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The topological gradient method for semi-linear problems and application to edge detection and noise removal.

Introduction

An important problem in image analysis is the reconstruction of an original image u from an observed image f . In general this includes restoration and edge detection processes. The transformation between f and u originates from two phenomena. The first phenomenon is related to the acquisition process (blur created by a wrong lens adjustement or by a movement, Poissonian photons emission rates ...) and the second is due to the signal transmission. A lot of methods to reconstruct such degraded images exist: stochastic methods [START_REF] Geman | Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images[END_REF][START_REF] Ayasso | Joint image restorationand segmentation using Gauss-Markov-Potts prior models and variational Bayesian computation[END_REF], wavelets decomposition [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF][START_REF] Chan | Image Processing And Analysis : Variational, Pde, Wavelet, and Stochastic[END_REF], morphological methods [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF]. Here we are interested with variational approaches [START_REF] Aubert | Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations[END_REF]. In this context, the most famous model is the Mumford-Shah functional [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] but other works based on variational methods do exist [START_REF] Aubert | Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations[END_REF]. Among more recent papers, we can cite [START_REF] Aubert | A variational approach to removing multiplicative noise[END_REF] for restoration of images contaminated by speckle noise, [START_REF] Ben Hadj | Space Variant Blind Image Restoration[END_REF] for blind restoration of Poissonian images, and [START_REF] Sawatzky | A variational framework for region-based segmentation incorporating physical noise models[END_REF] for an overview of image restoration degraded by different type of noise.

In this paper we tackle the edge detection problem by using the topological gradient method. First introduced for cracks detection by Sokolowski et al. [START_REF] Sokolowski | On the topological derivative in shape optimization[END_REF] and Masmoudi [START_REF] Masmoudi | The topological asymptotic[END_REF], and applied in optimal design and mechanics ([3, 2, 5]), this notion consists in the study of the variations of a cost function j(Ω) = J(Ω, u Ω ) with respect to a topological variation, where J(Ω, u) is of the form J(Ω, u) = Ω F(u, ∇u, ∇ 2 u, . . . ) and u Ω is a solution of a PDE defined on the image domain Ω. In order to compute the topological gradient, we remove from Ω a small object ω ε of size ε → 0 centered at a point x 0 ∈ Ω (generally a ball or a segment) and we set Ω ε = Ω\ω ε . Two typical examples are: for small ε > 0 (a) Ω ε = Ω\{x 0 + εB} and (b) Ω ε = Ω\{x 0 + εσ (n)}, where B = B(O, 1) is the unit ball of R 2 and σ (n) is a straight segment with normal n (a crack). We compute I (x 0 ) = lim ε→0 j(Ω ε )j(Ω) ρ(ε)

where ρ(ε) is a non negative function such that ρ(ε) → 0 if ε → 0 (in our context, ρ(ε) = ε 2 ). I (x 0 ) is called the topological gradient at x 0 . It measures the energy contained by a perturbation centered at x 0 . The type of structure to be detected depends on the choice of the cost function J(Ω, u). Recently this notion has been used in image processing and to the best of our knowledge the first works in this direction are those by [START_REF] Hintermüller | Fast-set based algorithms using shape and topological sensitivity information[END_REF][START_REF] Larrabide | A medical image enhancement algorithms based on topological derivative and anisotropic diffusion[END_REF][START_REF] Belaid | Image restoration and edge detection by topological asymptotic expansion[END_REF]. Then other imaging problems such as inpainting, classification, demosaicing, super resolution, have been adressed using a topological gradient approach [START_REF] Auroux | From restoration by topological gradient to medical image segmentation via an asymptotic expansion[END_REF][START_REF] Belaid | Application of the topological gradient to image restoration and edge detection[END_REF][START_REF] Auroux | A one-shot inpainting algorithm based on the topological asymptotic analysis[END_REF][START_REF] Auroux | Image restoration and classification by topological asymptotic expansion[END_REF][START_REF] Auroux | Image processing by topological asymptotic expansion[END_REF][START_REF] Larnier | Edge detection and image restoration with anisotropic topological gradient[END_REF][START_REF] Larnier | The topological gradient method : from optimal design to image processing[END_REF]. In [START_REF] Belaid | Image restoration and edge detection by topological asymptotic expansion[END_REF], only Gaussian additive noise is considered and in [START_REF] Larnier | The topological gradient method : from optimal design to image processing[END_REF] blur has been introduced. In fact, in [START_REF] Larnier | The topological gradient method : from optimal design to image processing[END_REF] more general degradations have been taken into account. The authors consider model of the form f = Lu + b where f is the observed image, L a linear operator and b a Gaussian additive noise. They compute in the case of a crack the topological gradient and illustrate their approach for various imaging problems (edge detection/restoration, super resolution, demosaicing). Note also that topological gradient methods have been also applied for fine structures detection (e.g. points and filaments) [START_REF] Aubert | Topological gradient for fourth order pde and application to the detection of fine structures in 2d images[END_REF][START_REF] Aubert | Topological gradient for a fourth order operator used in image analysis[END_REF][START_REF] Drogoul | Numerical analysis of the topological gradient method for fourth order models and applications to the detection of fine structures in 2D imaging[END_REF]. In this case the cost function is based on second order derivatives. Edge detection/restoration in imaging are in general ill-posed inverse problems and one way to overcome this difficulty is to regularize them. A classical framework to do that is to use a Bayesian formulation which leads to the minimization of an energy consisting in two terms. The first one is a data fidelity term which takes into account both the statistic of the noise and the blur and the second one is an adequate regularizing term. For example if we suppose that the acquisition model is of the form f = u + b where b is Gaussian noise then an anti-log-likelihood estimator amounts to choose as a data fidelity term the L 2 -norm uf 2 L 2 (Ω) . If the noise follows another statistic, of course this term changes. The regularizing term is often based on an L p norm of the gradient. Our main contribution is to generalize the results given in [START_REF] Larnier | The topological gradient method : from optimal design to image processing[END_REF] to blurred images contaminated by Poissonian statistic and images degraded by speckle noise. We give the different expressions of the topological gradient associated to the cost function

J(Ω, u) = Ω |∇u| 2 (1) 
and to equations of the following forms:

(Speckle model)

-∆u + K D u ψ(x, Ku) = 0, in Ω ∂ n u = 0, on ∂ Ω (2) 
and

(Poisson model)        -∆u + ψ j R N 0 j Ku K 1 = 0, in R N 0 j ∂ n u = 0, on ∂ Ω and [u] ∂ R N 0 j = 0 ∀ j ∈ {1, ..., N 0 } (3) 
where R N 0 j is a regular domain modeling pixel j, N 0 is the number of pixels and [u]

∂ R N 0 j
denotes the jump of u across ∂ R N 0 j . We suppose that Ω is the disjoint union of (R N 0 j ) j∈{1,...,N 0 } . The operator

K : L 2 (Ω) -→ L 2 (Ω)
is a convolution (generally positive and such that K1 = 0) representing the blur. We denote by K its adjoint. The functions ψ(x, u) and ψ j (v) will be specified in section 4 and section 5.

Note that problems (2) and ( 3) are semi-linear and one of our contribution is to show they are well-posed and verify some maximum principles. Speckle noise is a multiplicative noise of gamma law, which is present in SAR images, laser images, microscope images [START_REF] Krissian | Speckle-constrained filtering of ultrasound images[END_REF][START_REF] Henderson | Principles and applications of imaging radar[END_REF][START_REF] Tur | When is speckle noise multiplicative?[END_REF]. A Poisson statistic occurs in confocal microscopy [START_REF] Dey | 3D Microscopy Deconvolution using Richardson-Lucy Algorithm with Total Variation Regularization[END_REF], emission tomography [START_REF]Aarsvold. Emission tomography: The fundamental of PET and SPECT[END_REF] and single-photon emission computed tomography [START_REF] Hebert | A generalized EM algorithm for 3D Bayesian recontruction from Poisson data using Gibbs prior[END_REF].

In section 2, we recall the classical rationale justifying the modelization of the data fidelity term in a Bayesian approach. In section 3 we set the variational problem taking into account the blur. In section 4 we show that problem (2) is well-posed and give the associated topological gradient both for perforated and cracked domains (in fact, we study a more general class of problem (2)). In section 5 we treat the Poissonian model (3) whose energy is not standard. We summarize in Table 1 (section 6) all the expressions of the topological gradient according to the type of noise and to the infinitesimal perturbation. In section 7 we show how to apply the notion of topological gradient to restore degraded images. Finally in section 8, we present for all the models, the way to numerically implement the computation of the topological gradient and we display various experimental results illustrating each of them. We conclude this section by giving some notations and assumptions.

Notations and assumptions:

• Ω ⊂ R 2 is the image domain.

• u 0,Ω the L 2 (Ω)-norm. • H 1 (Ω) = u ∈ L 2 (Ω) ∇u ∈ L 2 (Ω) the Sobolev space endowed with the norm u 2 1,Ω = u 2 L 2 (Ω) + ∇u 2 L 2 (Ω) . • |u| 1,Ω = ∇u L 2 (Ω) the semi-norm on H 1 (Ω).
• u H 1 (Ω)/R the norm on the quotient space H 1 (Ω)/R.

• B r (x) the ball centered at x and of radius r, B r the ball centered at 0 and of radius r and B = B 1 denotes the unit ball.

• Ω ε the perturbated domain defined by either (a)

Ω ε = Ω\{x 0 + εB} or (b) Ω ε = Ω\{x 0 + εσ (n)} where σ (n)
is the straight segment of length 2 centered at 0 and of normal n.

•

Ω 0 = Ω • J ε (u) = J(Ω ε , u).
• f : Ω → R is the observed image, u : Ω → R the image to be recovered.

• R N j models pixel j, where N is the number of pixels. We suppose that Ω is the disjoint union of the R j 's.

• f N = ( f N j ) 1≤ j≤N (resp. u N = (u N j ) 1≤ j≤N ) is a discrete version of f (resp. u) defined by f N j = 1 |R N j | R N j f (resp. u N j = 1 |R N j | R N j u).
Only the proof for a perforated domain (a) is performed since for a cracked domain (b) the explicit dependency on the data is killed by the fact that the crack has a null Lebesgue measure.

A Bayesian approach

In this section we recall, in the discrete setting, the classical Bayesian approach allowing to deduce the suitable variational model for restoring noisy images. The reasoning is as follows: we express the a priori conditional probability P(u N = u| f N = f ) and then we look for u N as the value maximizing P(u N = u| f N = f ) (a Maximum A Priori (MAP) estimator). Thanks to the Bayes rule, we have:

P(u N = u| f N = f ) =      P( f N = f |u N = u)P(u N = u) P( f N = f ) , if P( f N = f ) > 0 0, otherwise P( f N = f |u N = u)
depends on the noise model and P(u N = u) is an a priori density probability. Writing that u N is a minimum of -log(P(u N = u| f N = f )) leads to looking for u N as the solution of

u N = argmin u∈R N E N (Ω, u)
where

E N (Ω, u) = -log(P( f N = f |u N = u)) -log(P(u N = u)) (4) 
The a priori density P(u N = u) plays the role of a regularizing term. In analogy to statistical mechanics, a priori densities are frequently Gibbs functions [START_REF] Geman | Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images[END_REF] of the form:

P(u N = u) = C × e -γ 2 G N (u) , γ > 0
where G N (u) is a discrete version of a non negative energy functional G(u) and C is a constant. Here we will consider that G N (u) = J N (Ω, u) is a discretization of J(Ω, u) defined in [START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via Gamma-convergence[END_REF]. The choice of the density probability P( f N = f |u N = u) depends on the statistic of the model to be considered. Below we review respectively speckle and Poisson models.

(i) Speckle model

For SAR images, the classical modeling is (see [START_REF] Tur | When is speckle noise multiplicative?[END_REF]): f N = s N u N where u N is the reflectance of the scene (which is to be recovered) and s N the speckle noise. Let us explicit the law of s N . SAR images are constructed from L ∈ N observations f k,N with 1 ≤ k ≤ L and for each observations we have f k,N = h k,N u N . Generally h k,N is a random variable which follows a negative exponential law with mean 1. Then, the observed image f N is construct from this L observations as:

f N = 1 L L ∑ k=1 f k,N = 1 L L ∑ k=1 h k,N u N We set s N = 1 L ∑ L k=1 h k,N ; s N follows a gamma law with density P(s N = s) = L L Γ(L) s L-1 e -Ls 1 {s≥0} with Γ(L) = (L -1)! (the mean of s N is 1 and its variance 1 L ). Standard computations lead to P( f N = f |u N = u) = 1 u P s N = f u (5) 
Classically, it is assumed that f N and u N are independently distributed. Hence the density of f N |u N is the product of the densities f N j |u N j 1≤ j≤N

. By applying the -log function we deduce that (4) in this case rewrites as (up to a multiplicative constant)

E N (Ω, u) = L γ N ∑ j=1 f N j u j + log(u j ) + 1 2 J N (Ω, u) +C
for u ∈ R N and u > 0, where C denotes a constant independent of u. The factor L can be neglected since it can be scaled with the constant γ. Passing to the limit as N → ∞, we deduce the following continuous energy

E(Ω, u) = Ω 1 γ f u + log(u) dx + 1 2 J(Ω, u) (6) 
(ii) Speckle with log of the image (Speckle-log model)

One drawback of ( 6) is that the data fidelity term is nonconvex. By setting, v N = log(u N ) and g N = log( f N ), we can still use the Bayesian reasonning with v N = g N + log(s N ). The expression of the data fidelity term is changed and taking the same Gibbs function (G N (v) = J N (Ω, v)) we deduce the continuous energy:

E(Ω, v) = Ω 1 γ v + e -(v-g) + 1 2 J(Ω, v) (7) 
which is now a convex function of v. The recovered image is then u = e v .

(iii) Poissonian model

This model is classical in astronomical and confocal microscopy imaging [START_REF] Dey | 3D Microscopy Deconvolution using Richardson-Lucy Algorithm with Total Variation Regularization[END_REF]. Poissonian statistic is due to the stochastic nature of photons counts at sensors. We set N = N 0 the number of sensors which are modelled by the R N 0 j 's. To simplify notation, since N 0 is fixed we drop the superscript N 0 in all variables and we assume that |R j | = 1 ∀ j ∈ {1, .., N 0 }. We assume that f is a piecewise constant function equal to f j on each R j . The observed image f j is a realization of a Poisson statistic of mean and variance equal to λ j = R j u(x)dx where x → u(x) is the continuous image to be recovered. Thanks to the independence of f j and λ j , the conditional probability P( f |λ ) is given by:

P( f |λ ) = N 0 ∏ j=1 λ j f j e -λ j f j !
and by applying the -log function, we have:

-log (P( f |λ )) = N 0 ∑ j=1 λ j -f j log(λ j ) +C
where C is a constant independent of u. We deduce the energy:

E(Ω, u) = 1 γ N 0 ∑ j=1 R j u(x)dx -f j log R j u(x)dx + 1 2 J(Ω, u) (8) 
3 Blurring modelling

In most imaging applications the optical material, the motion of the camera or of the target introduce a blur on the observed image (see [START_REF] Pawley | Handbook of Biological Confocal Microscopy[END_REF]). Generally spatially invariant, the blur is modelled as a positive convolution operator u → Ku with K1 = 0. We denote by K N the N × N matrix associated to a discrete version of K on Ω. From section 2 we can deduce the following models adapted to each kind of noise and taking into account the blur:

1. Speckle model: the observed discrete image writes as f N = s N K N u N and the energy is

E(Ω, u) = Ω 1 γ log(Ku) + f Ku + 1 2 J(Ω, u) (9) 
2. Speckle-log model. We recall that the model writes as g N = v N + log(s N ) with v N = log K N u N . The deblurring cannot be handled simultaneously with the denoising process since in general the equation v N = log K N u N is not invertible. In this case, it is then preferable to use [START_REF] Aubert | Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations[END_REF].

3. Poissonian model: the observed image f j is a realization of a Poissonian statistic of mean R j Ku N (x)dx, so the energy is

E(Ω, u) = 1 γ N 0 ∑ j=1 R j Ku(x)dx -f j log R j Ku(x)dx + 1 2 J(Ω, u) (10) 
4 Speckle multiplicative noise

In this section we show that equation (2) admits a unique solution for a more general class of functions ψ including the speckle-log model. For that we consider the minimization problem:

min u∈H 1 (Ω) E(Ω, u) := Ω ψ(x, Ku) + 1 2 J(Ω, u) (11) 
4.1 Well-posedness of problem [START_REF] Amstutz | Topological sensitivity analysis for some nonlinear PDE system[END_REF] We begin by stating the hypotheses defining the class of functions ψ(x, u) that we consider, including the speckle-log model [START_REF] Auroux | A one-shot inpainting algorithm based on the topological asymptotic analysis[END_REF].

Hypotheses 1. Let I be an interval of R and ψ : Lemma 4.1. Let ψ(x, u) a function verifying Hypotheses 1, we assume that K is non decreasing and that K1 = 0, then (11) admits a unique solution u Ω ∈ H 1 (Ω). Moreover, we have a K1 ≤ u Ω ≤ b K1 . Proof. To shorten notations, when it is not ambiguous, we denote ψ(u) for ψ(x, u).

Ω × I -→ R such that (i) u → ψ(x, u) ∈ C 3 (I) ∀x ∈ Ω (ii) x → D u ψ(x, u) ∈ C 0 (Ω) ∀u ∈ I (iii) In f Ω×W D 2 u ψ(x, u) > 0 for each compact W of I.
Existence: Let (u n ) a minimizing sequence. There exists a constant C 1 such that E(Ω, u n ) ≤ C 1 . As ψ(x, u) is bounded from below on Ω × I there exists a constant C 2 such that Ω ψ(x, u n ) ≥ C 2 . Therefore:

Ω |∇u n | 2 ≤ max(C 1 ,C 1 -C 2 ) Let be a = a K1 (s.t. Ka = a), v n = max(u n , a ) and Ω - n = Ω ∩ {u n ≤ a }, we have v n ≥ a and E(Ω, v n ) -E(Ω, u n ) = - Ω - n |∇u n | 2 + Ω - n ψ(a) -ψ(Ku n )
By convexity ψ(Ku n )ψ(Ka ) ≥ D u ψ(a)(Ku n -Ka ), and from Hypothesis 1-(v) and using that K is not decreasing we get Ω - n ψ(a)-ψ(Ku n ) ≤ 0. We deduce that E(Ω, v n ) ≤ E(Ω, u n ). Thus v n is still a minimizing sequence and v n ≥ a . Similarly by setting b = b K1 and w n = min(v n , b ), we get w n ≤ b and w n is a minimizing sequence. Therefore we can suppose that any minimizing sequence u n verifies a ≤ u n ≤ b . Thus u n is bounded in H 1 (Ω) and up to a subsequence there exists u ∈ H

1 (Ω) such that u n L 2 (Ω) → u and u n H 1 (Ω) u (
where

H 1 (Ω)
stands for the weak topology). By using the lower semi-continuity of J(Ω, u) and Fatou's Lemma we obtain that u is a solution of [START_REF] Auroux | A one-shot inpainting algorithm based on the topological asymptotic analysis[END_REF]. Moreover we have a ≤ u ≤ b a.e. on Ω.

Uniqueness: From the existence, we can work on the set

H (Ω) = v ∈ H 1 (Ω), a ≤ v ≤ b . Since ψ(u) is strictly convex on [a, b] ⊂ I and J(Ω, u
) is strictly convex on H 1 (Ω), we deduce that E(Ω, u) is strictly convex on H (Ω) and admits a unique minimum.

Since problem [START_REF] Auroux | A one-shot inpainting algorithm based on the topological asymptotic analysis[END_REF] and equation ( 2) are equivalent we deduce: Corollary 1. Under the same hypotheses as in Lemma 4.1, (2) admits a unique solution u Ω ∈ H 1 (Ω). Moreover, we have a K1 ≤ u Ω ≤ b K1 . We apply below Lemma 4.1 to the speckle-log model for K = I.

Proposition 1. Let f be such that ∃α, β ∈ R | 0 < α ≤ f ≤ β .
We assume that K = I, and ψ(x, u) = u + e -(u-g(x)) where g = log( f ). Then problem [START_REF] Auroux | A one-shot inpainting algorithm based on the topological asymptotic analysis[END_REF] 

has a unique solution u ∈ H 1 (Ω). Moreover we have log(α) ≤ u ≤ log(β ). Proof. A standard computation leads to D u ψ(u) = 1 -e -(u-g) and D 2 u ψ(u) = e -(u-g) > 0. Hence ψ(u) is strictly convex on R. By using that 0 < α ≤ f ≤ β , we get 1 -e -(u-log(β )) ≤ D u ψ(u) ≤ 1 -e -(u-log(α))
Let a = log(α) and b = log(β ), the following inequalities hold D u ψ(b) ≥ 0 and D u ψ(a) ≤ 0 From Lemma 4.1, there exists a unique function u ∈ H 1 (Ω) solution of [START_REF] Auroux | A one-shot inpainting algorithm based on the topological asymptotic analysis[END_REF]. Moreover we have a ≤ u ≤ b.

In the next subsection we give the topological gradients for perforated and cracked domains when K = I and ψ satisfying Hypotheses 1.

Computation of the topological gradient for a perforated domain

For a perforated domain Ω ε = Ω\{x 0 + εB}, let u ε be the solution of the problem

(P ε ) -∆u ε + D u ψ(x, u ε ) = 0 in Ω ε ∂ n u ε = 0 on ∂ Ω ε (12) 
By setting J(Ω, u) = -Ω D u ψ(x, u)u, from the variational formulation of the equation verified by u ε , computing the topological gradient associated to J(Ω, u) is equivalent to compute the one associated to J(Ω, u). To give the topological gradient expression we need (see [START_REF] Amstutz | Topological sensitivity analysis for some nonlinear PDE system[END_REF][START_REF] Drogoul | Topological gradient method applied to the detection of edges and fine structures in imaging[END_REF][START_REF] Sokolowski | On the topological derivative in shape optimization[END_REF]) to introduce an adjoint solution v ε defined by

(Q ε ) -∆v ε + D 2 u ψ(x, u 0 )v ε = -∂ J(u 0 ) = D u ψ(x, u 0 ) + D 2 u ψ(x, u 0 )u 0 in Ω ε ∂ n v ε = 0 on ∂ Ω ε (13)
where u 0 denotes the solution of ( 12) for ε = 0 and ∂ J(u 0 ) the gradient of J(Ω, .) at u 0 . 

(u) = Ω ε |∇u| 2 for a perforated domain is I b Lap (x 0 ) = -2π∇u 0 (x 0 ).∇v 0 (x 0 ) + πD u ψ(x 0 , u 0 )(u 0 (x 0 ) -v 0 (x 0 )) (14) 
with u 0 and v 0 respectively solution (12) and ( 13) for ε = 0.

Proof. The proof of Theorem 4.2 is given in [START_REF] Iguernane | Topological derivatives for semilinear elliptic equations[END_REF][START_REF] Drogoul | Topological gradient method applied to the detection of edges and fine structures in imaging[END_REF] under slightly different assumptions; see also [START_REF] Drogoul | Topological gradient method applied to the detection of edges and fine structures in imaging[END_REF].

Remark 1. The adjoint problem ( 13) is linear and we can notice that the strict convexity of u → ψ(x, u) is necessary to (Q ε ) be coercive. Since u → ψ(x, u) is C 2 (I) and thanks to Lemma 4.1 there exist two constants 13) is well-posed. Moreover, we have the following inequality

A, B ∈ R such that ∀x ∈ Ω A ≤ D u ψ(x, u 0 ) + D 2 u ψ(x, u 0 )u 0 (x) ≤ B Hence (
A sup Ω D 2 u ψ(x, u 0 ) ≤ v ε ≤ B inf Ω D 2 u ψ(x, u 0 )

Expression of the topological gradient for a cracked domain

For the cracked domain Ω ε = Ω\x 0 + εσ (n) the data fidelity term does not affect the topological gradient expression since the crack has a 2d Lebesgue measure equal to 0. The asymptotic expansion of u ε and v ε are similar and the computation of the topological gradient is the same as in the linear case and is given in [START_REF] Amstutz | Crack detection by the toplogical gradient method[END_REF][START_REF] Drogoul | Topological gradient method applied to the detection of edges and fine structures in imaging[END_REF].

Theorem 4.3. The topological gradient I c Lap associated to problem [START_REF] Auroux | Image processing by topological asymptotic expansion[END_REF] and to the cost function J ε (u) =

Ω ε |∇u| 2 for a cracked domain is I c Lap (x 0 ) = min n =1 I (x 0 , n) with I (x 0 , n) = -π∇u 0 (x 0 ).n∇v 0 (x 0 ).n (15) 
with u 0 and v 0 respectively solution of (12) and (13) for ε = 0.

Poissonian model with blurring

In this section we consider the Poissonian model (3) whose associated energy is given by: min

u∈H 1 (Ω) E(Ω, u) := N 0 ∑ j=1 ψ j R j Ku + 1 2 J(Ω, u) (16) 
with ψ j (x) = 1 γ (xf j log(x)). First we show that problem ( 16) is well-posed, then we compute the topological gradient for a perforated domain and we give the expression for a cracked domain.

Well-posedness of problem (16)

Proposition 2. We assume that 0 < f j < +∞ ∀ j ∈ {1, .., N 0 } and K1 = 0, then problem [START_REF] Belaid | Application of the topological gradient to image restoration and edge detection[END_REF] 

with ψ j (x) = x -f j log(x) for j ∈ {1, ..., N 0 } admits a unique solution u ∈ H 1 (Ω). Moreover this solution verifies α ≤ R j Ku ≤ β , ∀ j ∈ {1, ..., N 0 } with α = min j f j N and β = Ω f = ∑ N 0 j=1 f j .
Proof. Existence: We must add a priori to ( 16) the condition R i Ku > 0, ∀i ∈ {1, ..., N 0 }, thus let us define the space 16) rewrites as:

H (Ω) = u ∈ H 1 (Ω) | R i Ku > 0 ∀i ∈ {1, ..., N 0 } . Then problem (
min u∈H (Ω) 1 2 Ω |∇u| 2 + ∑ j ψ j R j Ku Let (u n ) n a minimizing sequence of E(Ω, u) in H (Ω). There exists a constant D > 0 such that E(Ω, u n ) ≤ D. If C = ∑ j min x∈]0,+∞[ ψ j (x) = ∑ j f j -f j log( f j ) > -∞, then: 0 ≤ Ω |∇u n | 2 ≤ 2 max(D, D -C)
Since Ω |∇u n | 2 ≥ 0, we have ∑ j ψ j R j Ku n ≤ D. Setting K i = ∑ j =i min x ψ j , it is straightforward that

ψ i R i Ku n ≤ D -K i and then 0 < E i ≤ R i Ku n ≤ E i (17) 
with

E i = max ψ -1 i (D -K i ) and E i = min ψ -1 i (D -K i ) (we recall the notation ψ -1 i (b) = {x ∈]0, ∞[ s.t. ψ i (x) = b}) . Hence the constraint R i Ku n > 0 is fulfilled. We deduce that ∑ i E i ≤ Ω Ku n = ∑ i R i Ku n ≤ ∑ i E i .
Then we write u n as u n = v n + w n where w n = 1

|Ω| Ω u n . Since ∇v n = ∇u n and Ω v n = 0, from Poincaré-Wirtinger, there exists F ≥ 0 such that v n L 2 (Ω) ≤ F. Moreover, we have

Ω Kw n = |K1| Ω Ku n ≤ Ω Kv n + Ω Ku n ≤ K L 2 (Ω) F + ∑ i E i
Thus, since K1 = 0, we get that Ω u n is bounded and thus u n is bounded in L 2 (Ω). So, there exist a sub-sequence

u n k (still denoted u n ) and u ∈ H 1 (Ω) such that u n L 2 (Ω) → u and u n H 1 (Ω) u. We deduce that Ω |∇u| 2 ≤ lim inf Ω |∇u n | 2 and R i Ku n → R i Ku. By continuity, we have ψ i R i Ku n → ψ i R i Ku ∀i ∈ {1, ..., N 0 } and E(Ω, u) ≤ lim inf E(Ω, u n )
which proves that u is a minimizer of E(Ω, u).

Bounds: If u is the solution of ( 16) then

D u E(Ω, u).v = 0 ∀v ∈ H 1 (Ω) i.e. Ω ∇u.∇v + N 0 ∑ j=1 ψ j R j Ku R j Kv = 0, ∀v ∈ H 1 (Ω) (18) 
with ψ j R j Ku = 1 -

f j R j
Ku .

(i) By taking v = 1, we get the equality

N 0 = ∑ j f j R j
Ku . As

f j R j Ku ≥ 0, ∀ j ∈ {1, ..., N 0 } and if i 0 = argmin i R i Ku, we have N 0 ≥ f i 0 R i 0 Ku which leads to R i 0 Ku ≥ f i 0 N 0 ≥ min i f i N 0 > 0.
(ii) By taking v = u, we obtain the inequality

∑ i R i Ku -f i ≤ 0 which leads to max i R i Ku ≤ ∑ i R i Ku ≤ ∑ i f i .
Uniqueness: From the two previous bounds we can minimize E(Ω, u) over the convex set

V β α (Ω) = u ∈ H 1 (Ω), α ≤ R j Ku ≤ β . Since ψ j (s) is strictly convex on [α, β ] for all j ∈ {1, ..., N 0 }, we get that u → ψ j R j Ku is strictly convex on H(Ω). As |u| 2 1,Ω is strictly convex, E(Ω, .) is strictly convex on V β α (Ω)
and then E(Ω, .) has a unique minimum.

Since problem [START_REF] Belaid | Application of the topological gradient to image restoration and edge detection[END_REF] and equation ( 3) are equivalent, we deduce:

Corollary 2. Under the same hypotheses as in Proposition 2, equation (3) admits a unique solution u Ω ∈ H 1 (Ω). Moreover, we have α ≤ R j Ku ≤ β , ∀ j ∈ {1, ..., N 0 } with α = min j f j N 0 and β = Ω f = ∑ N 0 j=1 f j . Remark 2.
We can show that Proposition 2 holds as soon as ψ j is bounded from below for j ∈ {1, ..., N 0 } and strictly convex on I ⊂ R. In the general case α and β are implicitly defined in function of ψ j .

Computation of the topological gradient for a perforated domain

We suppose that x 0 ∈ Ω\ ∪ j ∂ R j and for ε sufficiently small we set j 0 the index such that R j 0 ⊃ B ε (x 0 ). For j ∈ {1, ..., N 0 }, let R ε j be the domain equal to R j 0 \B ε (x 0 ) if j = j 0 and R j otherwise. Finally, let u ε be the unique solution of problem [START_REF] Amstutz | The topological asymptotic for the Navier-Stokes equations[END_REF] replacing Ω by Ω ε :

(P ε ) -∆u ε + ψ j I ε j (Ku ε ) K 1 = 0, in R ε j ∂ n u ε = 0 on ∂ Ω ε and [u ε ] ∂ R j = 0 ( 19 
)
where

I ε j (u) = R ε j u.
As for the speckle-log model, by setting J(Ω, u) = -∑ N 0 j=1 ψ j (I j (Ku))I j (Ku), from the variational formulation of the equation verified by u ε , computing the topological gradient associated to J(Ω, u) is equivalent to compute the one associated to J(Ω, u). To compute the topological gradient we need to introduce an adjoint solution v ε defined by:

-∆v ε + ψ j (I j (Ku 0 )) I ε j (Kv ε )K 1 = -∂ J j (u 0 ) = K 1 in R ε j ∂ n v ε = 0 on ∂ Ω ε and [v ε ] ∂ R j = 0 ( 20 
)
where I j (u) = R j u and ∂ J j (u 0 ) denotes the gradient of J j (u) = -ψ j (I j (Ku))I j (Ku) at u 0 . We now give the main result of this section.

Theorem 5.1. The topological gradient I b Lap associated to problem [START_REF] Chan | Image Processing And Analysis : Variational, Pde, Wavelet, and Stochastic[END_REF] and to the cost function J ε (u) = Ω ε |∇u| 2 for a perforated domain is

I b Lap (x 0 ) = -2π∇u 0 (x 0 ).∇v 0 (x 0 ) + πψ j 0 I j 0 (Ku 0 ) (Ku 0 (x 0 ) -Kv 0 (x 0 )) + πψ j 0 I j 0 (Ku 0 ) Ku 0 (x 0 )(I j 0 Ku 0 ) -I j 0 (Kv 0 ) (21) 
with u 0 and v 0 are respectively solution of ( 19) and (20) for ε = 0.

Proof. We split the proof in three steps and we assume without loss of generality that x 0 = 0.

Step 1 This step is dedicated to the computation of the difference J ε (u ε ) -J 0 (u 0 ).

Using the variational formulation of u ε : find

u ε ∈ H 1 (Ω ε ) s.t. A ε (u ε , v) := Ω ε ∇u ε .∇v + N 0 ∑ j=1 R ε j ψ j I ε j (Ku ε ) Kv = 0 ∀v ∈ H 1 (Ω ε ) (22) 
we have

J ε (u ε ) = J ε (u ε ) with: J ε (u) = - N 0 ∑ j=1 R ε j ψ j I ε j (Ku) Ku = - N 0 ∑ j=1 ψ j I ε j (Ku) I ε j (Ku) By denoting φ j (s) = ψ j (s)s, the difference J ε (u ε ) -J 0 (u 0 ) writes J ε (u ε ) -J 0 (u 0 ) = J ε (u ε ) -J ε (u 0 ) = - N 0 ∑ j=1 φ j (I ε j (Ku ε )) -φ j (I j (Ku 0 ))
Using a Taylor expansion of φ j (s) at I j (Ku 0 ) and by remarking that I ε j (Ku ε )-I j (Ku 0 ) rewrites I ε j (K(u ε -u 0 )) when j = j 0 and I ε j (K(u εu 0 )) -B ε Ku 0 when j = j 0 , we have:

J ε (u ε ) -J 0 (u 0 ) = L ε (u ε -u 0 ) + M ε + E 1 ( 23 
)
with

L ε (u) = - N 0 ∑ j=1 φ j (I j (Ku 0 ))I ε j (Ku) M ε = φ j 0 (I j 0 (Ku 0 )) B ε Ku 0 E 1 = - N 0 ∑ j=1 φ j (η j ε )I ε j (K(u ε -u 0 )) 2 (24) 
where

η j ε ∈]I j (Ku 0 ), I ε j (Ku ε )[⊂ [α, β ].
Step 2. In this step we introduce the adjoint problem in order to estimate the linear term L ε (u εu 0 ) in [START_REF] Geman | Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images[END_REF].

For that we need to linearize (22) w.r.t u. A Taylor expansion gives:

ψ j (I ε j (Ku ε )) -ψ j (I j (Ku 0 )) = ψ j (I j (Ku 0 )) I ε j (Ku ε ) -I j (Ku 0 ) + 1 2 ψ (3) j (ξ j ε ) I ε j (Ku ε ) -I j (Ku 0 ) 2 with ξ j ε ∈]I j (Ku 0 ), I ε j (Ku ε )[⊂ [α, β ].
As a consequence we have

A ε (u ε , v) = A ε (u 0 , v) + b ε (u ε -u 0 , v) + c ε (v) + d ε (v) (25) 
with

A ε (u, v) = Ω ε ∇u.∇v + N 0 ∑ j=1 ψ j (I j (Ku)) R ε j Kv b ε (u, v) = Ω ε ∇u.∇v + N 0 ∑ j=1 ψ j (I j (Ku 0 )) I ε j (Ku) R ε j Kv c ε (v) = 1 2 N 0 ∑ j=1 ψ (3) j ξ j ε (I ε j (Ku ε ) -I j (Ku 0 )) 2 R ε j Kv d ε (v) = -ψ j 0 (I j 0 (Ku 0 )) B ε Ku 0 R ε j 0

Kv

Let us introduce now the adjoint problem:

find v ε ∈ H 1 (Ω ε ) s.t. b ε (u, v ε ) = -L ε (u) ∀u ∈ H 1 (Ω ε ) (26) 
It is easily seen that ( 26) is the variational formulation of [START_REF] Dey | 3D Microscopy Deconvolution using Richardson-Lucy Algorithm with Total Variation Regularization[END_REF]. From ( 23) and ( 25), we obtain

J ε (u ε ) -J 0 (u 0 ) = L ε (u ε -u 0 ) + M ε + E 1 = -b ε (u ε -u 0 , v ε ) + M ε + E 1 = -A ε (u ε , v ε ) + A ε (u 0 , v ε ) + c ε (v ε ) + d ε (v ε ) + M ε + E 1 = A ε (u 0 , v ε ) + E 2 + N ε + M ε + E 1 (27) 
with

E 2 = c ε (v ε ) and N ε = d ε (v ε ) (28) 
By using an integration by parts and equation ( 19) for ε = 0, A ε (u 0 , v ε ) expresses as

A ε (u 0 , v ε ) = - ∂ B ε ∂ n u 0 v ε - Ω ε ∆u 0 v ε + N 0 ∑ j=1 ψ j (I j (Ku 0 )) R ε j v ε = - ∂ B ε ∂ n u 0 v ε
In the sequel, we need to extend v ε inside the ball B ε . To do that, for ϕ ∈ H 1/2 (∂ B ε ), we denote by l ϕ ε the harmonic function defined by ∆l

ϕ ε = 0 in B ε l ϕ ε = ϕ on ∂ B ε For v ∈ H 1 (Ω ε ) we set l v ε ε = l v ε |∂ Bε ε
. By integration by parts, A ε rewrites

A ε (u 0 , v ε ) = - ∂ B ε ∂ n u 0 l v ε ε = - ∂ B ε ∂ n u 0 (l w ε ε + v 0 ) = - B ε (∆u 0 (l w ε ε + v 0 ) + ∇ u 0 .∇ (l w ε ε + v 0 )) = - B ε ∆u 0 (l w ε ε + v 0 ) - ∂ B ε u 0 ∂ n (l w ε ε + v 0 ) + B ε u 0 ∆ (l w ε ε + v 0 ) = - B ε ψ j 0 (I j 0 (Ku 0 )) B ε Kl w ε ε + B ε Kv 0 - ∂ B ε u 0 (∂ n l w ε ε + ∂ n v 0 ) + B ε u 0 ∆v 0 = K ε + L ε + E 3 + E 4 with u 0 = u 0 -u 0 (0), w ε = v ε -v 0 and K ε = - ∂ B ε u 0 (∂ n v 0 + ∂ n l w ε ε ) , L ε = -ψ j 0 I j 0 (Ku 0 ) B ε Kv 0 E 3 = B ε u 0 ∆v 0 , E 4 = -ψ j 0 I j 0 (Ku 0 ) B ε Kl w ε ε ( 29 
)
Step 3. In this step we give the asymptotic expansion of all the previous terms. E 3 and E 4 given by ( 24), ( 28) and (29), then we have the following estimations:

Proposition 3. Let M ε , N ε , K ε , L ε , E 1 , E 2 ,
J ε (u ε ) -J 0 (u 0 ) = M ε + N ε + K ε + L ε + 4 ∑ i=1 E i M ε = πε 2 ψ j 0 (I j 0 (Ku 0 )) + ψ j 0 I j 0 (u 0 ) I j 0 (Ku 0 ) Ku 0 (0) + o(ε 2 ) N ε = -πε 2 ψ j 0 I j 0 (Ku 0 ) Ku 0 (0)I j 0 (Kv 0 ) + o(ε 2 ) K ε = -2πε 2 ∇u 0 (0).∇v 0 (0) + o(ε 2 ) L ε = -πε 2 ψ j 0 I j 0 (Ku 0 ) Kv 0 (0) + o(ε 2 ) ( 30 
)
and

E i ∼ o(ε 2 ) for i ∈ [[1..3]].
Proof. The first equality is straightforward. A Taylor expansion of u 0 at 0 gives the first estimation. Again a Taylor expansion of u 0 at 0, Lemma 9.4 (see Appendix A) and the fact that R ε j 0 ε→0 -→ R j 0 give the second estimation. For K ε , from Lemmas 9.1 and 9.4 we have:

K ε = ∂ B (u 0 -u 0 (0)) ∂ n l εP( x ε ) ε + ∂ n v 0 + ∂ B ε (u 0 -u 0 (0))∂ n l e ε ε = ε 2 ∇u 0 (0). ∂ B λ (x)x + F 1 + F 2 with λ (x) = -2∇v 0 (0).n F 1 = ∂ B ε (u 0 -u 0 (0)) (∂ n v 0 -∇v 0 (0).n) = O(ε 3 ) F 2 = ∂ B ε (u 0 -u 0 (0))∂ n l e ε ε = O(ε 3 -log(ε))
For F 2 it suffices to make a change of variable and use the trace theorem on B 2 \B:

∂ n l e ε ε (εX) -1/2,∂ B ≤ 1 ε |l e ε ε (εX)| 1,B = 1 ε |l e ε (εX) (X)| 1,B ≤ C ε e ε (εX) H 1/2 (∂ B)/R ≤ C e ε (εX) H 1 (B 2 \B)/R
Now from the equivalence of the H 1 (B 2 \B)/R-norm with the semi-norm and a change of variable, we get

∂ n l e ε ε (εX) -1/2,∂ B ≤ C|e ε | 1,Ω ε . By using Lemma 9.4, we obtain F 2 = O(ε 3 -log(ε))
. For E 1 and E 2 , we use Lemma 9.3, the boundedness of Ω ε Kv ε independently from ε and the fact that η ε and ξ j ε are in ]α, β [ :

|E i | ≤ C R ε j K(u ε -u 0 ) 2 = O(ε 4 log(ε)) for 1 ≤ i ≤ 2
By using that ∆v 0 = ψ j 0 (I j 0 (Ku 0 ))I j 0 (Kv 0 ) -K1 and a Taylor expansion of u 0 at 0 we get

|E 3 | = O(ε 3 ).
For E 4 , by using a change of variable, the continuity of ϕ → l ϕ from H 1/2 (∂ B) to H 1 (B), the trace theorem on B 2 \B, again a change of variable and Lemma 9.4 we obtain:

|E 4 | ≤ Cε 2 l w ε ε (εX) 0,B = Cε 2 l w ε (εX) (X) 0,B ≤ Cε 2 w ε (εX) 1/2,∂ B ≤ C w ε (εX) 1,B 2 \B ≤ Cε 2 1 ε w ε 0,Ω ε + |w ε | 1,Ω ε ≤ Cε 3 -log(ε)
From Proposition 3, we deduce the expression of the topological gradient at x 0 = 0. A simple change of the coordinates system gives the result at any point x 0 ∈ Ω.

Expression of the topological gradient for a cracked domain

For a cracked domain the computations are similar. The data fidelity term does not affect the expression of topological gradient because the crack has a 2d Lebesgue measure equal to 0.

Theorem 5.2. The topological gradient I c

Lap associated to problem [START_REF] Chan | Image Processing And Analysis : Variational, Pde, Wavelet, and Stochastic[END_REF] and to the cost function J ε (u) = Ω ε |∇u| 2 for a cracked domain is

I c Lap (x 0 ) = min |n|=1 I (x 0 , n) with I (x 0 , n) = -π∇u 0 (x 0 ).n∇v 0 (x 0 ).n (31) 
with u 0 and v 0 are solution of (19) and (20) for ε = 0.

Remark 3. The topological gradient is the same in the general case of functions ψ j ∈ C 3 (I), strictly convex on an interval I and bounded from below on I. Just in the right hand-side of (20), K 1 must be replaced by φ j (I j (Ku 0 ))K 1 with φ j (s) = ψ j (s)s.

Summary table of the topological gradient expressions

We summarize in Table 1, all the expressions of the topological gradient according to the type of noise and to the infinitesimal perturbation.

Ball

Crack Speckle-log -2π∇u 0 (x 0 ).∇v 0 (x 0 ) + πD u ψ(x 0 , u 0 )(u 0 (x 0 )v 0 (x 0 )) -π∇u 0 (x 0 ).n∇v 0 (x 0 ).n

(K = I) with ψ(x, u) = 1 γ (u -log( f (x)) + f (x)e -u )
Poisson -2π∇u 0 (x 0 ).∇v 0 (x 0 ) + πψ j 0 I j 0 (Ku 0 ) (Ku 0 (x 0 ) -Kv 0 (x 0 )) (K = I) +πψ j 0 I j 0 (Ku 0 ) Ku 0 (x 0 )(I j 0 Ku 0 ) -I j 0 (Kv 0 ) -π∇u 0 (x 0 ).n∇v 0 (x 0 ).n with ψ j 0 (x) = 1 γ xf j 0 log(x) and I j 0 (v) = R j 0 v, where R j 0 x 0 Lap is computed, we define for a fixed threshold δ > 0, the set E δ = x ∈ Ω; |I c Lap (x)| ≥ δ and the approximated characteristic function

χ η (x) = η if x ∈ E η 1 otherwise
where η is a small positive parameter. Typically, we take η = 10 -5 in the numerical experiments. From the computation of I c Lap we also get the normalized direction τ = n ⊥ of the edge. If n = (cos(ϕ), sin(ϕ)) is the normal to the crack given by I c Lap , we have τ = (sin(ϕ), -cos(ϕ)). Then, if f is the degraded observed image, we want to find a restored version u ∈ H 1 (Ω) of f as the solution of the following anisotropic PDE:

-div(P ϕ η (x)∇u) + K D u ψ(x, Ku) = 0 in Ω ∂ n u = 0 on Γ (32) 
with

ψ(x, u) =          1 γ ∑ j∈I ind R j u -f j log R j u 1 R j (x) (Poisson model) 1 γ log(u) + f (x) u (Speckle model) (33) 
and where P ϕ η (x) is a tensor constructed from ϕ(x) and χ η (x) and γ is a parameter to tune. More precisely, we choose P ϕ η (x)∇u(x) = (∇u.τ)τ + χ η (x)(∇u.n)n. A simple identification shows that P ϕ η (x) is the matrix

P ϕ η (x) = n 2 2 + χ η (x)n 2 1 n 1 n 2 (χ η (x) -1) n 1 n 2 (χ η (x) -1) n 2 1 + χ η (x)n 2 2 ( 34 
)
where n 1 = cos(ϕ(x)) and n 2 = sin(ϕ(x)). The interpretation of this matrix P ϕ η (x) is as follows:

(i) if x belongs to the background, thanks to the definition of χ η (x), P ϕ η (x) writes as P ϕ η (x) = I, so div(P ϕ η (x)∇u) = ∆u and the smoothing is isotropic.

(ii) if x belongs to an edge (i.e. x ∈ E δ ), then χ η (x) is close to zero and P ϕ η (x)∇u(x) ≈ (∇u.τ)τ and the diffusion is in the direction of the edge. As we will see in section 8 on numerical examples, the restoration results obtained when applying equation ( 32) are very good.

To compute a numerical solution of equation [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF], we consider the associated strictly convex energy :

E(u) = Ω P ϕ η ∇u.∇u + ψ(x, u)
that we discretize by using a classical finite differences scheme. Then we compute the minimizer of the discrete energy by applying a Scale Gradient Projection (SGP) type algorithm described in Algorithm 2 below.

Numerical application to 2D imaging

In this section we illustrate the theory of the topological gradient by giving various experimental results for models (2) and (3).

The topological gradient expressions for the two models are stated in sections 4 and 5 and are summarized in section 6 (Table 1).

For each model, to compute the topological gradient (TG) we use Algorithm 1. The computation of the direct and adjoint solutions is specific to each model.

Algorithm 1 Computation of the topological gradient

1: Computation of u 0 and v 0 by using Algorithm 2 below. 2: Computation of the derivatives of u 0 by convolution with derivative filters. 3: Computation of the TG relatively to the model by using Table 1 and/or Theorems of section 4 and 5.

Remark 4. For a cracked domain, indicators I c

Lap [START_REF] Belaid | Image restoration and edge detection by topological asymptotic expansion[END_REF] and (31) are given by the minimal eigenvalue of a 2 × 2 symmetric matrix:

I c Lap = λ min (M 0 ) with M 0 = -π ∇u 0 ∇v T 0 + ∇v 0 ∇u T 0 2
We first perform the discretization of problems ( 11) and ( 16) and then we give the experimental results. As the adjoint problems ( 13) and ( 20) are linear with non constant coefficients we discretize them by a finite difference scheme and we compute the discrete solution by using a sparse solver.

Solving numerically Poisson and Speckle-log models

In this section, we assume that f and u are vectors of R N and min f > 0. By Proposition 1 and Proposition 2, problems [START_REF] Auroux | A one-shot inpainting algorithm based on the topological asymptotic analysis[END_REF] and ( 16) can be discretized as:

(Speckle-log model) min

u≥log(α s ) J s (u), α s > 0 (35a) (Poisson model) min u≥α p J p (u), α p > 0 (35b)
where α s = min f and α p = min f N ; J p (u) and J s (u) are respectively the discrete versions of energies ( 10) and [START_REF] Aubert | Topological gradient for a fourth order operator used in image analysis[END_REF].

During the construction of a minimizing sequence u (k) , the condition u (k) ≥ α p for the Poisson model (respectively u (k) ≥ log(α s ) for the speckle model) must be fulfilled at each step. Hence a projection ensures this condition. To solve these problems we use an iterative algorithm based on the SGP algorithm [START_REF] Bonettini | A scaled gradient projection method for constrained image deblurring[END_REF]. Let us write the discrete cost functions:

J s (u) = - γ 2 u T Au + N ∑ i=1 u i -g i + e -(u i -g i ) J p (u) = - γ 2 u T Au + N ∑ i=1 (Ku) i -f i log((Ku) i )
where A is the Neumann Laplacian matrix, K is a discretization of the blurring operator (circulant block matrix if we assume that the image is periodic) and we recall that g i = log( f i ). Let us give the main ideas of the SGP algorithm. The discrete energies J s and J p are denoted by J as soon as we do not use their expression and δ will be the number equal to α for the Poisson model and equal to log(α) for the Speckle-log model. We set Λ = u ∈ R N , u ≥ δ . We want to find u ∈ Λ such that ∇J(u ) = 0. At step k, a first order Taylor expansion at point u = u (k) leads to the following equation

∇J(u (k) ) + ∇ 2 J(u (k) )(u -u (k) ) = 0 If det ∇ 2 J(u (k) ) = 0, we get u = u (k) -∇ 2 J(u (k) ) -1 ∇J(u (k)
). We deduce by this reasoning that the direction of the descent algorithm can be given by ∇ 2 J(u (k) ) -1 ∇J(u (k) ), but the computation of this direction is very costly. We denote by D L the compact set of symmetric positive definite N × N matrices such that D ≤ L and D -1 ≤ 1 L . The main idea of the SGP algorithm is to construct two sequences α k and D k ∈ D L such that α k D k approximates ∇ 2 J(u (k) ) and to project each iterate on Λ with respect to the norm u D = √ u T Du. We set P Λ,D -1 for D ∈ D L the projector on Λ with respect to the norm . D . For more details on Algorithm 2, we refer the reader to [START_REF] Bonettini | A scaled gradient projection method for constrained image deblurring[END_REF] and we only give some explanations on the construction of the sequences D k and α k . We choose

D k = diag(d k i ) with d k i = min L, max 1 L , ∂ 2 J ∂ u 2 i (u (k) ) -1 .
The approximation of the Hessian

matrix ∇ 2 J(u (k) ) is B(α k ) = α k D k
. By using a first order Taylor expansion of ∇J(u) at point u (k-1) we get that ∇J(u

(k) ) -∇J(u (k-1) ) = ∇ 2 J(u (k) ).(u (k) -u (k-1) ) + o (u (k) -u (k-1) ) 2
Hence two possible choices of α k can be made:

α 1 k = arg min α B(α k )s (k-1) -z (k-1) D k = s (k-1) T D -1 k D -1 k s (k-1) s (k-1) T D -1 k z (k-1) α 2 k = arg min α s (k-1) -B(α k ) -1 z (k-1) D k = s (k-1) T D k z (k-1) z (k-1) T D k D k z (k-1)
where s (k-1) = u (k)u (k-1) and z (k-1) = ∇J(u (k) ) -∇J(u (k-1) ). In [START_REF] Bonettini | A scaled gradient projection method for constrained image deblurring[END_REF] the choice of α k is the output of an algorithm called SGP-SS Algorithm (SGP step length selection) which uses two thresholds 0 < α min < α max .

Algorithm 2 SGP algorithm Projection:

1: Set u (0) ≥ α, β , θ ∈]0, 1[, 0 < α min < α max , L > 0,
y (k) ← P Λ,D -1 k (u (k) -α k D k ∇ f (u (k) ) 5: if y (k) = u (k) then 6:
Stop, u (k) is a stationary point.

7:

end if

8: Descent direction d (k) = y (k) -u (k) ; 9:
λ k ← 1 and J max ← max 0≤ j≤min(k,M-1) J(u (k-j) )

10:

λ k fixed by backtracking:

11:

while f (u (k) + λ k d (k) ) ≤ J max + β λ k ∇J(u (k) ) T d (k) do 12: λ k ← θ λ k 13:
end while 14:

u (k+1) ← u (k) + λ k d (k) 15: end for
The derivative of the discrete cost functions J p and J s are:

∇J p = -γAu -K T f Ku + K T 1 ∇ 2 J p = -γA + K T diag f (Ku) 2 K ∇J s = -γAu + 1 -e -(u-f ) ∇ 2 J s = -γA + diag e -(u-f )
where 1 ∈ R N denotes the vector whose each coordinate is equal to 1, diag(x) for x ∈ R N is the diagonal matrix with diagonal entries equal to x. For x ∈ R N and ϕ : R -→ R, ϕ(x) stands for the vector (ϕ(x i )) 1≤i≤N . The choice of the parameters in Algorithm 2 is the following: β = 10 -4 , θ = 0.4, k max = 600, M = 1 and for the Poisson model ( 16) we set α min = 10 -10 , α max = 10 5 while for the Speckle-log model [START_REF] Auroux | A one-shot inpainting algorithm based on the topological asymptotic analysis[END_REF] we set α min = 10 -5 , α max = 10 15 . The initial value of u (0) is either the observed image for the Poisson model or its logarithm for the Speckle-log model. Let us note that in the case of equation [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF], the matrix A is the finite differences discretisation of the operator div(P ϕ η ∇.) and for the speckle model of restoration we use the function ψ(u) = log(u) + f u .

Comparison of our method with some classical models

We compare the results given by the topological gradient approach with the ones performed by the Mumford-Shah and TV models. We will also compare our detection process with the well-known Canny edge detector.

Mumford-Shah model of segmentation/restoration and its approximation

Let u be the image of support Ω, the functional introduced by Mumford and Shah in 1989 (see [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF]) is:

F(u, γ) = Ω |u -u 0 | 2 + λ Ω\γ |∇u| 2 + αH 1 (γ)
where f is the observed image, u is a function defined on Ω\γ (the restored version of f ) and γ ⊂ Ω is the set of discontinuity of u. H 1 is the Hausdorff measure of γ, λ and α are positive parameters. The difficulty is that the unknown are not of same nature: u is a function and γ is a set. Ambrosio and Tortorelli [START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via Gamma-convergence[END_REF] proposed an approximation of this functional as follows:

F ε (u, b) = Ω |u -f | 2 + λ b 2 |∇u| 2 + α ε|∇b| 2 + (b -1) 2 4ε
We will change the data fidelity term |uf | 2 according to the a priori model (speckle and Poissonian models) i.e. we will compare [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF] with the solution of (see [START_REF] Sawatzky | A variational framework for region-based segmentation incorporating physical noise models[END_REF]):

min u∈H 1 (Ω),b∈H 1 (Ω) Ω ψ(x, Ku) + λ b 2 |∇u| 2 + α ε|∇b| 2 + (b -1) 2 4ε ( 36 
)
where K is the blur operator, u(x) is the restored image, 1b(x) ≈ 0 is the characteristic function of the edges and ψ(x, u) is given in [START_REF] Masmoudi | The topological asymptotic[END_REF]. We will call this model the Mumford-Shah model (MS).

TV model of restoration

The TV model is well-known: we search for a restored version u minimizing an energy functional which is the sum of the total variation ||Du|| and a data fidelity term which depends on the a priori model (see [START_REF] Aubert | A variational approach to removing multiplicative noise[END_REF] for the speckle model and [START_REF] Ben Hadj | Space Variant Blind Image Restoration[END_REF] for the Poisson one). TThus, we will compare model [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF] to:

min u∈BV (Ω) Ω |Du| + λ ψ(x, Ku) (37) 
where λ is a parameter, K the blur operator, and ψ(u) is given in [START_REF] Masmoudi | The topological asymptotic[END_REF]. In the sequel we call this model the TV model.

The Canny edge detector

We will also compare the edge detection performed by our approach with the Canny edge detector which is the norm of the gradient of a regularization of the image by a Gaussian convolution at scale σ . For more details on these models we refer the reader to [START_REF] Ben Hadj | Space Variant Blind Image Restoration[END_REF][START_REF] Aubert | A variational approach to removing multiplicative noise[END_REF][START_REF] Sawatzky | A variational framework for region-based segmentation incorporating physical noise models[END_REF][START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] and for the numerical approximations to [START_REF] Aubert | Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations[END_REF] and the references therein.

For restoration comparisons on synthetic images we use two indicators:

• the PSNR which is defined for a noisy observation I of an image I 0 by

PSNR(I) = 10Log 255 2 I -I 0 2
2 /N where N is the number of pixels in the image.

• the SSIM defined as

SSIM(I) = (2µ I µ I 0 + c 1 )(2cov(I, I 0 ) + c 2 ) (µ 2 I + µ 2 I 0 + c 2 )
where µ x stands for the mean of x, cov is the covariance operator and c 1 and c 2 are constants given for RGB images by c 1 = (255k 1 ) 2 and c 2 = (255k 2 ) 2 with k 1 = 0.01 and k 2 = 0.03.

Numerical results for the speckle-log model. Comparisons

In this section we illustrate the detection process given by I c Lap (15), I b Lap [START_REF] Ayasso | Joint image restorationand segmentation using Gauss-Markov-Potts prior models and variational Bayesian computation[END_REF], b(x) (computed with the MS model ( 36)) and the Canny edge detector. All edge detectors are displayed up to a normalisation in order to have edges in black and the background of the image in white. We also display the restoration performed by [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF], the MS model ( 36) and the TV model [START_REF] Sawatzky | A variational framework for region-based segmentation incorporating physical noise models[END_REF].

On Fig. 1, we compare I c Lap [START_REF] Belaid | Image restoration and edge detection by topological asymptotic expansion[END_REF] and I b Lap [START_REF] Ayasso | Joint image restorationand segmentation using Gauss-Markov-Potts prior models and variational Bayesian computation[END_REF] for different values of γ with b(x) and with the Canny edge detector for a synthetic speckled image. I b Lap seems more adapted to detect isotropic structures and we deduce that γ must be tuned with respect to the noise and to the size of structures to detect. Comparing I c Lap , MS and the Canny edge detector, similar results are obtained for the cheetah. Figure 1: Comparison of ( 14) and ( 15) for different values of γ with the MS edge detection [START_REF] Pawley | Handbook of Biological Confocal Microscopy[END_REF] and the Canny edge detector for an initial speckled image (L = 6) containing mainly isotropic small structures.

Remark 5. Let us note that for large γ an edge doubling phenomena appears for I c Lap on Fig. 1-(e). As shown in [START_REF] Amstutz | Edge detection using topological gradients: a scale-space approach[END_REF], in the linear case (Gaussian noise), the edge doubling can be avoided by using as cost function the opposite of the square of the L 2 -norm. More generally we have remarked that the edge doubling can be avoided for the speckle-log model by adding in the cost function the term Ω ψ(u). Let us recall that the direct and adjoint models given in (12) and (13) are associated to the auxiliary cost function J(Ω, u) = -Ω D u ψ(x, u)u. Fig. 2 shows profiles of the direct and adjoint models and I c Lap (15) associated to J(Ω, u) and to J 2 (Ω, u) = J(Ω, u) + Ω ψ(u). 14) and ( 15) with the MS edge detection [START_REF] Pawley | Handbook of Biological Confocal Microscopy[END_REF] and the Canny edge detector for a real SAR image.

Fig. 4 and Fig. 6 compare the restoration performed by ( 32), ( 36) and ( 37) respectively on a real SAR image and on a synthetic speckled image. Restoration given by the MS degrades contours while [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF] and the TV model ( 37) are nearly equivalent. However, on Fig. 6, we can notice that the restoration performed by [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF] is better than the TV one and computation times are equivalent (see section 8.5). 32), ( 36) and ( 37) for a speckled synthetic image (L = 1).

Finally Fig. 7 shows the 1D profiles of the image to recover, its noisy version, the restored version [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF] and I c Lap (15) across an edge. The restored version matches very well the image to recover and edges are not degraded except on strong angular point with low contrast where the direction of the diffusion in [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF] is not well defined and the topological gradient

I c
Lap is low in magnitude. This shows that ( 32) is a good restoration process. 

Numerical results for the Poisson model. Comparisons

In this section we compare the edge detection performed by I c Lap [START_REF] Larrabide | A medical image enhancement algorithms based on topological derivative and anisotropic diffusion[END_REF], I b Lap [START_REF] Drogoul | Numerical analysis of the topological gradient method for fourth order models and applications to the detection of fine structures in 2D imaging[END_REF], the MS model [START_REF] Pawley | Handbook of Biological Confocal Microscopy[END_REF] and the Canny edge detector. We also compare the restoration computed with [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF], the MS and the TV model. Fig. 8 and Fig. 10 show respectively the edge detection results in the case of a synthetic Poissonian image and of a real confocal image of a rat's neuron. I c Lap [START_REF] Larrabide | A medical image enhancement algorithms based on topological derivative and anisotropic diffusion[END_REF] detects edges quite well compared to the MS model. Results performed by the Canny edge detector are similar to those obtained with I c Lap for small γ while for large γ an edge doubling phenomena still appear. We see that I b Lap fills small structures (the size of these structures is related to γ as for the speckle case). j=1 Ω ψ (I j (Ku)I j (Ku). Fig. 9 shows profiles of the direct and adjoint models and I c Lap (31) associated to J(Ω, u) and to J 2 (Ω, u) = J(Ω, u) + ∑ N 0 j=1 ψ j (I j (Ku)).

Fig. 12 compares I c

Lap [START_REF] Larrabide | A medical image enhancement algorithms based on topological derivative and anisotropic diffusion[END_REF] with b(x) performed by the MS model [START_REF] Pawley | Handbook of Biological Confocal Microscopy[END_REF] and the Canny edge detector, for a Poissonian image blurred by a Gaussian convolution. Similar results are obtained from the MS model and I c Lap while edges detected by the Canny edge detector are more spread out (if we decrease the scale parameter σ texture is detected significantly). Fig. 11 and Fig. 13 display the restoration computed by ( 32), ( 36) and [START_REF] Sawatzky | A variational framework for region-based segmentation incorporating physical noise models[END_REF] on respectively a real confocal image and a synthetic Poissonian image blurred by Gaussian convolution. We notice that (32) and ( 37) restore very well the image preserving edges unlike to the MS model [START_REF] Pawley | Handbook of Biological Confocal Microscopy[END_REF] which degrades contours and which does not annihilate the blur effect. 

Computational time comparisons for the three methods

On Fig. 15 are compared the three methods for K = I (no blur): Mumford-Shah (MS), TV and the topological gradient method (TG). The experiments are performed on a computer equipped with a processor Intel Core 1.9 GHz and all algorithms are implemented in Matlab. The computation time for the Canny edge detector is not displayed because it just consists in a convolution which is very fast and so it would be very close to the y-axis compared to other methods. For Poisson and speckle models, the computation of the topological gradient still remains the fastest but the restoration step performed by [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF] takes approximately the same time as for a restoration given by a TV model. Let us notice that the TV model is implemented by using an iterative algorithm (explicit schema with fixed step length with at maximum 1000 iterations) and that the Mumford-Shah model solution is computed by minimizing the approximate functional alternatively with respect to u and b. The minimization with respect to u (at b fixed) is made by using Algorithm 2 and we perform 15 iterations. Finally let us precise that we present on Fig. 15 the computation time only for the Poissonian model because similar results are obtained from the speckle one. and l P expresses as l P (x) = ∂ B λ (y)E(xy)dσ .

The following asymptotic estimations holds. Lemma 9.2. Let P the solution of (38), then:

|P(x)| ≤ C |x| , |∇P(x)| ≤ C |x| 2 P x ε 0,Ω ε = O -log(ε) , ∇P x ε 0,Ω ε = O(ε)

Appendix A

In this appendix we perform the asymptotic expansion of u ε [START_REF] Chan | Image Processing And Analysis : Variational, Pde, Wavelet, and Stochastic[END_REF] in H 1 (Ω ε )-norm when ε → 0. We assume along this appendix that x 0 = 0.

Lemma 9.3. Let X ε = u εu 0 where u ε and u 0 are respectively given by (19) for ε > 0 and ε = 0, then we have:

X ε = εP x ε + e ε
where P is defined by [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF] with g = -∇u 0 (0).n and where e ε 1,Ω ε = O(ε 2 ). Moreover we have the estimation: X ε 0,Ω ε = O(ε 2 -log(ε))

Proof. First, let us write the Euler equations checked by X ε . By substracting equations [START_REF] Chan | Image Processing And Analysis : Variational, Pde, Wavelet, and Stochastic[END_REF] for ε > 0 and for ε = 0, we get for j ∈ {1, ..., N 0 }:

(X ε )            -∆X ε + ψ j R ε j Ku ε -ψ j R j Ku 0 = 0 in R ε j , j ∈ {1, ..., N 0 } ∂ n X ε = -∂ n u 0 , on ∂ B ε ∂ n X ε = 0, on Γ (39) 
Then, by a Taylor expansion, there exists ξ j ε ∈] R j Ku 0 , R ε j Ku ε [ such that

ψ j R ε j Ku ε -ψ j R j Ku 0 = ψ j (ξ j ε ) R ε j Ku ε - R j Ku 0
From Proposition 2, it is straightforward that 0 < α ≤ ξ j ε ≤ β where α = min i f i N and β = ∑ i f i . (X ε ) rewrites for j ∈ {1, ..., N 0 } as

(X ε )          -∆X ε + ψ j (ξ j ε ) R ε j KX ε = R j \R ε j Ku 0 in R ε j ∂ n X ε = -∂ n u 0 , on ∂ B ε ∂ n X ε = 0, on Γ
with R j \R ε j Ku 0 = δ j 0 ( j) B ε Ku 0 , where δ is the Dirac function. Let e ε = X ε -εP x ε where P is defined by [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF] with g = -∇u 0 (0).n. e ε , then e ε verifies the following equation

(E ε )                    -∆e ε + ψ j (ξ j ε ) R ε j Ke ε = -εψ j (ξ j ε ) R ε j KP x ε in R ε j j ∈ {1, ..., N 0 } ∂ n e ε = g 1 (x) = O(|x|) on ∂ B ε ∂ n e ε = g ε 2 (x) = O ε 2 |x| 2 on Γ (40) 
where g 1 = ∂ n u 0 (x) -∇u 0 (0).n(x) ∈ H -1/2 (∂ B ε ) and g ε 2 (x) = -∂ n P x ε ∈ H -1/2 (Γ). We set:

F j ε =        -εψ j (ξ j ε ) R j KP x ε = O(ε 3 ), for j = j 0 B ε Ku 0 -εψ j 0 (ξ j ε ) R ε j 0 KP x ε = O(ε 2
), for j = j 0 Now we split e ε into the sum e ε = e 1 ε + e 2 ε + e 3 ε with (i)

e 1 ε ∈ H 1 (Ω ε )/R solution of      -∆e 1 ε = 0, in Ω ε ∂ n e 1 ε = g 1 (x), on ∂ B ε ∂ n e 1 ε = 0, on Γ (ii) e 2 ε ∈ H 1 (Ω ε )/R solution of      ∆e 2 ε = 0, in Ω ε ∂ n e 2 ε = 0, on ∂ B ε ∂ n e 2 ε = g ε 2 (x), on Γ (iii) e 3 ε ∈ H 1 (Ω ε ) solution of (E 3 ε )          -∆e 3 ε + ψ j (ξ j ε ) R j Ke 3 ε = F j ε -ψ j (ξ j ε ) R ε j K(e 1
ε + e 2 ε ) in R ε j , j ∈ {1, ..., N 0 }

∂ n e 3 ε = 0, on ∂ B ε ∂ n e 3 ε = 0, on Γ Standard computations (see [START_REF] Amstutz | Crack detection by the toplogical gradient method[END_REF][START_REF] Drogoul | Topological gradient method applied to the detection of edges and fine structures in imaging[END_REF] for more details) lead to the following estimations:

e 1 ε H 1 (Ω ε )/R ≤ Cε 2 e 2 ε H 1 (Ω ε )/R ≤ Cε 2
To estimate e 3 ε , we take the variational formulation of (E 3 ε ):

Ω ε ∇e 3 ε .∇v + N 0 ∑ j=1 ψ j (ξ j ε ) R ε j Ke 3 ε R ε j Kv = N 0 ∑ j=1 F j ε R ε j Kv -ψ j (ξ j ε ) R ε j K(e 1 ε + e 2 ε ) R ε j Kv (41) 
An easy computation of ψ j and Proposition 2 give for ε ≤ ε 0 min j∈{1,...,N 0 } f j

β 2 ≤ ψ j (ξ j ε ) = f j (ξ j ε ) 2 ≤ max j∈{1,...,N 0 } f j α 2
By taking as test function v = e 3 ε in (41), we deduce the following estimations: |Ω| Ω ε e 3 ε and using Poincaré-Wirtinger inequality and the fact that K1 = 0 (as in Proposition 2) we get e 3 ε 1,Ω ε ≤ Cε 2 . From the inequality e ε 1,Ω ε ≤ e 1 ε H 1 (Ω ε )/R + e 2 ε H 1 (Ω ε )/R + e 3 ε 1,Ω ε , we obtain the estimation. For the L 2 (Ω ε )-norm estimation of X ε , it suffices to take the L 2 (Ω ε )-norm of its asymptotic expansion and to use the first point of Lemma 9.3 and Lemma 9.2. Lemma 9.4. Let w ε = v εv 0 where v ε and v 0 are given by (26) for ε > 0 and ε = 0, then we have:

Ω ε |∇e 3 ε | 2 +C N 0 ∑ j=1 R ε j Ke 3 ε 2 ≤ N 0 ∑ j=1 |F j ε | R j ε Ke 3 ε + ψ j (ξ j ε ) R ε j (|Ke 1 ε | + |Ke 2 ε |) R ε j Ke 3 ε ≤ C ε 2 + e 1 ε L 2 (Ω ε )/R + e 2 ε L 2 (Ω ε )/R N 0 ∑ j=1 R j ε Ke 3 ε ≤ Cε 2 N 0 ∑ j=1 R j ε
w ε = εP x ε + r ε
where P is defined by [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF] with g = -∇v 0 (0).n, and where r ε 1,Ω ε = O(ε 2 -log(ε)). Moreover we have:

w ε 0,Ω ε = O(ε 2 -log(ε), |w ε | 1,Ω ε = O(ε)
Proof. By substracting equations [START_REF] Dey | 3D Microscopy Deconvolution using Richardson-Lucy Algorithm with Total Variation Regularization[END_REF] for ε > 0 and for ε = 0, the Euler equations associated to w ε are:

(W ε )                    -∆w ε + ψ j (I j (u 0 )) R ε j Kw ε = 0 in R j with j = j 0 -∆w ε + ψ j 0 I j 0 (Ku 0 ) R ε j 0
Kw ε = ψ j 0 I j 0 (Ku 0 )

B ε Kv 0 = O(ε 2 ) in R ε j 0 ∂ n w ε = -∂ n v 0 on ∂ B ε ∂ n w ε = 0 on Γ (42)

(

  iv) ψ is bounded from below on Ω × I (v) ∃a, b ∈ I such that for all x, D u ψ(x, a) ≤ 0 and D u ψ(x, b) ≥ 0 with [a, b] ⊂ I.

Theorem 4 . 2 .

 42 Let ψ satisfying Hypotheses 1, then the topological gradient I b Lap associated to problem[START_REF] Auroux | Image processing by topological asymptotic expansion[END_REF] with the cost function J ε

and fix a positive integer M. 2 : 3 :

 23 for k = 0 : k max do Choose the parameter α k ∈ [α min , α max ] and the scaling matrix D k ∈ D L 4:

  (a) Initial image (b) I b Lap (14) (γ = 1) (c) I c Lap (15) (γ = 1) (d) I b Lap (14) (γ = 10) (e) I c Lap (15) (γ = 10) (f) MS (36) (λ = 0.1, α = 10, ε = 10 -6 ) (g) Canny edge detector (σ = 3)

Figure 2 :

 2 Figure 2: (a) The cut on the speckled image (L = 6), (b)-(e) the topological gradients I c Lap (15) (γ = 30), (c)-(f) a transverse cut displaying the image to recover, the direct and the adjoint models, (d)-(e) a tranverse cut of I c Lap . (b)-(c)-(d) are associated to J(Ω, u) and (e)-(f)-(g) to J 2 (Ω, u)

Figure 3 :

 3 Figure 3: Comparison of (14) and (15) with the MS edge detection[START_REF] Pawley | Handbook of Biological Confocal Microscopy[END_REF] and the Canny edge detector for a real SAR image.

Figure 4 :

 4 Figure 4: Comparison of the restored versions (32), (36) and (37) for a real SAR image (Zoom on Fig.3-(a)).

Figure 5 :

 5 Figure 5: Comparison of the topological gradient (15) with the MS edge detection (36) and the Canny edge detector for a synthetic speckled image (L = 1).

Figure 6 :

 6 Figure 6: Comparison of restored versions (32), (36) and (37) for a speckled synthetic image (L = 1).

Figure 7 :

 7 Figure 7: (a)-(d) Image and transverse cut of the speckled image (L = 1), (b)-(e) the restored version (32) (γ = 0.01) and (c)-(f) I c Lap (15) (γ = 1.8).

Figure 8 :Remark 6 .

 86 Figure 8: Comparison of (21) and (31) for different values of γ with the MS edge detection (36) and the Canny edge detector for a Poissonian image containing mainly isotropic small structures.

Figure 9 :Figure 10 :

 910 Figure 9: (a) The cut on the Poissonian image, (b)-(e) the topological gradient I c Lap (31) (γ = 3 × 10 -1 ), (c)-(f) a transverse cut displaying the image to recover, the direct and the adjoint models, (d)-(g) a transverse cut of I c Lap . (b)-(c)-(d) are associated to J(Ω, u) and (e)-(f)-(g) to J 2 (Ω, u)

Figure 11 :Figure 12 :

 1112 Figure 11: Comparison of the restored versions (32), (36) and (37) for a real Poissonian image of rat's neurons.

Figure 13 :Figure 14 :

 1314 Figure 13: Comparison of the restored versions for a Poissonian image blurred by a Gaussian convolution of scale σ = 3.

Ke 3 ε| 2 ≤ N 0 N 0 ∑ 2 and then |e 3 ε | 1 ,Ω ε ≤ Cε 2 . By splitting e 3 ε into the sum e 3 ε = e 3 ε - 1 |Ω| Ω ε e 3 ε + 1

 32002312311 Then, thanks to the following inequality which stands for any sequence of real numbers(a i ) i ∑ i∈{1,...,N 0 } |a j j=1 |a j | 2and the positiveness of Ω ε |∇e 3 ε | 2 , we obtain

  

Table 1 :

 1 Summary of the topological gradient expressions 7 Restoration using the topological gradient for a cracked domainAs a by product the computation of the topological gradient I cLap for a cracked domain allows to restore images degraded by blur or/and various noise statistics. Once I c

Appendices

In these appendices we give the asymptotic expansion of the differences u εu 0 and v εv 0 for the non linear problems (Poisson and Speckle-log models). Some proofs are similar to the linear case and so we will refer the reader to [START_REF] Amstutz | Crack detection by the toplogical gradient method[END_REF]. To establish these asymptotic expansions we need the following exterior problem

where g ∈ H -1/2 (∂ B) and ∂ B gdσ = 0. For the computation of the topological gradient we will use the two following lemma. We omit the proofs and we refer the reader to [START_REF] Drogoul | Topological gradient method applied to the detection of edges and fine structures in imaging[END_REF] for more details Lemma 9.1. The solution of [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF] expresses as a single layer potential:

is the fundamental solution of the Laplace operator and λ (y) = -2g(y). Denoting by l P the solution of ∆l p = 0 in B ∂ n l P = 0 on ∂ B we have the jump relations through ∂ B Pl P = 0

This problem is linear and from Proposition 2 we have:

Then the topological expansion of w ε can be deduced from the proof of Lemma 9.3 or from the linear case with constant coefficient [START_REF] Amstutz | Crack detection by the toplogical gradient method[END_REF]. See also Nedelec [START_REF] Nédélec | Acoustic and electromagnetic equations : integral representations for harmonic problems[END_REF] for details on the analysis. The two last estimations are straightforward by using the topological expansion of w ε and Lemma 9.2.