mechanics for crack detection [1]
or engineering design, the notion of topological gradient has been recently applied
to imaging problems such as restoration/segmentation or classification of images ([7,
11, 8]). For example in restoration/segmentation, if f denotes the observed image
(possibly noised and/or blurred) we look for a couple (u, γ), where γ is the set of edges
of the image and u is a regularized version of f on Ω\γ. Many variational methods
have been proposed in the literature ([6]) and the most famous one is the Mumford
and Shah [27] model. A recent alternative was the introduction of the topological
gradient method. For edge detection the simplest model [7, 11, 8] is based on the
Laplace operator. The associated energy uses the spatial gradient of uΩ : J(Ω, uΩ) =∫
Ω
|∇uΩ|2dx. The main difference between edges and filaments is that for edges the

singularity is associated with a jump of the intensity across edges while for filaments
there is no jump (see Figure 2). If for edge detection the usual spatial gradient is

(a) (b)

Fig. 2. (a): An edge with a jump of the intensity I across the boundary of the object; (b) A
filament without jump across it.

classically used, it is inefficient for the detection of points or filaments. To give a
heuristic illustration of this fact let us consider in 1D the function f(x) = 0 if x 6= 0
and f(0) = 1. This function can be simply approximated by the function fη(x) = 0 if

|x| ≥ η and fη(x) =
2
η3 |x|3− 3

η2 |x|2+1 if |x| ≤ η. We have f ′
η(0) = 0 but f ′′

η (0) =
−6
η2 ,

thus f ′
η “does not see” 0 but f ′′

η becomes singular at 0. In fact, it is known ([32, 26])
that if we want to detect fine structures by using differential operators, we must use
at least second order operators. For these reasons, in [4], we have chosen a variational
model using second order derivatives. We will describe this model in section 2. Other
variational models have been proposed in the literature according to applications, see
[22] for the detection of biological filaments or [29] for road network detection. In
[3, 10] and [9] the authors propose a model for detecting objects of codimension two
and one in 2D images. Their method is inspired by Ginzburg-Landau models. In
[18] a variational model involving second order differential operators is developed for
detecting point-like singularities. There exists of course other approaches not based on
variational calculus. In [24, 36] morphological methods are presented. In [36], authors
propose a method for automatic detection of vessel-like patterns using morphological
filters and curvature evaluation. The method is sensitive to the noise type (uniform
noise destructs small vessels) and the computation time is not negligible. In [20, 35,
34], stochastic methods are used. Here filaments are defined as the realization of
random processes. These methods are costly in terms of CPU time. In [34] a thin
network is simulated by a point process which penalizes not connected segments and
favors aligned segments. The estimate of the network is obtained by minimising an
energy function. Finally let us mention the wavelet approach [2, 21, 12].
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The remainder of this paper is organized as follows. In section 2 we present
the variational model and we justify thanks to a heuristic reasoning, the choice of
the cost function and associated PDE. Then in section 3 we recall the theoretical
value of the topological gradient given in [4]. We extend the result to a more general
model of image degradation in section 4. We will see in section 5 that the topological
gradient is not only a detector but it also allows to restore images. To compare our
indicator with other ones, in section 6 we present a classical indicator often used in
filament and point detection [33, 32, 26] . In section 7 we develop the numerical
analysis of the topological gradient method. In section 8 and section 9 we give some
experimental results on filament and point detection for possibly noisy images. We
numerically justify the pertinence of the model, and compare the results obtained by
the topological gradient method with the ones given by the indicator introduced in
section 6. In section 10, we experiment the segmentation given in section 4 for blurred
and noisy images and we illustrate the restoration previously presented in section 5.
Finally, in section 11 we give the value of the topological gradient in the 3D case and
we present some numerical results.

2. Definition of the cost function and variational model. In this section
we give a lemma explaining why we need a cost function using second order derivatives
to detect fine structures in 2D images and then we set the chosen model defined on
Ωǫ.

2.1. What is the good operator for detecting fine structures?. We denote
by D(R2) the space of C∞-functions with compact support in R

2 and D′(R2) the space
of distributions on R

2. For the proof of this lemma we refer to [15].
Lemma 2.1. Let ϕ : R2 −→ R be a Lipschitz continuous function, and let (gh)h>0

be a sequence of functions defined by

gh(x) =
1

θ1(h)
e
−ϕ2(x)

θ2(h)

where θi : R
+ −→ R

+ and lim
h→0

θi(h) = 0.

(1) Let a ∈ R
2, ϕ(x) = ‖x− a‖, θ1(h) = πh and θ2(h) = h, then

gh −→
h→0

δa, in D′(R2)

Moreover we have

∇gh(a) = [0, 0]T , ∇2gh(a) = − 2

πh2
I

where I denotes the identity matrix in R
2.

(2) Let Γ be a smooth closed curve or a smooth infinite curve of R2 delimiting

two sub-domains R2
Γ
−
and R

2
Γ
+
forming a partition of R2. Let ϕ be the signed

distance to Γ defined by :

ϕ(x) = dist(x,R2
Γ
−
)− dist(x,R2

Γ
+
)

R
2
Γ
+

(resp. R
2
Γ
−
) indentifies to the sub-domain {ϕ > 0} (resp. {ϕ < 0}).

Taking the following scalings : θ1(h) =
√
πh and θ2(h) = h, then we have

gh −→
h→0

δΓ, in D′(R2)
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Moreover for all x ∈ Γ :

∇gh(x) = [0, 0]T , spec(∇2gh(x)) =

{
− 2

h3/2
, 0

}

where spec(M) denotes the eigenvalues of the matrix M. The associated eigen-
vectors on Γ are (∇ϕ(x),∇ϕ(x)⊥) where ∇ϕ(x) = ~n(x) is the unit normal of
Γ.

In 2D images, filaments can be roughly modeled by an indicator function sup-
ported by a smooth curve Γ. Lemma 2.1 shows by a heuristic manner that we can
approximate the filament by a sequence of smooth functions, whose Hessian matrices
blow up in the perpendicular direction to Γ while their gradient are null. Hence this
shows that the appropriate operator for detecting such structures must involve second
order derivatives of the image we want to recover.

Remark 1. This lemma is heuristic because it only deals with punctual values
of the smooth functions approximating the Dirac measures. If we modify the sequence
(gh)h∈R (e.g by replacing gh(x) by gh(x+hv) with v a constant vector), the convergence
to the Dirac measures is fulfilled but the gradient can be not null. However :

• For the point, by setting Wh = {(x1, 0), x1 ∈ [−hη, hη]} with η > 0 :

1

|Wh|

∫

Wh

∂gh
∂xi

= 0

1

|Wh|

∫

Wh

∂2gh
∂xi∂xj

= O

(
1

h2

)

• For the curve, if γ is a circle of radius R > 0, by setting for η > 0 and θ0 > 0

Wh =
{
(rcos(θ), rsin(θ), (r, θ) ∈ [R−

√
hη,R+

√
hη]× [0, θ0h]

}
:

1

|Wh|

∫

Wh

∂gh
∂xi

= O(1)

1

|Wh|

∫

Wh

∂2gh
∂xi∂xj

= O

(
1

h

)

Similar results hold for a large class of functions approximating Dirac mea-
sures, which heuristically justifies that the detection of fine structures needs
second order derivatives.

2.2. Definition of the cost function and the fourth order PDE. Now we
introduce the cost function and the PDE studied in [4]. The model is inspired by the
Kirchhoff thin static plate model subject to pure bending (see [14]) with a Poisson
ratio ν = 0. The cost function is defined by :

(2.1) Jǫ(u) = JΩǫ
(u) =

∫

Ωǫ

(
∂2u

∂x2
1

)2

+

(
∂2u

∂x2
2

)2

+ 2

(
∂2u

∂x1∂x2

)2

=

∫

Ωǫ

‖∇2u‖2,

and Ωǫ is either (a) Ωǫ = Ω\{x0 + ǫω} or (b) Ωǫ = Ω\{x0 + ǫσ(~n)}. For a matrix
M we denote ‖M‖2 = tr(MTM). Let uΩǫ

= uǫ be a regularization of the observed
image f ∈ L2(Ωǫ) solution of the following minimization problem :

(2.2) min
u∈H2(Ωǫ)

(
αJǫ(u) + ‖u− f‖2L2(Ωǫ)

)
(Pǫ)
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where α > 0 is a parameter to be tuned. The variational formulation of (Pǫ) writes
as : find uǫ ∈ H2(Ωǫ) such that

(2.3) aǫ(uǫ, v) = lǫ(v) ∀v ∈ H2(Ωǫ)

where aǫ(u, v) and lǫ(v) denote the bilinear and linear forms:

(2.4) aǫ(u, v) =

∫

Ωǫ

α
∑

1≤i,j≤2

∂2u

∂xi∂xj

∂2v

∂xi∂xj
+ uv lǫ(v) =

∫

Ωǫ

fv.

The Euler equations associated with (Pǫ) are

(2.5) (Pǫ)





α∆2uǫ + uǫ = f on Ωǫ

B1(uǫ) = 0 on ∂Ωǫ

B2(uǫ) = 0 on ∂Ωǫ

where

B1(u) = ∂n(∆u)− ∂σ

(
n1n2

(
∂2u

∂x2
1

− ∂2u

∂x2
2

)
− (n2

1 − n2
2)

∂2u

∂x1∂x2

)

B2(u) = n2
1

∂2u

∂x2
1

+ n2
2

∂2u

∂x2
2

+ 2n1n2
∂2u

∂x1∂x2

~n = (n1, n2) is the outer normal to the domain, and ~σ = (σ1, σ2) the tangent vector
such that (~n, ~σ) forms an orthonormal basis.
In mechanics B1(u) is the transverse force (shear force and twisting moment), B2(u)
represents the bending moment and u is the deflection of the thin plate. For more
details on this problem we refer the reader to [15, 14].

Remark 2. By using a maximum a posteriori estimator (MAP estimator), we
can show that the data fidelity term in (2.2) is adapted to the model f = u+ b where
f is the observed image, u the image to recover and b a Gaussian noise.

3. Computation of the topological gradient in cases (a) of a perforated
domain and (b) of a cracked domain. The following theorem is taken from [4, 5]
and adapted to a numerical objective. In [4, 5] we give the topological gradient expres-
sion in the cases of perforated and cracked domains. The calculus of the topological
gradient relies upon the evaluation of the difference Jǫ(uǫ)−J0(u0) when ǫ→ 0. This
evaluation is very technical but (and it is remarkable) only needs the computation of
two solutions : u0 the solution of the direct problem (P0) and v0 the solution of the
adjoint problem (Q0) defined by

(3.1) (P0)

{
α∆2u0 + u0 = f in Ω

B1(u0) = B2(u0) = 0 on ∂Ω

and

(3.2) (Q0)

{
α∆2v0 + v0 = 2u0 − f in Ω

B1(v0) = B2(v0) = 0 on ∂Ω
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Remark 3. In the adjoint problem, the source term is 2u0−f and so v0 is closed
to f if u0 is closed to f.

We refer the reader to [5, 17] to to get an idea on the computation of the topo-
logical gradient for a cracked domain (b).

Theorem 3.1.

The topological gradients of the cost function (2.1) associated with the PDE (2.5)
in the cases of a perforated domain (denoted by Ib) and a cracked domain (denoted
by Ic) are:

Ib(x0) =
π

α
(f(x0)− u0(x0)) (v0(x0)− u0(x0))−M(u0, v0)(x0)

with

M(u, v) = π∆u∆v+
2π

3

((
∂2u

∂x2
1

− ∂2u

∂x2
2

)(
∂2v

∂x2
1

− ∂2v

∂x2
2

)
+ 4

∂2u

∂x1∂x2

∂2v

∂x1∂x2

)

and

(3.3) Ic(x0, ~n) = −
2π

3
∇2u0(x0)(~n, ~n)∇2v0(x0)(~n, ~n)

where ~n is the normal to the crack, u0 and v0 are the solutions of the direct and
dual problems (P0) and (Q0) given by (3.1) and (3.2) respectively. We define the
topological indicators at point x0 for a perforated and cracked domain as

IbBilap(x0) = |Ib(x0)|

IcBilap(x0) = max
‖~n‖=1

|Ic(x0, ~n)|

We can notice that the computation of the topological gradient for the two models
(crack and ball) only needs the resolution of two linear problems (P0) and (Q0). In
section 7 we propose two ways to discretize these problems.

Remark 4. IcBilap and IbBilap are called topological indicators because they do
not give the information of an increasing or decreasing of the energy (2.1). For the
definition of IcBilap we take the maximum value of |Ic(x0, ~n)| with respect to ~n because
we have noticed that numerically the sign of Ic(x0, ~n) depends on α (it is mostly
negative when α is quite small (α ≤ 0.1) and positive if α is quite large (α ≥ 2)). The
same remark holds for IbBilap.

4. Adaptation for a more general problem of deblurring. In most imag-
ing applications the optical material, or the motion of the camera or of the target
introduce blur on the observed image (see [28]). Generally, spatially invariant blur is
modeled as a positive convolution operator u 7→ Ku with K1 6= 0. We assume that
the observed image is of the form f = Ku + b where K is the blur operator, u the
image to recover and b a Gaussian additive noise. Thus, we can take into account the
blurring by replacing u by Ku into the data fidelity terms of the cost function of the
variational problem (2.2). Hence, Euler equations become:

(4.1) (P0)

{
α∆2u0 +K⋆Ku0 = K⋆f, in Ω

B1(u0) = B2(u0) = 0, on ∂Ω
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and

(4.2) (Q0)

{
α∆2v0 +K⋆Kv0 = K⋆(2Ku0 − f), in Ω

B1(v0) = B2(v0) = 0, on ∂Ω.

For the well posedness of (4.1) and (4.2) we refer the reader to [6] chapter 3. It is
straightforward to see that the topological gradient for the cracked domain is still
given by the same expression obtained without blur while for a perforated domain
its expression is a little bit changed. By still denoting by IbBilap and IcBilap the two
topological indicators associated to (2.1) and to the problem deduced from (2.2) by
replacing u by Ku, we have (see section 3 for notations and [15] for more details) :

(4.3a) IbBilap(x0) = |Ib(x0)|

(4.3b) IcBilap(x0) = max
‖~n‖=1

|Ic(x0, ~n)|

with

Ib(x0) =
π

α
(K⋆f(x0)−K⋆Ku0(x0)) (v0(x0)− u0(x0))−M(u0, v0)(x0)

Ic(x0) = −
2π

3
∇2u0(x0)(~n, ~n)∇2v0(x0)(~n, ~n)

and where u0 and v0 are given respectively by (4.1) and (4.2). The illustration of
these two topological indicators is performed in section 8 and 9 for K = I (no blur)
and in section 10 for K 6= I (with blur).

5. Restoration using the topological gradient. In this section we present
a restoration algorithm preserving edges and filaments. As said in the introduction,
the difference between edges and fine structures can be characterized as follows : an
edge is a discontinuity with a jump of the intensity and a filament is a discontinuity
without jump. The continuous definition of these structures is clear but for numerical
images it is no more true. Generally we consider as fine structure, a structure of
maximum 4 or 5 pixels width (point or filament). A structure of width more than 5
pixels can be considered as a volume object delimited by edges. We assume that the
observed degraded image f writes as f = Ku + b where u is the image to recover,
b the Gaussian noise and K the blur operator (generally a convolution such that
K1 6= 0, see [6] chapter 3). We still denote by IcBilap the topological indicator for a
cracked domain (4.3b) where u0 and v0 are given by (4.1) and (4.2) (section 4), and
we introduce the topological indicator IcLap defined in [11, 16] for edge detection :

(5.1) IcLap = min
‖~n‖=1

J c(x0, ~n) with J c(x0, ~n) = −π∇u0(x0).~n∇v0(x0).~n

where u0 and v0 are given by
(5.2){
−γ∆u0 +K⋆Ku0 = K⋆f in Ω

∂nu0 = 0 on ∂Ω
and

{
−γ∆v0 +K⋆Kv0 = K⋆(2Ku0 − f) in Ω

∂nv0 = 0 on ∂Ω.

with γ > 0 a parameter to tune. As a by-product, the calculus of the topological indi-
cators for a cracked domain IcBilap (4.3b) and IcLap (5.1) allows to restore images de-
graded by blur or/and Gaussian noise. We propose a restoration preserving both edges
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and filaments. Once IcBilap and IcLap are computed, we define for two fixed thresholds

δ1, δ2 > 0, the sets ELap
δ1

=
{
x ∈ Ω; IcLap ≤ −δ1

}
and EBilap

δ2
=

{
x ∈ Ω; IcBilap ≥ δ2

}

and the characteristic functions

χLap
η (x) =

{
η if x ∈ ELap

δ1

1 otherwise
and χBilap

η (x) =

{
η if x ∈ EBilap

δ2

1 otherwise

where η is a small positive parameter. From the computation of IcBilap and IcLap, we

also get the normalized direction ~τ = ~n⊥ of the discontinuity. For edges, ~n is given
by the associated vector to IcLap (5.1) and for filaments it is computed by using IcBilap

(4.3b). If ~n = (cos(ϕ), sin(ϕ)) is the normal to the minimum crack performed by
either IcBilap or IcLap, we denote ~τ = (sin(ϕ),−cos(ϕ)). Then if f is the degraded
observed image, the idea is to find a restored version u of f as the solution of the
following anisotropic PDE :

(5.3)

{
−div(βPϕ

η (x)∇u) +K⋆Ku = K⋆f on Ω

∂nu = 0 on Γ

where Pϕ
η (x) is a tensor constructed from ϕ(x), χBilap

η (x) and χLap
η (x); K is the

blur operator and β is a parameter to tune. More precisely, we choose Pϕ
η (x)∇u(x) =

(∇u.~τ )~τ+χη(x)(∇u.~n)~n where χη denotes either χLap
η or χBilap

η if we want to preserve
respectively edges or filaments. A simple identification shows that Pϕ

η (x) is the matrix
(5.4)

Pϕ
η (x) =

(
sin2(ϕ(x)) + χη(x)cos

2(ϕ(x)) sin(ϕ(x))cos(ϕ(x))(χη (x)− 1)
sin(ϕ(x))cos(ϕ(x))(χη (x) − 1) cos2(ϕ(x)) + χη(x)sin

2(ϕ(x))

)

The interpretation of this matrix Pϕ
η (x) is as follows :

• if x belongs to the background thanks to the definition of χη(x), P
ϕ
η (x) writes

as Pϕ
η (x) =

(
1 0
0 1

)
so div(Pϕ

η (x)∇u) = ∆u and the smoothing is isotropic.

• if x belongs to an edge (i.e. x ∈ ELap
δ1

) and if χη(x) = χLap
η (x), then χη(x) is

close to zero and Pϕ
η (x)∇u(x) ≈ (∇u.~τ )~τ . The diffusion is in the direction of

the edge.
• if x belongs to a filament (i.e. x ∈ EBilap

δ2
) and if χη(x) = χBilap

η (x), then
χη(x) is close to zero and Pϕ

η (x)∇u(x) ≈ (∇u.~τ)~τ . The diffusion is in the
direction of the filament.

Remark 5. In the case of χη = χLap
η , for a more general framework with different

kind of noise and blur, we refer the reader to [16].

Remark 6. If we want to preserve edges and filaments we can choose χη(x) =
min(χLap

η (x), χBilap
η (x)) (see section 10.2).

Remark 7. To compute a solution of (5.3), we use a finite difference scheme
[6] (pp. 76-77) with the matrix (5.4) and we represent the blur operator by a block
circulant matrix.

As we will see in section 10.2 on numerical examples, the restoration results
obtained when applying equation (5.3) are very good both for filaments and edges.
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6. Comparison with a classical indicator. In [33, 32, 26] the authors use
for detecting the center of vessels an indicator defined from the Hessian matrix of
a regularized version of the image. We denote by f the observed image, Gσ the
Gaussian function of scale σ and Hσ = ∇2f ∗Gσ = f ∗∇2Gσ. If we set λ1 and λ2 the
eigenvalues of Hσ such that 0 ≤ |λ1| ≤ |λ2|, then we define the two following point
and filament indicators :

(6.1)
IpHes = |λ2| (points indicator)
IfHes = |λ2| − |λ1| (filaments indicator)

IpHes(x) is high if x belongs to both points or filaments. IfHes(x) is high only if there

is a discontinuity in exactly one direction i.e. on a filament. With IfHes, we set v1 as
the associated vector to the smallest eigenvalue of the normalized Hessian matrix [26]

Ĥσ,ρ = Gρ ∗
[

f ∗ ∇2Gσ

(1 + |f ∗ ∇Gσ|2)1/2
]

where σ and ρ are called respectively the differentiation and the integration scales.
In our experiments we set ρ = 0.5 and σ is tuned with respect to the size of the
structures we want to detect. This direction is used in [26] to recover the tangent to
the filament (or to the center line of the vessel). It is known that the eigenvectors of
Hσ are very sensitive to noise and numerical experiments show that v1 matches better
the tangent filament direction than the vector associated to the smallest eigenvalue
of Hσ. We will compare this direction with the one given by (4.3b)(see section 8.3).

The scale σ in all of the pictures is chosen manually in order to have the best
result and depends on the size of the structures we want to detect.

7. Discretization of the PDEs (3.1) and (3.2) and numerical calculus of
the topological gradient. In this section we present two methods for computing
the solutions u0 and v0 of problems (3.1) and (3.2). The first method uses the P2-
Morley finite elements and the second one uses the DCT (Discrete Cosine Transform).
On the one hand, the convergence of the first method towards the theoretical solution
is well known and we will see that it is the least expensive finite elements method
in terms of number of variables. On the other hand, we will numerically show that
if we cannot prove that the second method converges to the solution of problems
(3.1) and (3.2), the results are similar and the computing time is much shorter. In
this section we denote by ‖u‖m,Ω the norm ‖u‖Hm(Ω) where Hm(Ω) is the Sobolev

space :
{
u,Dαu ∈ L2(Ω), 0 ≤ |α| ≤ m

}
where α ∈ N

d and |α| =
∑

αi. All calculus
are implemented in Matlab 7.5.0 (for the DCT choice and finite difference scheme)
and in Freefem ++ (for the P2 Morley choice). The experiments are performed on a
computer equipped with a processor Intel Core 1.9 GHz.

7.1. Discretization by finite elements. The variational formulation of (3.1)
and (3.2) are: find u0 ∈ H2(Ω) such that

(7.1) a0(u0, v) = 〈f, v〉 ∀v ∈ H2(Ω)

and find v0 ∈ H2(Ω) such that

(7.2) a0(u, v0) = −〈f − 2u0, u〉 ∀u ∈ H2(Ω)

where 〈u, v〉 denotes the L2(Ω)-scalar product. To discretize these two problems we
use the nonconforming quadratic Morley finite element (see [25] and [13] pp 148-151
and p 305). It is defined by the triplet (K,PK ,ΣK) where
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(i) K is a triangle
(ii) PK is the space of polynomial functions of degree less than or equal to 2

defined on K.
(iii) ΣK is the set of the following linear maps

v 7→ v(ai), where ai for i ∈ {1, 2, 3} are the vertices of K

v 7→ ∂nv(bi), where bi for i ∈ {1, 2, 3} are midpoints of K edges

and where bi is on the opposite edge of the vertex ai (see Figure 3).

Fig. 3. The quadratic Morley finite element geometry

Let (Th)h be a regular triangulation of Ω. For all h > 0, we denote by Xh the Morley
finite element space associated with (Th)h. We introduce the scalar product on Xh :

〈uh, vh〉h =
∑

T∈Th

∫
T uhvh and the discrete norms: ‖vh‖m,h =

(∑
T∈Th

‖vh‖2m,T

)1/2
for vh ∈ Xh.

Let ah0 (uh, vh), l
h
0 (vh) and Lh

0 (vh) be the following bilinear and linear forms on
Xh:

ah0 (uh, vh) = α
∑

i,j∈{1,2}

〈
∂2uh

∂xi∂xj
,

∂2vh
∂xi∂xj

〉

h

+ 〈uh, vh〉h, ∀uh, vh ∈ Xh,

lh0 (vh) = 〈f, vh〉h, ∀vh ∈ Xh,

Lh
0 (vh) = −〈f − 2u0,h, vh〉h, ∀vh ∈ Xh.

We denote by
(
Ph
0

)
and

(
Qh

0

)
the two following discrete problems approximating (7.1)

and (7.2):

(7.3) find uh
0 ∈ Xh such that: ah0 (u

h
0 , vh) = lh0 (vh), ∀vh ∈ Xh

(
Ph
0

)

(7.4) find vh0 ∈ Xh such that: ah0 (uh, v
h
0 ) = Lh

0(uh), ∀uh ∈ Xh

(
Qh

0

)

We have the following convergence result (see [25]):
Theorem 7.1. Let u0 and v0 be the solutions of (7.1) and (7.2) respectively and

let uh
0 and vh0 be the solutions of (7.3) and (7.4) respectively, we have the following

estimations:

(7.5)
‖u0 − uh

0‖2,h ≤ Ch (|u0|3,Ω + h‖f‖0,Ω)
‖v0 − vh0 ‖2,h ≤ Ch (|u0|3,Ω + |v0|3,Ω + h‖f‖0,Ω + h‖u0‖0,Ω)
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where C is a constant independent of h.
Proof. For the first inequality see [25]. For the second one we split vh0 in vh0 =

ph0 + qh0 , where ph0 and qh0 are solutions of

ah0 (uh, p
h
0) = −〈f − 2u0, uh〉, ∀uh ∈ Xh,

ah0 (uh, q
h
0 ) = −2〈u0 − uh

0 , uh〉, ∀uh ∈ Xh.

Thanks to [25], it is straightforward to see that

‖ph0 − v0‖2,h ≤ Ch (|v0|3,Ω + h‖f − 2u0‖0,Ω) .

Since ah0 is coercive on Xh and by setting uh = qh0 , we get

‖qh0 ‖2,h ≤ C‖u0 − uh
0‖2,h.

By using the fact that ‖vh0 − v0‖2,h ≤ ‖ph0 − v0‖2,h + ‖qh0‖2,h and the first estimation,
we get the result.
This finite element has 6 degrees of freedom which corresponds to the number of P2

elements in 2D. There are O(2N) elements if N denotes the number of vertices. The
matrix of the linear system is sparse and so the solving cost of the system is O(N) if
we use for example a LU method with band matrices.

Remark 8. It is known (see [13], pp 148-151 and p 305) that this non-conform
finite element has the advantage of being less expansive than a conform one (the P5

Argyris finite element, which has 21 degrees of freedom).

7.2. Discretisation by the DCT. As said in the introduction of this section,
the DCT does not solve exactly the real problems (7.1) and (7.2) (Neumann condi-
tions are a priori not fulfilled), but looking at the results (see section 8 and 9) and
the computational time (see Figure 4), this method presents the serious advantage of
being very fast. The theoretical computational time consists in O(Nlog(N)) opera-
tions for the DCT if N denotes the number of pixels (or voxels) in the image while
for the quadratic Morley finite element the cost is O(N). However, Figure 4 shows
that the DCT is much faster than the P2-Morley finite element method for N ≤ 109.

Fig. 4. Variation of the u0 and v0 computational time according to the size of the image using
the logarithmic scale for both DCT and P2-Morley methods.
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Considering that the image is a periodic signal, we choose to discretize (3.1) and
(3.2) with a DCT2 because of the symmetry properties guaranted by this algorithm.
Moreover it is the most classical algorithm used in image processing. We can see the
image as a half part of a periodic and symmetric signal. To fix ideas, in 1D if the
input image is the sequence of N points [x0x1...xN−1], the associated signal is the
sequence of 2N − 2 points [x0x1...xN−1xN−2...x1]. In 1D the trigonometric function
associated with a vector of DCT2 coefficients is

(7.6) uN (x) =
N−1∑

k=0

ŷNk cos

(
2π(k + 1

2 )x

T

)

where ŷN ∈ R
N is the vector such that ŷN = DCT 2(yN), yN =

(
uN (lT/2N)

)
l
is the

vector composed by the values of the interpolating function u.
From (7.6), it is straightforward to see that the derivatives of u(x) evaluated at

points xl =
lT
2N are given by the Fourier coefficients of the function. To fix ideas let

us write the fourth derivative with respect to x of the function u given by (7.6) :

duN

dx4
(x) =

N−1∑

k=0

ŷNk

(
2π(k + 1

2 )

T

)4

cos

(
2π(k + 1

2 )x

T

)

Hence by setting x = lT
N , we get duN

dx4

(
lT
N

)
as a function of ŷNk . Let us do the

same thing in 2D. By considering the image as a signal 2(Nx − 1)-periodic with
respect to x, and 2(Ny−1)-periodic with respect to y, we define the frequency domain

by
{(

π(kx+
1
2 )

(Nx−1) ,
π(ky+

1
2 )

(Ny−1)

)
, (kx, ky) ∈ Ex × Ey

}
with Ex = {0, ..., Nx − 1} and Ey =

{0, ..., Ny − 1}. We denote by Λx and Λy the 2(Ny − 1) × 2(Nx − 1) mesh grids
associated with this discrete space. The vector of Fourier coefficients associated to a
discrete signal x ∈ R

N is denoted by X .

Algorithm 1 Computation of the solutions (3.1) and (3.2)

Given an image fij defined for (i, j) ∈ [[0, Ny − 1)]× [[0, Nx − 1]]

1. Use a DCT2 to compute Fkl for (k, l) ∈ [[0, Ny − 1]]× [[0, Nx − 1]].

2. Given Λ the meshgrid associated to the frequencies domain described in section
7.2 compute :

∆2
kl = Λx

4
kl + 2Λx

2
klΛy

2
kl + Λy

4
kl

Ukl =
Fkl

1 + α∆2
kl

and Vkl =
2Ukl − Fkl

1 + α∆2
kl

3. Use an inverse DCT2 to compute uij and vij for (i, j) ∈ [[0, Ny−1]]×[[0, Nx−1]].

7.3. Algorithm for the computation of the topological indicators. One
of the advantages of the topological gradient method is the simplicity of the final
algorithm. To compute (4.3b), we rewrite the topological gradient for a crack of
normal ~n = (cos(ϕ), sin(ϕ)) as
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Ic(x0, ϕ) = −
2π

3
P (∂xxu

N
0 (x0), ∂yyu

N
0 (x0), ∂xyu

N
0 (x0), ϕ)× P

(
∂xxv

N
0 (x0), ∂yyv

N
0 (x0), ∂xyv

N
0 (x0), ϕ

)

where P : R4 −→ R is the following π-periodical function with respect to the last
variable ϕ

P (a, b, c, ϕ) =
1

2
(a+ b) +

1

2
(a− b) cos(2ϕ) + c sin(2ϕ).

Then the computation of (4.3b) comes from the minimization of Ic(x0, ϕ) with respect
to ϕ ∈ [0, π]. Derivatives of uN

0 and vN0 are computed by a convolution with derivative
filters which is faster than using of matrices/vector product. It is easier to compute
(4.3a) than (4.3b) (for K = I) since the formula is an explicit function of the discrete
solutions uN

0 and vN0 . Finally we sum up the computation of the topological indicators
IbBilap (4.3a) and IcBilap (4.3b) for K = I in Algorithm 2:

Algorithm 2 Computation of IbBilap (4.3a) and IcBilap (4.3b) (K = I)

1. Computation of uN
0 and vN0 the numerical approximation of the solutions of

(3.1) and (3.2) by using finite elements or DCT.
2. Computation of the topological indicator by using (4.3a) or (4.3b) for K = I.

8. Application to filament detection on images possibly noisy. In this
section we give some numerical results on synthetic images and real images. In all
of this section we assume that there is no blur (K = I). In this section we compare

the four indicators IbBilap (4.3a), IcBilap (4.3b), IcLap (5.1) and IfHes (6.1) on images
containing filaments, road or vessel-like structures. We will display these different
indicators on edges and on filaments in order to illustrate Lemma 2.1. Then, we
study the robustness of IbBilap, I

c
Bilap and IfHes with respect to noise.

To visualize positive indicators on gray level images, we display their opposite value
rescaled in [0, 255] in order to have the detected structures in black and the rest in
white.

8.1. Structures detected by the topological indicators. In this section
we compare the fourth indicators on a simple synthetic image and on a real one
containing edges and filaments. Figure 5 compares, in a simple case, the bilaplacian
and the Laplacian indicators with the indicator IfHes on an edge and on a filament.

IbBilap, I
c
Bilap and IfHes are more sensitive to filaments than to edges, contrary to IcLap.

This simple case numerically justifies the second order derivatives in the cost function
(2.1) and it is also a numerical validation of Lemma 2.1. In a similar way, Figure 6
shows a real initial image with the three indicators. IbBilap and IcBilap mainly detect

the center of the road network. IfHes is also higher on roads than on edges but a lot
of noise and texture are detected. IcLap is high on edges and on the boundaries of the
road.
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(a) Initial Image (b) Ic
Bilap

(α = 10−3) (c) Ib
Bilap

(α = 0.1)

(d) Ic
Lap

(α = 0.1) (e) If
Hes

(σ = 3/4)

Fig. 5. Visualization of Ib
Bilap

(4.3a),Ic
Bilap

(4.3b), Ic
Lap

(5.1) and If
Hes

(6.1) on an edge and

a filament on a synthetic image

(a) Initial Image (b) Ic
Lap

(α = 0.1) (c) Ib
Bilap

(α = 1)

(d) Ic
Bilap

(α = 10−2) (e) If
Hes

(σ = 5/4)

Fig. 6. Comparison of Ib
Bilap

(4.3a), Ic
Bilap

(4.3b), IcLap (5.1) and If
Hes

(6.1) on a real image

These results show that our model is adapted to the filament detection. In the
next subsection we study and compare the robustness of IbBilap, I

c
Bilap and IfHes with

respect to noise (of type Gaussian).

8.2. Robustness of the topological gradient with respect to Gaussian
noise and comparisons. An important quality of an indicator is its robustness with
respect to noise. In this section, we compare the robustness with respect to noise of
IbBilap, I

c
Bilap and IfHes. Figure 7 displays a profile of a noisy filament, the direct
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solution (3.1), the adjoint solution (3.2) and IcBilap (4.3b). We see that some aliasing
appears for the direct and adjoint solutions. This is due to the truncation in the
Fourier serie. Figure 8 displays these three indicators for a synthetic image with three
different PSNR (peak signal-to-noise ratio). We recall that in all experiments only
Gaussian noise is used. This study shows that IcBilap and IbBilap are more robust with

respect to noise than the indicator IfHes. Next I
c
Bilap is more robust than IbBilap. The

tuning of α depends on the size of the structures to detect and to the level of noise.
The more α is increased the more the topological gradient is spread and smooth.

(a) Initial image (b) Noisy image (c) (3.1) and (3.2)

(d) (4.3b)

Fig. 7. A transverse cut displaying (a) the initial image, (b) its noisy version (PSNR=26dB),
(c) the direct and adjoint solutions and (d) Ic

Bilap
for α = 0.8
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(a) Initial Image (no
noisy)

(b) Ib
Bilap

(α = 0.1) (c) Ic
Bilap

(α = 0.5) (d) If
Hes

(σ = 5/4)

(e) Initial Image
(PSNR=26 dB)

(f) Ib
Bilap

(α = 0.6) (g) Ic
Bilap

(α = 1) (h) If
Hes

(σ = 5/4)

(i) Initial Image
(PSNR=14 dB)

(j) Ib
Bilap

(α = 1) (k) Ic
Bilap

(α = 3) (l) If
Hes

(σ = 5/4)

Fig. 8. Study of the robustness with respect to noise of Ib
Bilap

(4.3a), Ic
Bilap

(4.3b) and If
Hes

(6.1) on a synthetic image. Each row matches a level of noise and each column is associated to an
indicator.

8.3. Additional information given by the computation of IcBilap (4.3b).
Two important data for filament detection are its location and its direction. In this
section we present another advantage of the crack model : its computing (4.3b) leads
to finding an optimal crack direction that matches the filament direction. We recall
that the computation of IfHes gives also an approximation of the direction but it is
sensitive to noise. In [26] the authors compute the associated vector to the smallest
eigenvalue of the normalized Hessian matrix recalled in section 6. We still use the
same notations in section 6, and we denoted by v1 the vector obtained with this
method. In this subsection we compare this vector field with the orthogonal direction
of the vector maximizing (4.3b).

Figure 9 displays the vectors field performed by (4.3b) and the vectors field v1.
We can see that the vectors given by (4.3b) match better the filament tangent vectors
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and seems more robust with respect to noise than the vectors v1. Moreover the
computation of v1 needs to tune two parameters ρ and σ. Besides this method is
efficient only for images degraded by Gaussian noise while the topological gradient
method can be adapted to the more general problem of deblurring by changing the
data fidelity term in (2.1) (see sections 4 and 10).

(a) Initial noisy image
(PSNR=26dB)

(b) Vectors field associated
with Ic

Bilap
(4.3b)

(c) Vectors field v1 [26]

Fig. 9. The tangent vectors field given by (4.3b) compared to the vectors field v1 [26]. For (b)

the length of the vectors is proportional to Ic
Bilap

and for (c) it is proportional to If
Hes

(6.1).

9. Applications to point detection on images possibly noisy. In this sec-
tion we focus on point detection. In all of this section we consider that there is no
blur i.e. K = I. We assume here that points are circular structures of few pixels (2
or 3 pixels). We focus on structures that do not have a privileged direction (isotropic
structures). In this section we will compare the indicators IcLap (5.1), IbBilap (4.3a),

IcBilap (4.3b) and IpHes (6.1). We first compare these fourth indicators on a non noisy
and simple image containing a small and a big circular structures. Then we compare
their robustness with respect to Gaussian noise. We recall that to visualize positive
indicators on gray level images, we display their opposite value rescaled in [0, 255].

9.1. Structures detected by the topological gradient. Figure 10 illustrates
Lemma 2.1. It displays IcLap, I

c
Bilap, I

b
Bilap and IpHes on an image containing a big and

a small isotropic structure. As expected we see that IcLap is inefficient to detect small
structures : only the edges are detected and not the center. For respectively different
values of α, IbBilap and IcBilap give similar results in the case of a non noisy image.

Indeed we observe that IbBilap for α = 0.1 and IcBilap for α = 10−3 are more sensitive
to small objects (about 2 or 3 pixels, e.g. small cells ) than to big ones, while IcLap is
more sensitive to big objects (about 10 pixels) than to small ones. IpHes for σ = 5/4
detects at the same level the center of the small structure and the edges of the big
one.

Figure 10 and Figure 11 show that by increasing α, the size of structures detected
by IbBilap and IcBilap increases. Hence we deduce that α must be tuned with respect

to the size of the structures we want to detect. IpHes is singular on both small and
big structures but the contrast between the background and the detected structures
is lower than for the topological indicators. All of this shows that the choice of the
topological model (2.1)-(2.2) is adapted to the point detection.
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(a) Initial Image (b) IcLap (α = 0.1) (c) Ib
Bilap

(α = 0.1) (d) Ib
Bilap

(α = 3)

(e) Ic
Bilap

(α = 10−3) (f) Ic
Bilap

(α = 0.1) (g) Ip
Hes

(σ = 5/4)

Fig. 10. Comparison of Ic
Lap

(5.1), Ib
Bilap

(4.3a), Ic
Bilap

(4.3b) and Ip
hes

(6.1) on a simple

synthetic image without noise

(a) Initial Image (b) IcLap (α = 0.1) (c) Ib
Bilap

(α = 0.1) (d) Ib
Bilap

(α = 3)

(e) Ic
Bilap

(α = 10−3) (f) Ic
Bilap

(α = 0.1) (g) Ip
Hes

(σ = 5/4)

Fig. 11. Comparison of Ic
Lap

(5.1), Ib
Bilap

(4.3a), Ic
Bilap

(4.3b) and Ip
hes

(6.1) on a real image

containing cells of different sizes

9.2. Robustness of the topological gradient with respect to Gaussian
noise and comparisons. In the previous section we have seen that the point de-
tection needs second order derivatives in (2.1). Now we will compare the robustness
of IbBilap (4.3a), IcBilap (4.3b) and IpHes (6.1) with respect to Gaussian noise. Figure

12 shows the indicators IbBilap, I
c
Bilap and IpHes for an image containing two circular

objects of different sizes with different levels of noise. Figure 13 shows similar results
but for a real non noisy image that we have noised by an additive Gaussian noise.
While the results in the case of a non noisy image are similar for IbBilap and IcBilap, it is

no more true when we add noise. Indeed if we compare IbBilap with IcBilap, we remark
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that the fact of increasing α destroys more small structures for IcBilap than for IbBilap.
We tune the value of the parameter α with the level of noise. When the noise level is
high, we increase the value of the parameter α in order to give more importance to the
regularization term in (2.2). The tuning of this parameter is very easy with respect
to noise. The indicator IpHes is more sensitive to noise than the topological indicators.
According to Figure 12 and Figure 13 the indicator IbBilap is the most adapted indi-
cator to detect small isotropic structures. It is quite robust with respect to noise and
small structures are detected without a change of their form. IcBilap seems to lengthen
big structures in one direction while they have not privileged directions. Moreover we
must notice that it is easier and faster to compute IbBilap (4.3a) than IcBilap which is
performed by minimizing an expression over the normal ~n of the crack.

(a) Initial Image, (no
noisy)

(b) Ib
Bilap

(α = 0.1) (c) Ic
Bilap

(α = 10−3) (d) Ip
Hes

(σ = 5/4)

(e) Initial Image
(PSNR=20dB)

(f) Ib
Bilap

(α = 0.6) (g) Ic
Bilap

(α = 10−2) (h) Ip
Hes

(σ = 5/4)

(i) Initial Image
(PSNR=14dB)

(j) Ib
Bilap

(α = 1) (k) Ic
Bilap

(α = 10−1) (l) Ip
Hes

(σ = 5/4)

Fig. 12. Study of the robustness with respect to noise of Ib
Bilap

(4.3a), Ic
Bilap

(4.3b) and Ip
hes

(6.1) on a synthetic image. Each row matches a level of noise and each column is associated to an
indicator
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(a) Initial Image (no
noisy)

(b) Ib
Bilap

(α = 0.1) (c) Ic
Bilap

(α = 10−3) (d) Ip
Hes

(σ = 5/4)

(e) Initial Image
(PSNR=20dB)

(f) Ib
Bilap

(α = 0.6) (g) Ic
Bilap

(α = 10−2) (h) Ip
Hes

(σ = 5/4)

(i) Initial Image
(PSNR=14dB)

(j) Ib
Bilap

(α = 1) (k) Ic
Bilap

(α = 10−1) (l) Ip
Hes

(σ = 5/4)

Fig. 13. Study of the robustness with respect to noise of Ib
Bilap

(4.3a), Ic
Bilap

(4.3b) and Ip
hes

(6.1) on a real non nosiy image and on its noisy versions. Each row matches a level of noise and
each column is associated to an indicator

10. Application to blurred images : segmentation and restoration. In
this section we present how to discretize (4.1) and (4.2) (forK 6= I) and we present nu-
merical results for both point detection and filament detection for images contamined
by blur and noise, and we illustrate the restoration model (5.3).

10.1. Discretisation by FFT. One property not fullfilled by the DCT2 is that
the DCT2 of a convolution product of two functions is not the DCT2 product of
each function. However we know that the property is guaranted by the DCT1. A
DCT1 of N points is equivalent to a DFT of 2N − 2 points. To fix ideas in 1D
for N = 5, the DCT1 of the row vector [x0, x1, x2, x3, x4] is equivalent to an FFT
of the row vector [x0, x1, x2, x3, x4, x3, x2, x1]. Hence we extend the initial Ny × Nx

image to an 2(Ny − 1) × 2(Nx − 1) image. We consider that the image is a signal
2(Nx−1)-periodic with respect to x and 2(Ny−1)-periodic with respect to y. As said
in section 7.2 the advantage of this extension is that the trigonometric interpolation
of the signal is regular across the boundary of the extended image and symmetric by
construction. It is the most classical extension in image processing and it allows to
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avoid “edge effect”. In the sequel we denote by X the Fourier coefficient vector of the
vector x. To avoid aliasing introduced by the bilaplacian operator we take the fol-

lowing space of frequencies (see [19]):
{(

πkx

(Nx−1) ,
πky

(Ny−1)

)
, (kx, ky) ∈ Ex × Ey

}
with

Ex = {0, ..., Nx − 1,−(Nx − 2), ...,−1} and Ey = {0, ..., Ny − 1,−(Ny − 2), ...,−1}.
We denote by Λx and Λy the 2(Ny − 1)× 2(Nx − 1) mesh grids associated with this
discrete space. To compute the DFT of the convolution kernel we can either

• extend the kernel kij defined on [[0, 2nx]] × [[0, 2ny]] centered at (nx, ny) in
a kernel defined on [[0, 2(Nx − 1) − 1]] × [[0, 2(Ny − 1) − 1]] and centered at
(Nx − 1, Ny − 1)
• use an FFT to calculate Kij

• use the translation formula of vector (Nx − 1, Ny − 1) : Kij ← Kij(−1)i+j

for 0 ≤ i < 2(Ny − 1) and 0 ≤ j < 2(Nx − 1)

or

• extend directly the kernel in a symmetric and periodic kernel defined on
[[0, 2(Nx − 1) − 1]] × [[0, 2(Ny − 1) − 1]]. To fix ideas, in 1D the extension of
the vector [x−2, x−1x0, x1, x2] is [x0, x1, x2, 0, ..., 0, x−2, x−1].
• use an FFT to compute Kij

Now let us compute the DFT of the dual convolution operator. In 1D, if we denote
by k a N-periodic discrete signal associated with a convolution operator, the dual
operator is defined by the signal

k⋆(i) = k(N − i) for 1 ≤ i < N and k⋆(0) = k(0)

The DFT associated with K⋆ is then K⋆
i = Ki. The result generalizes easily in 2D

and we deduce that K⋆
ij = Kij (in general k is symmetric and so K⋆ = K). To

compute solutions of (4.1) and (4.2) we use Algorithm 3

Algorithm 3 Computation of (4.1) and (4.2)

1. Given an image fij defined for (i, j) ∈ [[0, Ny − 1]]× [[0, Nx − 1]], extend it to a
periodic and symmetric image defined on [[0, 2(Ny − 1)− 1]]× [[0, 2(Nx − 1)− 1]].
2. Given a blurring Kernel convolution kij , defined for (i, j) ∈ [[0, 2ny]]× [[0, 2nx]],
use the procedure described in section 10.1 to calculate Kkl for 0 ≤ k < 2(Ny−1)
and 0 ≤ l < 2(Nx − 1).
3. Use an FFT to compute Fkl for (k, l) ∈ [[0, 2(Ny − 1)− 1]]× [[0, 2(Nx − 1)− 1]].
4. Given Λx and Λy, the mesh grids associated to the frequency space described
in section 10.1, compute :

∆2
kl = Λx

4
kl + 2Λx

2
klΛy

2
kl + Λy

4
kl

Ukl =
KklFkl

|Kkl|2 + α∆4
kl

and Vkl =
Kkl(2KklUkl − Fkl)

|Kkl|2 + α∆4
kl

5. Use an inverse FFT to compute uij and vij for (i, j) ∈ [[0, 2(Ny − 1) − 1]] ×
[[0, 2(Nx − 1)− 1]].
6. Restrict u and v to the grid [[0, Ny − 1]]× [[0, Nx − 1]]
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10.2. Numerical results. In this section we test our filaments and points de-
tectors as well the restoration process (5.3) on blurred and noisy images. We sepa-
rately illustrate the filament detection given by IcBilap (4.3b), the filaments and edges
restoration (5.3), and the point detection set by (4.3a).

Filament detection and restoration

We test two kinds of blurring: the Gaussian blurring and the motion one. A Gaus-
sian blurring is performed by a convolution by a Gaussian of scale σ (in our example
σ = 2.1). This blur can be caused by a bad lense adjustement. It can model a blur-
ring caused by the material. A motion blurring models the effect of the motion of the
target or of the camera. It is computed by a convolution with a symmetrical kernel
depending on a length parameter (commonly an odd number) and on the angle θ
between the direction of the motion and the horizontal. For more details on the blur
origins we refer the reader to [28]. Here the kernel of the motion blur is performed
by using the Matlab function fspecial. On Figure 14 and Figure 15 we compare IcBilap

(4.3b) and IfHes (6.1) on a blurred and noisy image. For the Gaussian blurring, blur
effects occur in a similar manner on the whole filament while for the motion blurring,
the horizontal part of the filament (perpendicular direction to the motion) is the most
degraded. We notice that IcBilap still is efficient on blurred and noisy images but that

IfHes does not allow to detect such degraded filaments.

(a) Initial image (b) Degraded image (c) Ic
Bilap

(α = 0.1) (d) If
Hes

(σ = 7/4)

Fig. 14. Comparison of Ic
Bilap

(4.3b) and If
Hes

(6.1) for a Gaussian blurred (σ = 2.1) and

noisy (PSNR=15.7dB) image
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(a) Initial image (b) Degraded image (c) Ic
Bilap

(α = 0.7) (d) If
Hes

(σ = 9/4)

Fig. 15. Comparison of Ic
Bilap

(4.3b) and If
Hes

(6.1) for a motion blurred (θ = 90o, length=7)

and noisy image (PSNR=15.7dB)

On Figure 16 and Figure 17, we compare the restoration (5.3) with χη = χBilap
η

to a TV (total variation) method (see [30]) on respectively a Gaussian blurred and
a motion blurred noisy image containing a filament. We see that (5.3) restores very
well the filament and the restored version (5.3) is closer to the image to recover than
the image obtained by using the TV method. Particularly, the filament restored by
(5.3) is quite well preserved while it is spread out by the TV model. Moreover the
computational time of (5.3) is shorter than the TV model (about 5 seconds for (5.3)
and 20 seconds for the TV model performed by a basic explicit scheme and for a
170× 200 image).

Remark 9. We see on Figure 16 that some curved parts of the filament are not
well restored. Indeed if the filament is very curved in the sense of the initial resolution
of the image, its tangent is not a good aprroximation. Hence, we can first increase
the resolution of the image by interpolating the data on the new grid (vectors, image
and IcBilap) by using for example bilinear or spline interpolation. Then, it suffices
to solve problem (5.3) on the new mesh and then come back to the initial one by an
averaging.

(a) Initial image (b) Degraded image (c) Restored version
(PSNR=19.8dB)

(d) TV method
(PSNR=18.4dB)

Fig. 16. Comparison of the restoration (5.3) (β = 1) with the TV model for a Gaussian blurred
(σ = 1.5) and Gaussian noisy (PSNR=15.7dB) synthetic image
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(a) Initial image (b) Degraded image (c) Restored version
(β = 1.2), (PSNR=20.7

dB)

(d) TV method
(PSNR=19.4dB)

Fig. 17. Comparison of the restoration (5.3) with the TV model for a synthetic image blurred by
a convolution of type motion (θ = 90o, length=7) and noised by a Gaussian noise (PSNR=15.7dB)

Figure 18 and Figure 19 show the profiles of the image to recover, its degraded
versions (blurred and blurred + noisy), the restored version (5.3) with χη = χBilap

η

and IcBilap (4.3b). We see that the restored version (5.3) is close to the image to recover
and that IcBilap detects the filament. However IcBilap has two picks at both side of the
filament. We can explain this phenomena as follows. First let us suppose that the
continuous image to recover is a Gaussian function that writes as f(x) = e−x2/η2

. We
remark that its curvature is maximal at point x = 0 and it has two local minima at

points x = ±
√

3
2η ( the respective values are − 2

η2 and 4
η2 e

−3/2). Then the convolution

is implemented by Fourier transform and it is known that the truncation in the Fourier
sum generates an aliasing effect that is increased by the multiplication in the Fourier
domain.
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(a) (b)

(c)

Fig. 18. (a) A transverse cut displaying the Gaussian blurring (σ = 2.1) and the Gaussian
noise effects (PSNR=15.7dB), (b) the initial image and the restored version (5.3) (β = 1) and (c)
Ic
Bilap

(4.3b) for α = 0.1
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(a) (b)

(c)

Fig. 19. (a) A transverse cut displaying the motion blurring (θ = 90o, length=7) and the
Gaussian noise effects (PSNR=15.7dB), (b) the initial image and the restored version (5.3) (γ = 1)
and (c) Ic

Bilap
for α = 0.7

Finally, on Figure 20 we display the restoration (5.3) for different choices of χη

for a Gaussian blurred and noisy image containing both filaments and edges. We
see that if we take χη = χLap

η then edges are preserved but filament are spread out.

Conversely if we take χη = χBilap
η , then filament are quite well restored but edges are

spread out. Finally by taking χη = min(χBilap
η , χLap

η ), then both edges and filaments
are well restored. For all experiments the choice of the thresholds δ1 and δ2 defining
χη are such that 3% of points are in Eδ1 and 7% of points are in Eδ2 . However on
Figure 20 (g)-(h) we see that some halo remains on filaments. Indeed filaments are
more degraded by blur and noise than edges. Thus, χBilap

η detects very contrasted
edges (more exactly both side of it), instead of very damaged part of filaments. On
Figure 5 we can easily imagine that if the edge contrast is higher than the filament
one, the two picks of IcBilap at both side of the edge may become higher than the one
on the filament. All of this explain the reason for which some parts of filaments are
not very well restored.
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(a) Initial image (b) Degraded image (c) (5.3) χη = χLap
η ,

(PSNR=19.6dB)
(d) (5.3) χη = χBilap

η ,
(PSNR=19.6dB)

(e) (5.3) χη =

min(χLap
η , χBilap),

(PSNR=20.3dB)

(f) Zoom of (c) (g) Zoom of (d) (h) Zoom of (e)

Fig. 20. Comparison of the restoration process (5.3) (β = 2) with different choices of function
χη for a Gaussian blurred and noisy image (σ = 3, PSNR=15.7dB)

Point detection

On Figure 21 and Figure 22 we compare IbBilap (4.3a) to IpHes (6.1) on a simple

Gaussian noisy and Gaussian blurred image. We see that IbBilap detects very well the

small structure which is nearly not visible on the degraded image. We see that IpHes

is not efficient on this type of image.

(a) Initial Image (b) Degraded image (c) Ib
Bilap

(α = 1.2) (d) Ip
Hes

(σ = 5/4)

Fig. 21. Point detection by the topological indicator Ib
Bilap

(4.3a) and the indicator IHes (6.1)

on a synthetic image blurred by a Gaussian convolution (σ = 1.5) and noised by a Gaussian noise
(PSNR=15.7dB)
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(a) Initial real image (b) Degraded image (c) Ib
Bilap

, (β = 1.2) (d) Ip
Hes

, (σ = 5/4)

Fig. 22. Point detection by the topological indicator Ib
Bilap

and the indicator IHes on a synthetic

image blurred by a Gaussian convolution (σ = 1.5) and noised by a Gaussian noise (PSNR=18dB)

11. Application to a 3D image. In [4], the topological gradient of (2.1) for
the problem (2.5) is explicitly given in 2D. In 3D, B1 and B2 for ν = 0 generalize as

B2(u) =
∂2u

∂xi∂xj
ninj

B1(u) = divs

(
P

∂2u

∂xi∂xj
ni ~ej

)
+

∂3u

∂x2
i ∂xj

nj

where we use the repeated subscript notation and where divs is the surface divergence
operator defined by divs(~q) = P : Jac(~q), P is the projector Pij = (δij − ninj) and
Jac(~q) is the Jacobian matrix of ~q(x). A : B denotes the scalar product of matrices A
and B. Then the only change (in comparison with the 2D case) is the scaling parameter
factor in the topological gradient expression which is ǫ3 (instead ǫ2 in 2D). For more
details we refer the reader to [15]. We define the following planar circular crack

σ = {(rcos(θ), rsin(θ), 0), 0 ≤ r < 1, 0 ≤ θ < 2π} .

Then a crack of normal ~n = (sin(ϕ)cos(ξ), sin(ϕ)sin(ξ), cos(ϕ))T is deduced from
this definition by writing the same thing in the orthonormal basis (~v, ~w, ~n) with ~v =
(−sin(ξ), cos(ξ), 0)T and ~w = (−cos(ϕ)cos(ξ),−cos(ϕ)sin(ξ), sin(ϕ))T for 0 ≤ ϕ < π
and 0 ≤ ξ < 2π. Thus, the topological gradient for a cracked domain in 3D is (see
[15]) :

(11.1) IcBilap(x0) = max
‖~n‖=1

|Ic(x0, ~n)|

where

Ic(x0, ~n) = −
4π

3
∇2u0(x0)(~n, ~n)∇2v0(x0)(~n, ~n)

In this section, in order to shorten notations, we still denote by IcBilap (11.1) the
bilaplacian topological gradient for a cracked domain in 3D. On Figure 23 we display
IcBilap on two noisy images. We precise that results displayed here are obtained by
using the 3D DCT and the 3D inverse DCT in Algorithm 1 (see section 7.2). Initial
images contain two kinds of structures : filament of dimension 1 in 3D (modeled by
a cylinder of radius 3 pixels of axis the z-axis) and surfaces of dimension 2 in 3D
(modeled by two concentric spheres of width 4 or 5 pixels). We denote by (xc, yc, zc)
the coordinates of the center of the spheres. Figure 24 shows a 2D cut in the plane
z = zc of the initial images and of IcBilap and Figure 25 is a 1D cut in the line z = zc
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and y = yc. We see that surfaces and filaments are well detected by IcBilap (11.1) in
3D.

(a) Noisy image (b) Ic
Bilap

(11.1)

(c) Noisy image (d) Ic
Bilap

(11.1)

Fig. 23. Isosurfaces of Ic
Bilap

(11.1) for two Gaussian noisy images (PSNR=16dB)

(a) Initial image (b) Initial image

(c) Noisy image (d) Ic
Bilap

(α = 0.25) (e) Noisy image (f) Ic
Bilap

(α = 0.25)

Fig. 24. A 2D cut (z = zc) of Ic
Bilap

(11.1) for two Gaussian noisy images (PSNR=16dB).
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(a) Noisy image (b) Ic
Bilap

(α = 100)

(c) Noisy image (d) Ic
Bilap

(α = 400)

Fig. 25. A 1D cut (y = yc) and (z = zc) of Ic
Bilap

(11.1) for two Gaussian noisy images

(PSNR=16dB) .

Remark 10. We can show that IcBilap (11.1) detects also points in 3D (modeled
by small spheres). But, the topological indicator for a perforated domain seems more
adapted to do this. Its computation is very technical and it will be done in future
works.
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