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Abstract

The goal of this paper is to apply the topological gradient method to edge detection and noise removal
for images degraded by various noises and blurs. First applied to edge detection for images degraded
by a Gaussian noise, we propose here to extend the method to blurred images contaminated either by a
multiplicative noise of gamma law or to blurred Poissonian images. We compute, both for perforated and
cracked domains, the topological gradient for each noise model. Then we present an edge detection/restoration
algorithm based on this notion and we apply it to the two degradation models previously described. We
compare our method with other classical variational approaches such that the Mumford-Shah and TV
restoration models and with the classical Canny edge detector. Some experimental results showing the
efficiency, the robustness and the rapidity of the method are presented.

1 Introduction
An important problem in image analysis is the reconstruction of an original image u from an observed image
f . In general this includes restoration and edge detection processes. The transformation between f and u
originates from two phenomena. The first phenomenon is related to the acquisition process (blur created
by a wrong lens adjustement or by a movement, Poissonian photons emission rates ...) and the second
is due to the signal transmission. A lot of methods to reconstruct such degraded images exist: stochastic
methods [23, 14], wavelets decomposition [32, 19], morphological methods [38]. Here we are interested
with variational approaches [9]. In this context, the most famous model is the Mumford-Shah functional [34]
but other works based on variational methods do exist [9]. Among more recent papers, we can cite [6] for
restoration of images contaminated by speckle noise, [17] for blind restoration of Poissonian images, and
[37] for an overview of image restoration degraded by different type of noise.

In this paper we tackle the edge detection problem by using the topological gradient method. First
introduced for cracks detection by Sokolowski et al. [39] and Masmoudi [33], and applied in optimal design
and mechanics ([3, 2, 5]), this notion consists in the study of the variations of a cost function j(Ω) = J(Ω,uΩ)
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with respect to a topological variation, where J(Ω,u) is of the form J(Ω,u) =
∫

Ω
F(u,∇u,∇2u, . . .) and

uΩ is a solution of a PDE defined on the image domain Ω. In order to compute the topological gradient,
we remove from Ω a small object ωε of size ε → 0 centered at a point x0 ∈ Ω (generally a ball or a
segment) and we set Ωε = Ω\ωε . Two typical examples are: for small ε > 0 (a) Ωε = Ω\{x0 + εB} and
(b) Ωε = Ω\{x0 + εσ(n)}, where B = B(O,1) is the unit ball of R2 and σ(n) is a straight segment with
normal n (a crack). We compute I (x0) = limε→0

j(Ωε )− j(Ω)
ρ(ε) where ρ(ε) is a non negative function such that

ρ(ε)→ 0 if ε → 0 (in our context, ρ(ε) = ε2). I (x0) is called the topological gradient at x0. It measures
the energy contained by a perturbation centered at x0. The type of structure to be detected depends on the
choice of the cost function J(Ω,u). Recently this notion has been used in image processing and to the best of
our knowledge the first works in this direction are those by [26, 31, 15]. Then other imaging problems such
as inpainting, classification, demosaicing, super resolution, have been adressed using a topological gradient
approach [10, 16, 11, 13, 12, 29, 30]. In [15], only Gaussian additive noise is considered and in [30] blur
has been introduced. In fact, in [30] more general degradations have been taken into account. The authors
consider model of the form f = Lu+b where f is the observed image, L a linear operator and b a Gaussian
additive noise. They compute in the case of a crack the topological gradient and illustrate their approach
for various imaging problems (edge detection/restoration, super resolution, demosaicing). Note also that
topological gradient methods have been also applied for fine structures detection (e.g. points and filaments)
[8, 7, 21]. In this case the cost function is based on second order derivatives. Edge detection/restoration
in imaging are in general ill-posed inverse problems and one way to overcome this difficulty is to regularize
them. A classical framework to do that is to use a Bayesian formulation which leads to the minimization of an
energy consisting in two terms. The first one is a data fidelity term which takes into account both the statistic
of the noise and the blur and the second one is an adequate regularizing term. For example if we suppose
that the acquisition model is of the form f = u+ b where b is Gaussian noise then an anti-log-likelihood
estimator amounts to choose as a data fidelity term the L2-norm ‖u− f‖2

L2(Ω)
. If the noise follows another

statistic, of course this term changes. The regularizing term is often based on an Lp norm of the gradient.
Our main contribution is to generalize the results given in [30] to blurred images contaminated by Poissonian
statistic and images degraded by speckle noise. We give the different expressions of the topological gradient
associated to the cost function

J(Ω,u) =
∫

Ω

|∇u|2 (1)

and to equations of the following forms:

(Speckle model)

{
−∆u+K?Duψ(x,Ku) = 0, in Ω

∂nu = 0, on ∂Ω
(2)

and

(Poisson model)


−∆u+ψ

′
j

(∫
R

N0
j

Ku

)
K?1= 0, in RN0

j

∂nu = 0, on ∂Ω and [u]
∂R

N0
j
= 0 ∀ j ∈ {1, ...,N0}

(3)

where RN0
j is a regular domain modeling pixel j, N0 is the number of pixels and [u]

∂R
N0
j

denotes the jump of

u across ∂RN0
j . We suppose that Ω is the disjoint union of (RN0

j ) j∈{1,...,N0}. The operator

K : L2(Ω)−→ L2(Ω)

is a convolution (generally positive and such that K1 6= 0) representing the blur. We denote by K? its adjoint.
The functions ψ(x,u) and ψ j(v) will be specified in section 4 and section 5.
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Note that problems (2) and (3) are semi-linear and one of our contribution is to show they are well-posed
and verify some maximum principles. Speckle noise is a multiplicative noise of gamma law, which is
present in SAR images, laser images, microscope images [28, 25, 40]. A Poisson statistic occurs in confocal
microscopy [20], emission tomography [41] and single-photon emission computed tomography [24].

In section 2, we recall the classical rationale justifying the modelization of the data fidelity term in a
Bayesian approach. In section 3 we set the variational problem taking into account the blur. In section 4
we show that problem (2) is well-posed and give the associated topological gradient both for perforated and
cracked domains (in fact, we study a more general class of problem (2)). In section 5 we treat the Poissonian
model (3) whose energy is not standard. We summarize in Table 1 (section 6) all the expressions of the
topological gradient according to the type of noise and to the infinitesimal perturbation. In section 7 we
show how to apply the notion of topological gradient to restore degraded images. Finally in section 8, we
present for all the models, the way to numerically implement the computation of the topological gradient and
we display various experimental results illustrating each of them. We conclude this section by giving some
notations and assumptions.

Notations and assumptions:

• Ω⊂ R2 is the image domain.

• ‖u‖0,Ω the L2(Ω)-norm.

• H1(Ω) =
{

u ∈ L2(Ω) ∇u ∈ L2(Ω)
}

the Sobolev space endowed with the norm ‖u‖2
1,Ω = ‖u‖2

L2(Ω)
+

‖∇u‖2
L2(Ω)

.

• |u|1,Ω = ‖∇u‖L2(Ω) the semi-norm on H1(Ω).

• ‖u‖H1(Ω)/R the norm on the quotient space H1(Ω)/R.

• Br(x) the ball centered at x and of radius r, Br the ball centered at 0 and of radius r and B = B1 denotes
the unit ball.

• Ωε the perturbated domain defined by either (a) Ωε =Ω\{x0 + εB} or (b) Ωε =Ω\{x0 + εσ(n)}where
σ(n) is the straight segment of length 2 centered at 0 and of normal n.

• Ω0 = Ω

• Jε(u) = J(Ωε ,u).

• f : Ω→ R is the observed image, u : Ω→ R the image to be recovered.

• RN
j models pixel j, where N is the number of pixels. We suppose that Ω is the disjoint union of the

R j’s.

• f N = ( f N
j )1≤ j≤N (resp. uN = (uN

j )1≤ j≤N) is a discrete version of f (resp. u) defined by f N
j = 1

|RN
j |
∫

RN
j

f

(resp. uN
j = 1

|RN
j |
∫

RN
j

u).

Only the proof for a perforated domain (a) is performed since for a cracked domain (b) the explicit
dependency on the data is killed by the fact that the crack has a null Lebesgue measure.
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2 A Bayesian approach
In this section we recall, in the discrete setting, the classical Bayesian approach allowing to deduce the
suitable variational model for restoring noisy images. The reasoning is as follows: we express the a priori
conditional probability P(uN = u| f N = f ) and then we look for uN as the value maximizing P(uN = u| f N = f )
(a Maximum A Priori (MAP) estimator). Thanks to the Bayes rule, we have:

P(uN = u| f N = f ) =


P( f N = f |uN = u)P(uN = u)

P( f N = f )
, if P( f N = f )> 0

0, otherwise

P( f N = f |uN = u) depends on the noise model and P(uN = u) is an a priori density probability. Writing that
uN is a minimum of −log(P(uN = u| f N = f )) leads to looking for uN as the solution of

uN = argmin
u∈RN

EN(Ω,u)

where
EN(Ω,u) =−log(P( f N = f |uN = u))− log(P(uN = u)) (4)

The a priori density P(uN = u) plays the role of a regularizing term. In analogy to statistical mechanics,
a priori densities are frequently Gibbs functions [23] of the form:

P(uN = u) =C× e−
γ

2 GN(u), γ > 0

where GN(u) is a discrete version of a non negative energy functional G(u) and C is a constant. Here we
will consider that GN(u) = JN(Ω,u) is a discretization of J(Ω,u) defined in (1). The choice of the density
probability P( f N = f |uN = u) depends on the statistic of the model to be considered. Below we review
respectively speckle and Poisson models.

(i) Speckle model

For SAR images, the classical modeling is (see [40]): f N = sNuN where uN is the reflectance of the
scene (which is to be recovered) and sN the speckle noise. Let us explicit the law of sN . SAR images
are constructed from L ∈N observations f k,N with 1≤ k≤ L and for each observations we have f k,N =
hk,NuN . Generally hk,N is a random variable which follows a negative exponential law with mean 1.
Then, the observed image f N is construct from this L observations as:

f N =
1
L

L

∑
k=1

f k,N =

(
1
L

L

∑
k=1

hk,N

)
uN

We set sN = 1
L ∑

L
k=1 hk,N ; sN follows a gamma law with density P(sN = s) = LL

Γ(L) sL−1e−Ls1{s≥0} with

Γ(L) = (L−1)! (the mean of sN is 1 and its variance 1
L ). Standard computations lead to

P( f N = f |uN = u) =
1
u

P
(

sN =
f
u

)
(5)
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Classically, it is assumed that f N and uN are independently distributed. Hence the density of f N |uN is
the product of the densities

(
f N

j |uN
j

)
1≤ j≤N

. By applying the −log function we deduce that (4) in this

case rewrites as (up to a multiplicative constant)

EN(Ω,u) =
L
γ

N

∑
j=1

(
f N

j

u j
+ log(u j)

)
+

1
2

JN(Ω,u)+C

for u ∈ RN and u > 0, where C denotes a constant independent of u. The factor L can be neglected
since it can be scaled with the constant γ . Passing to the limit as N → ∞, we deduce the following
continuous energy

E(Ω,u) =
∫

Ω

1
γ

(
f
u
+ log(u)

)
dx+

1
2

J(Ω,u) (6)

(ii) Speckle with log of the image (Speckle-log model)

One drawback of (6) is that the data fidelity term is nonconvex. By setting, vN = log(uN) and gN =
log( f N), we can still use the Bayesian reasonning with vN = gN + log(sN). The expression of the
data fidelity term is changed and taking the same Gibbs function (GN(v) = JN(Ω,v)) we deduce the
continuous energy:

E(Ω,v) =
∫

Ω

1
γ

(
v+ e−(v−g)

)
+

1
2

J(Ω,v) (7)

which is now a convex function of v. The recovered image is then u = ev.

(iii) Poissonian model

This model is classical in astronomical and confocal microscopy imaging [20]. Poissonian statistic
is due to the stochastic nature of photons counts at sensors. We set N = N0 the number of sensors
which are modelled by the RN0

j ’s. To simplify notation, since N0 is fixed we drop the superscript N0 in
all variables and we assume that |R j| = 1 ∀ j ∈ {1, ..,N0}. We assume that f is a piecewise constant
function equal to f j on each R j. The observed image f j is a realization of a Poisson statistic of mean
and variance equal to λ j =

∫
R j

u(x)dx where x 7→ u(x) is the continuous image to be recovered. Thanks
to the independence of f j and λ j, the conditional probability P( f |λ ) is given by:

P( f |λ ) =
N0

∏
j=1

λ j
f j e−λ j

f j!

and by applying the −log function, we have:

−log(P( f |λ )) =
N0

∑
j=1

λ j− f jlog(λ j)+C
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where C is a constant independent of u. We deduce the energy:

E(Ω,u) =
1
γ

N0

∑
j=1

(∫
R j

u(x)dx− f jlog
(∫

R j

u(x)dx
))

+
1
2

J(Ω,u) (8)

3 Blurring modelling
In most imaging applications the optical material, the motion of the camera or of the target introduce a blur
on the observed image (see [36]). Generally spatially invariant, the blur is modelled as a positive convolution
operator u 7→ Ku with K1 6= 0. We denote by KN the N×N matrix associated to a discrete version of K on
Ω. From section 2 we can deduce the following models adapted to each kind of noise and taking into account
the blur:

1. Speckle model: the observed discrete image writes as f N = sNKNuN and the energy is

E(Ω,u) =
∫

Ω

1
γ

(
log(Ku)+

f
Ku

)
+

1
2

J(Ω,u) (9)

2. Speckle-log model. We recall that the model writes as gN = vN + log(sN) with vN = log
(
KNuN

)
. The

deblurring cannot be handled simultaneously with the denoising process since in general the equation
vN = log

(
KNuN

)
is not invertible. In this case, it is then preferable to use (9).

3. Poissonian model: the observed image f j is a realization of a Poissonian statistic of mean
∫

R j
KuN(x)dx,

so the energy is

E(Ω,u) =
1
γ

N0

∑
j=1

(∫
R j

Ku(x)dx− f jlog
(∫

R j

Ku(x)dx
))

+
1
2

J(Ω,u) (10)

4 Speckle multiplicative noise
In this section we show that equation (2) admits a unique solution for a more general class of functions ψ

including the speckle-log model. For that we consider the minimization problem:

min
u∈H1(Ω)

E(Ω,u) :=
∫

Ω

ψ(x,Ku)+
1
2

J(Ω,u) (11)

4.1 Well-posedness of problem (2)

We begin by stating the hypotheses defining the class of functions ψ(x,u) that we consider, including the
speckle-log model (11).

Hypotheses 1. Let I be an interval of R and ψ : Ω× I −→ R such that

(i) u 7→ ψ(x,u) ∈C3(I) ∀x ∈Ω

(ii) x 7→ Duψ(x,u) ∈C0(Ω) ∀u ∈ I

(iii) In f
Ω×W D2

uψ(x,u)> 0 for each compact W of I.
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(iv) ψ is bounded from below on Ω× I

(v) ∃a,b ∈ I such that for all x, Duψ(x,a)≤ 0 and Duψ(x,b)≥ 0 with [a,b]⊂ I.

Lemma 4.1. Let ψ(x,u) a function verifying Hypotheses 1, we assume that K is non decreasing and that
K1 6= 0, then (11) admits a unique solution uΩ ∈ H1(Ω). Moreover, we have a

K1 ≤ uΩ ≤ b
K1 .

Proof. To shorten notations, when it is not ambiguous, we denote ψ(u) for ψ(x,u).

Existence: Let (un) a minimizing sequence. There exists a constant C1 such that E(Ω,un) ≤ C1. As
ψ(x,u) is bounded from below on Ω× I there exists a constant C2 such that

∫
Ω

ψ(x,un)≥C2. Therefore:∫
Ω

|∇un|2 ≤max(C1,C1−C2)

Let be a′ = a
K1 (s.t. Ka′ = a), vn = max(un,a′) and Ω−n = Ω∩{un ≤ a′}, we have vn ≥ a′ and

E(Ω,vn)−E(Ω,un) =−
∫

Ω
−
n

|∇un|2 +
∫

Ω
−
n

ψ(a)−ψ(Kun)

By convexity ψ(Kun)−ψ(Ka′) ≥ Duψ(a)(Kun−Ka′), and from Hypothesis 1-(v) and using that K is not
decreasing we get

∫
Ω
−
n

ψ(a)−ψ(Kun)≤ 0. We deduce that E(Ω,vn)≤E(Ω,un). Thus vn is still a minimizing
sequence and vn ≥ a′. Similarly by setting b′ = b

K1 and wn = min(vn,b′), we get wn ≤ b′ and wn is a
minimizing sequence. Therefore we can suppose that any minimizing sequence un verifies a′ ≤ un ≤ b′.

Thus un is bounded in H1(Ω) and up to a subsequence there exists u ∈ H1(Ω) such that un
L2(Ω)→ u and

un
H1(Ω)
⇀ u (where

H1(Ω)
⇀ stands for the weak topology). By using the lower semi-continuity of J(Ω,u) and

Fatou’s Lemma we obtain that u is a solution of (11). Moreover we have a′ ≤ u≤ b′ a.e. on Ω.

Uniqueness: From the existence, we can work on the set H (Ω) =
{

v ∈ H1(Ω),a′ ≤ v≤ b′
}

. Since
ψ(u) is strictly convex on [a,b] ⊂ I and J(Ω,u) is strictly convex on H1(Ω), we deduce that E(Ω,u) is
strictly convex on H (Ω) and admits a unique minimum.

Since problem (11) and equation (2) are equivalent we deduce:

Corollary 1. Under the same hypotheses as in Lemma 4.1, (2) admits a unique solution uΩ ∈ H1(Ω).
Moreover, we have a

K1 ≤ uΩ ≤ b
K1 .

We apply below Lemma 4.1 to the speckle-log model for K = I.

Proposition 1. Let f be such that ∃α,β ∈ R | 0 < α ≤ f ≤ β . We assume that K = I, and ψ(x,u) =
u+ e−(u−g(x)) where g = log( f ). Then problem (11) has a unique solution u ∈ H1(Ω). Moreover we have
log(α)≤ u≤ log(β ).

Proof. A standard computation leads to Duψ(u) = 1− e−(u−g) and D2
uψ(u) = e−(u−g) > 0. Hence ψ(u) is

strictly convex on R. By using that 0 < α ≤ f ≤ β , we get

1− e−(u−log(β )) ≤ Duψ(u)≤ 1− e−(u−log(α))

Let a = log(α) and b = log(β ), the following inequalities hold

Duψ(b)≥ 0 and Duψ(a)≤ 0

From Lemma 4.1, there exists a unique function u ∈ H1(Ω) solution of (11). Moreover we have a≤ u≤ b.
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In the next subsection we give the topological gradients for perforated and cracked domains when K = I
and ψ satisfying Hypotheses 1.

4.2 Computation of the topological gradient for a perforated domain
For a perforated domain Ωε = Ω\{x0 + εB}, let uε be the solution of the problem

(Pε)

{
−∆uε +Duψ(x,uε) = 0 in Ωε

∂nuε = 0 on ∂Ωε

(12)

By setting J̃(Ω,u)=−
∫

Ω
Duψ(x,u)u, from the variational formulation of the equation verified by uε , computing

the topological gradient associated to J(Ω,u) is equivalent to compute the one associated to J̃(Ω,u). To give
the topological gradient expression we need (see [2, 22, 39]) to introduce an adjoint solution vε defined by

(Qε)

{
−∆vε +D2

uψ(x,u0)vε =−∂ J̃(u0) = Duψ(x,u0)+D2
uψ(x,u0)u0 in Ωε

∂nvε = 0 on ∂Ωε

(13)

where u0 denotes the solution of (12) for ε = 0 and ∂ J̃(u0) the gradient of J̃(Ω, .) at u0.

Theorem 4.2. Let ψ satisfying Hypotheses 1, then the topological gradient Ib
Lap associated to problem (12)

with the cost function Jε(u) =
∫

Ωε
|∇u|2 for a perforated domain is

Ib
Lap(x0) =−2π∇u0(x0).∇v0(x0)+πDuψ(x0,u0)(u0(x0)− v0(x0)) (14)

with u0 and v0 respectively solution (12) and (13) for ε = 0.

Proof. The proof of Theorem 4.2 is given in [27, 22] under slightly different assumptions; see also [22].

Remark 1. The adjoint problem (13) is linear and we can notice that the strict convexity of u 7→ ψ(x,u) is
necessary to (Qε) be coercive. Since u 7→ ψ(x,u) is C2(I) and thanks to Lemma 4.1 there exist two constants
A,B ∈ R such that ∀x ∈Ω

A≤ Duψ(x,u0)+D2
uψ(x,u0)u0(x)≤ B

Hence (13) is well-posed. Moreover, we have the following inequality

A
supΩ D2

uψ(x,u0)
≤ vε ≤

B
infΩ D2

uψ(x,u0)

4.3 Expression of the topological gradient for a cracked domain
For the cracked domain Ωε = Ω\x0 + εσ(n) the data fidelity term does not affect the topological gradient
expression since the crack has a 2d Lebesgue measure equal to 0. The asymptotic expansion of uε and vε

are similar and the computation of the topological gradient is the same as in the linear case and is given in
[5, 22].

Theorem 4.3. The topological gradient Ic
Lap associated to problem (12) and to the cost function Jε(u) =∫

Ωε
|∇u|2 for a cracked domain is

Ic
Lap(x0) = min

‖n‖=1
I (x0,n)

with I (x0,n) =−π∇u0(x0).n∇v0(x0).n
(15)

with u0 and v0 respectively solution of (12) and (13) for ε = 0.
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5 Poissonian model with blurring
In this section we consider the Poissonian model (3) whose associated energy is given by:

min
u∈H1(Ω)

E(Ω,u) :=
N0

∑
j=1

ψ j

(∫
R j

Ku
)
+

1
2

J(Ω,u) (16)

with ψ j(x)= 1
γ
(x− f jlog(x)). First we show that problem (16) is well-posed, then we compute the topological

gradient for a perforated domain and we give the expression for a cracked domain.

5.1 Well-posedness of problem (16)

Proposition 2. We assume that 0 < f j < +∞ ∀ j ∈ {1, ..,N0} and K1 6= 0, then problem (16) with ψ j(x) =
x− f jlog(x) for j ∈ {1, ...,N0} admits a unique solution u ∈ H1(Ω).
Moreover this solution verifies α ≤

∫
R j

Ku≤ β , ∀ j ∈ {1, ...,N0} with α =
min j f j

N and β =
∫

Ω
f = ∑

N0
j=1 f j.

Proof. Existence: We must add a priori to (16) the condition
∫

Ri
Ku > 0, ∀i ∈ {1, ...,N0}, thus let us define

the space H (Ω) =
{

u ∈ H1(Ω) |
∫

Ri
Ku > 0 ∀i ∈ {1, ...,N0}

}
. Then problem (16) rewrites as:

min
u∈H (Ω)

1
2

∫
Ω

|∇u|2 +∑
j

ψ j

(∫
R j

Ku
)

Let (un)n a minimizing sequence of E(Ω,u) in H (Ω). There exists a constant D > 0 such that E(Ω,un)≤D.
If C = ∑ j minx∈]0,+∞[ ψ j(x) = ∑ j f j− f jlog( f j)>−∞, then:

0≤
∫

Ω

|∇un|2 ≤ 2max(D,D−C)

Since
∫

Ω
|∇un|2 ≥ 0, we have ∑ j ψ j

(∫
R j

Kun

)
≤ D. Setting Ki = ∑ j 6=i minxψ j, it is straightforward that

ψi

(∫
Ri

Kun

)
≤ D−Ki and then

0 < Ei ≤
∫

Ri

Kun ≤ Ei (17)

with Ei =max
{

ψ
−1
i (D−Ki)

}
and Ei =min

{
ψ
−1
i (D−Ki)

}
(we recall the notation ψ

−1
i (b)= {x ∈]0,∞[ s.t. ψi(x) = b})

. Hence the constraint
∫

Ri
Kun > 0 is fulfilled. We deduce that ∑i Ei ≤

∫
Ω

Kun = ∑i
∫

Ri
Kun ≤ ∑i Ei. Then we

write un as un = vn +wn where wn = 1
|Ω|
∫

Ω
un. Since ∇vn = ∇un and

∫
Ω

vn = 0, from Poincaré-Wirtinger,
there exists F ≥ 0 such that ‖vn‖L2(Ω) ≤ F . Moreover, we have∣∣∣∣∫

Ω

Kwn

∣∣∣∣= |K1| ∣∣∣∣∫
Ω

Kun

∣∣∣∣≤ ∣∣∣∣∫
Ω

Kvn

∣∣∣∣+ ∣∣∣∣∫
Ω

Kun

∣∣∣∣≤ ‖K‖L2(Ω)F +∑
i

Ei

Thus, since K1 6= 0, we get that
∫

Ω
un is bounded and thus un is bounded in L2(Ω). So, there exist a

sub-sequence unk (still denoted un) and u ∈ H1(Ω) such that un
L2(Ω)→ u and un

H1(Ω)
⇀ u. We deduce that∫

Ω
|∇u|2 ≤ liminf

∫
Ω
|∇un|2 and

∫
Ri

Kun→
∫

Ri
Ku. By continuity, we have ψi

(∫
Ri

Kun

)
→ ψi

(∫
Ri

Ku
)
∀i ∈

{1, ...,N0} and
E(Ω,u)≤ liminfE(Ω,un)
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which proves that u is a minimizer of E(Ω,u).

Bounds: If u is the solution of (16) then DuE(Ω,u).v = 0 ∀v ∈ H1(Ω) i.e.

∫
Ω

∇u.∇v+
N0

∑
j=1

ψ
′
j

(∫
R j

Ku
)∫

R j

Kv = 0, ∀v ∈ H1(Ω) (18)

with ψ ′j

(∫
R j

Ku
)
= 1− f j∫

R j
Ku .

(i) By taking v = 1, we get the equality N0 = ∑ j
f j∫

R j
Ku . As f j∫

R j
Ku ≥ 0, ∀ j ∈ {1, ...,N0} and if i0 =

argmin
i

∫
Ri

Ku, we have N0 ≥
fi0∫

Ri0
Ku which leads to

∫
Ri0

Ku≥ fi0
N0
≥ mini fi

N0
> 0.

(ii) By taking v = u, we obtain the inequality ∑i
∫

Ri
Ku− fi ≤ 0 which leads to maxi

∫
Ri

Ku ≤ ∑i
∫

Ri
Ku ≤

∑i fi.

Uniqueness: From the two previous bounds we can minimize E(Ω,u) over the convex set
V β

α (Ω) =
{

u ∈ H1(Ω),α ≤
∫

R j
Ku≤ β

}
. Since ψ j(s) is strictly convex on [α,β ] for all j ∈ {1, ...,N0}, we

get that u 7→ ψ j

(∫
R j

Ku
)

is strictly convex on H(Ω). As |u|21,Ω is strictly convex, E(Ω, .) is strictly convex

on V β

α (Ω) and then E(Ω, .) has a unique minimum.

Since problem (16) and equation (3) are equivalent, we deduce:

Corollary 2. Under the same hypotheses as in Proposition 2, equation (3) admits a unique solution uΩ ∈
H1(Ω). Moreover, we have α ≤

∫
R j

Ku≤ β , ∀ j ∈ {1, ...,N0} with α =
min j f j

N0
and β =

∫
Ω

f = ∑
N0
j=1 f j.

Remark 2.
We can show that Proposition 2 holds as soon as ψ j is bounded from below for j ∈ {1, ...,N0} and strictly
convex on I ⊂ R. In the general case α and β are implicitly defined in function of ψ j.

5.2 Computation of the topological gradient for a perforated domain
We suppose that x0 ∈Ω\∪ j ∂R j and for ε sufficiently small we set j0 the index such that R j0 ⊃ Bε(x0). For
j ∈ {1, ...,N0}, let Rε

j be the domain equal to R j0\Bε(x0) if j = j0 and R j otherwise. Finally, let uε be the
unique solution of problem (3) replacing Ω by Ωε :

(Pε)

{
−∆uε +ψ

′
j
(
Iε

j (Kuε)
)

K?1= 0, in Rε
j

∂nuε = 0 on ∂Ωε and [uε ]∂R j = 0
(19)

where Iε
j (u) =

∫
Rε

j
u. As for the speckle-log model, by setting J̃(Ω,u) = −∑

N0
j=1 ψ ′j(I j(Ku))I j(Ku), from

the variational formulation of the equation verified by uε , computing the topological gradient associated to
J(Ω,u) is equivalent to compute the one associated to J̃(Ω,u). To compute the topological gradient we need
to introduce an adjoint solution vε defined by:{

−∆vε +ψ
′′
j (I j(Ku0)) Iε

j (Kvε)K?1=−∂ J̃ j(u0) = K?1 in Rε
j

∂nvε = 0 on ∂Ωε and [vε ]∂R j = 0
(20)
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where I j(u) =
∫

R j
u and ∂ J̃ j(u0) denotes the gradient of J̃ j(u) =−ψ ′j(I j(Ku))I j(Ku) at u0.

We now give the main result of this section.

Theorem 5.1. The topological gradient Ib
Lap associated to problem (19) and to the cost function Jε(u) =∫

Ωε
|∇u|2 for a perforated domain is

Ib
Lap(x0) =−2π∇u0(x0).∇v0(x0)+πψ

′
j0

(
I j0(Ku0)

)
(Ku0(x0)−Kv0(x0))

+πψ
′′
j0

(
I j0(Ku0)

)
Ku0(x0)(I j0

(
Ku0)− I j0(Kv0)

) (21)

with u0 and v0 are respectively solution of (19) and (20) for ε = 0.

Proof. We split the proof in three steps and we assume without loss of generality that x0 = 0.

Step 1 This step is dedicated to the computation of the difference Jε(uε)− J0(u0).
Using the variational formulation of uε : find uε ∈ H1(Ωε) s.t.

Aε(uε ,v) :=
∫

Ωε

∇uε .∇v+
N0

∑
j=1

∫
Rε

j

ψ
′
j
(
Iε

j (Kuε)
)

Kv = 0 ∀v ∈ H1(Ωε) (22)

we have Jε(uε) = J̃ε(uε) with:

J̃ε(u) =−
N0

∑
j=1

∫
Rε

j

ψ
′
j
(
Iε

j (Ku)
)

Ku =−
N0

∑
j=1

ψ
′
j
(
Iε

j (Ku)
)

Iε
j (Ku)

By denoting φ j(s) = ψ ′j(s)s, the difference Jε(uε)− J0(u0) writes

Jε(uε)− J0(u0) = J̃ε(uε)− J̃ε(u0) =−
N0

∑
j=1

φ j(Iε
j (Kuε))−φ j(I j(Ku0))

Using a Taylor expansion of φ j(s) at I j(Ku0) and by remarking that Iε
j (Kuε)−I j(Ku0) rewrites Iε

j (K(uε−u0))
when j 6= j0 and Iε

j (K(uε −u0))−
∫

Bε
Ku0 when j = j0, we have:

Jε(uε)− J0(u0) = Lε(uε −u0)+Mε +E1 (23)

with

Lε(u) =−
N0

∑
j=1

φ
′
j(I j(Ku0))Iε

j (Ku) Mε = φ
′
j0(I j0(Ku0))

∫
Bε

Ku0

E1 =−
N0

∑
j=1

φ
′′
j (η

j
ε )I

ε
j (K(uε −u0))

2

(24)

where η
j

ε ∈]I j(Ku0), Iε
j (Kuε)[⊂ [α,β ].

Step 2. In this step we introduce the adjoint problem in order to estimate the linear term Lε(uε−u0) in (23).
For that we need to linearize (22) w.r.t u. A Taylor expansion gives:

ψ
′
j(I

ε
j (Kuε))−ψ

′
j(I j(Ku0)) = ψ

′′
j (I j(Ku0))

(
Iε

j (Kuε)− I j(Ku0)
)
+

1
2

ψ
(3)
j (ξ j

ε )
(
Iε

j (Kuε)− I j(Ku0)
)2
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with ξ
j

ε ∈]I j(Ku0), Iε
j (Kuε)[⊂ [α,β ]. As a consequence we have

Aε(uε ,v) = Ãε(u0,v)+bε(uε −u0,v)+ cε(v)+dε(v) (25)

with

Ãε(u,v) =
∫

Ωε

∇u.∇v+
N0

∑
j=1

ψ
′
j(I j(Ku))

∫
Rε

j

Kv

bε(u,v) =
∫

Ωε

∇u.∇v+
N0

∑
j=1

ψ
′′
j (I j(Ku0)) Iε

j (Ku)
∫

Rε
j

Kv

cε(v) =
1
2

N0

∑
j=1

ψ
(3)
j

(
ξ

j
ε

)
(Iε

j (Kuε)− I j(Ku0))
2
∫

Rε
j

Kv

dε(v) =−ψ
′′
j0(I j0(Ku0))

∫
Bε

Ku0

∫
Rε

j0

Kv

Let us introduce now the adjoint problem:

find vε ∈ H1(Ωε) s.t. bε(u,vε) =−Lε(u) ∀u ∈ H1(Ωε) (26)

It is easily seen that (26) is the variational formulation of (20). From (23) and (25), we obtain

Jε(uε)− J0(u0) = Lε(uε −u0)+Mε +E1 =−bε(uε −u0,vε)+Mε +E1

=−Aε(uε ,vε)+ Ãε(u0,vε)+ cε(vε)+dε(vε)+Mε +E1

= Ãε(u0,vε)+E2 +Nε +Mε +E1

(27)

with
E2 = cε(vε) and Nε = dε(vε) (28)

By using an integration by parts and equation (19) for ε = 0, Ãε(u0,vε) expresses as

Ãε(u0,vε) =−
∫

∂Bε

∂nu0vε −
∫

Ωε

∆u0vε +
N0

∑
j=1

ψ
′
j (I j(Ku0))

∫
Rε

j

vε

=−
∫

∂Bε

∂nu0vε

In the sequel, we need to extend vε inside the ball Bε . To do that, for ϕ ∈ H1/2(∂Bε), we denote by lϕ

ε the
harmonic function defined by {

∆lϕ

ε = 0 in Bε

lϕ

ε = ϕ on ∂Bε

For v ∈ H1(Ωε) we set lvε
ε = l

vε |∂Bε

ε . By integration by parts, Ãε rewrites

Ãε(u0,vε) =−
∫

∂Bε

∂nu0lvε
ε =−

∫
∂Bε

∂nu0 (lwε
ε + v0)

=−
∫

Bε

(∆u0 (lwε
ε + v0)+∇ũ0.∇(lwε

ε + v0))

=−
∫

Bε

∆u0 (lwε
ε + v0)−

∫
∂Bε

ũ0∂n (lwε
ε + v0)+

∫
Bε

ũ0∆(lwε
ε + v0)

=−
∫

Bε

ψ
′
j0(I j0(Ku0))

(∫
Bε

Klwε
ε +

∫
Bε

Kv0

)
−
∫

∂Bε

ũ0 (∂nlwε
ε +∂nv0)+

∫
Bε

ũ0∆v0

= Kε +Lε +E3 +E4
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with ũ0 = u0−u0(0), wε = vε − v0 and

Kε =−
∫

∂Bε

ũ0 (∂nv0 +∂nlwε
ε ) , Lε =−ψ

′
j0

(
I j0(Ku0)

)∫
Bε

Kv0

E3 =
∫

Bε

ũ0∆v0 , E4 =−ψ
′
j0

(
I j0(Ku0)

)∫
Bε

Klwε
ε

(29)

Step 3. In this step we give the asymptotic expansion of all the previous terms.

Proposition 3. Let Mε , Nε , Kε , Lε , E1, E2, E3 and E4 given by (24), (28) and (29), then we have the
following estimations:

Jε(uε)− J0(u0) = Mε +Nε +Kε +Lε +
4

∑
i=1

Ei

Mε = πε
2 (

ψ
′
j0(I j0(Ku0))+ψ

′′
j0

(
I j0(u0)

)
I j0(Ku0)

)
Ku0(0)+o(ε2)

Nε =−πε
2
ψ
′′
j0

(
I j0(Ku0)

)
Ku0(0)I j0(Kv0)+o(ε2)

Kε =−2πε
2
∇u0(0).∇v0(0)+o(ε2)

Lε =−πε
2
ψ
′
j0

(
I j0(Ku0)

)
Kv0(0)+o(ε2)

(30)

and Ei ∼ o(ε2) for i ∈ [[1..3]].

Proof. The first equality is straightforward. A Taylor expansion of u0 at 0 gives the first estimation. Again
a Taylor expansion of u0 at 0, Lemma 9.4 (see Appendix A) and the fact that Rε

j0
ε→0−→ R j0 give the second

estimation. For Kε , from Lemmas 9.1 and 9.4 we have:

Kε =
∫

∂B
(u0−u0(0))

(
∂nl

εP( x
ε )

ε +∂nv0

)
+
∫

∂Bε

(u0−u0(0))∂nleε
ε

= ε
2
∇u0(0).

∫
∂B

λ (x)x+F1 +F2

with
λ (x) =−2∇v0(0).n

F1 =
∫

∂Bε

(u0−u0(0))(∂nv0−∇v0(0).n) = O(ε3)

F2 =
∫

∂Bε

(u0−u0(0))∂nleε
ε = O(ε3

√
−log(ε))

For F2 it suffices to make a change of variable and use the trace theorem on B2\B:

‖∂nleε
ε (εX)‖−1/2,∂B ≤

1
ε
|leε

ε (εX)|1,B =
1
ε
|leε (εX)(X)|1,B

≤ C
ε
‖eε(εX)‖H1/2(∂B)/R ≤C‖eε(εX)‖H1(B2\B)/R

Now from the equivalence of the H1(B2\B)/R-norm with the semi-norm and a change of variable, we get
‖∂nleε

ε (εX)‖−1/2,∂B ≤C|eε |1,Ωε
. By using Lemma 9.4, we obtain F2 = O(ε3

√
−log(ε)). For E1 and E2, we

use Lemma 9.3, the boundedness of
∫

Ωε
Kvε independently from ε and the fact that ηε and ξ

j
ε are in ]α,β [ :

|Ei| ≤C

(∫
Rε

j

K(uε −u0)

)2

= O(ε4log(ε)) for 1≤ i≤ 2

13



By using that ∆v0 = ψ ′′j0(I j0(Ku0))I j0(Kv0)−K1 and a Taylor expansion of u0 at 0 we get |E3|= O(ε3).
For E4, by using a change of variable, the continuity of ϕ 7→ lϕ from H1/2(∂B) to H1(B), the trace theorem
on B2\B, again a change of variable and Lemma 9.4 we obtain:

|E4| ≤Cε
2‖lwε

ε (εX)‖0,B =Cε
2‖lwε (εX)(X)‖0,B

≤Cε
2‖wε(εX)‖1/2,∂B ≤C‖wε(εX)‖1,B2\B

≤Cε
2
(

1
ε
‖wε‖0,Ωε

+ |wε |1,Ωε

)
≤Cε

3
√
−log(ε)

From Proposition 3, we deduce the expression of the topological gradient at x0 = 0. A simple change of
the coordinates system gives the result at any point x0 ∈Ω.

5.3 Expression of the topological gradient for a cracked domain
For a cracked domain the computations are similar. The data fidelity term does not affect the expression of
topological gradient because the crack has a 2d Lebesgue measure equal to 0.

Theorem 5.2. The topological gradient Ic
Lap associated to problem (19) and to the cost function Jε(u) =∫

Ωε
|∇u|2 for a cracked domain is

Ic
Lap(x0) = min

|n|=1
I (x0,n)

with I (x0,n) =−π∇u0(x0).n∇v0(x0).n
(31)

with u0 and v0 are solution of (19) and (20) for ε = 0.

Remark 3. The topological gradient is the same in the general case of functions ψ j ∈C3(I), strictly convex
on an interval I and bounded from below on I. Just in the right hand-side of (20), K?1 must be replaced by
φ ′j(I j(Ku0))K?1 with φ j(s) = ψ ′j(s)s.

6 Summary table of the topological gradient expressions
We summarize in Table 1, all the expressions of the topological gradient according to the type of noise and
to the infinitesimal perturbation.
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Ball Crack

Speckle-log −2π∇u0(x0).∇v0(x0)+πDuψ(x0,u0)(u0(x0)− v0(x0)) −π∇u0(x0).n∇v0(x0).n
(K = I) with ψ(x,u) = 1

γ
(u− log( f (x))+ f (x)e−u)

Poisson −2π∇u0(x0).∇v0(x0)+πψ ′j0
(
I j0(Ku0)

)
(Ku0(x0)−Kv0(x0))

(K 6= I) +πψ ′′j0
(
I j0(Ku0)

)
Ku0(x0)(I j0

(
Ku0)− I j0(Kv0)

)
−π∇u0(x0).n∇v0(x0).n

with ψ j0(x) =
1
γ

(
x− f j0 log(x)

)
and I j0(v) =

∫
R j0

v, where R j0 3 x0

Table 1: Summary of the topological gradient expressions

7 Restoration using the topological gradient for a cracked domain
As a by product the computation of the topological gradient Ic

Lap for a cracked domain allows to restore images
degraded by blur or/and various noise statistics. Once Ic

Lap is computed, we define for a fixed threshold δ > 0,

the set Eδ =
{

x ∈Ω; |Ic
Lap(x)| ≥ δ

}
and the approximated characteristic function

χη(x) =

{
η if x ∈ Eη

1 otherwise

where η is a small positive parameter. Typically, we take η = 10−5 in the numerical experiments. From
the computation of Ic

Lap we also get the normalized direction τ = n⊥ of the edge. If n = (cos(ϕ),sin(ϕ)) is
the normal to the crack given by Ic

Lap, we have ~τ = (sin(ϕ),−cos(ϕ)). Then, if f is the degraded observed
image, we want to find a restored version u ∈ H1(Ω) of f as the solution of the following anisotropic PDE:{

−div(Pϕ

η (x)∇u)+K?Duψ(x,Ku) = 0 in Ω

∂nu = 0 on Γ
(32)

with

ψ(x,u) =


1
γ

∑
j∈Iind

(∫
R j

u− f jlog
(∫

R j

u
))

1R j(x) (Poisson model)

1
γ

(
log(u)+

f (x)
u

)
(Speckle model)

(33)

and where Pϕ

η (x) is a tensor constructed from ϕ(x) and χη(x) and γ is a parameter to tune. More precisely,
we choose Pϕ

η (x)∇u(x) = (∇u.τ)τ +χη(x)(∇u.n)n. A simple identification shows that Pϕ

η (x) is the matrix

Pϕ

η (x) =
(

n2
2 +χη(x)n2

1 n1n2(χη(x)−1)
n1n2(χη(x)−1) n2

1 +χη(x)n2
2

)
(34)

where n1 = cos(ϕ(x)) and n2 = sin(ϕ(x)). The interpretation of this matrix Pϕ

η (x) is as follows:
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(i) if x belongs to the background, thanks to the definition of χη(x), Pϕ

η (x) writes as Pϕ

η (x) = I, so
div(Pϕ

η (x)∇u) = ∆u and the smoothing is isotropic.

(ii) if x belongs to an edge (i.e. x ∈ Eδ ), then χη(x) is close to zero and Pϕ

η (x)∇u(x) ≈ (∇u.τ)τ and
the diffusion is in the direction of the edge. As we will see in section 8 on numerical examples, the
restoration results obtained when applying equation (32) are very good.

To compute a numerical solution of equation (32), we consider the associated strictly convex energy :

E(u) =
∫

Ω

Pϕ

η ∇u.∇u+ 〈ψ(x,u)

that we discretize by using a classical finite differences scheme. Then we compute the minimizer of the
discrete energy by applying a Scale Gradient Projection (SGP) type algorithm described in Algorithm 2
below.

8 Numerical application to 2D imaging
In this section we illustrate the theory of the topological gradient by giving various experimental results for
models (2) and (3).

The topological gradient expressions for the two models are stated in sections 4 and 5 and are summarized in
section 6 (Table 1).

For each model, to compute the topological gradient (TG) we use Algorithm 1. The computation of the
direct and adjoint solutions is specific to each model.

Algorithm 1 Computation of the topological gradient
1: Computation of u0 and v0 by using Algorithm 2 below.
2: Computation of the derivatives of u0 by convolution with derivative filters.
3: Computation of the TG relatively to the model by using Table 1 and/or Theorems of section 4 and 5.

Remark 4. For a cracked domain, indicators Ic
Lap (15) and (31) are given by the minimal eigenvalue of a

2×2 symmetric matrix:
Ic
Lap = λmin(M0)

with

M0 =−π
∇u0∇vT

0 +∇v0∇uT
0

2

We first perform the discretization of problems (11) and (16) and then we give the experimental results.
As the adjoint problems (13) and (20) are linear with non constant coefficients we discretize them by a finite
difference scheme and we compute the discrete solution by using a sparse solver.

8.1 Solving numerically Poisson and Speckle-log models
In this section, we assume that f and u are vectors of RN and min f > 0. By Proposition 1 and Proposition 2,
problems (11) and (16) can be discretized as:

(Speckle-log model) min
u≥log(αs)

Js(u), αs > 0 (35a)
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(Poisson model) min
u≥αp

Jp(u), αp > 0 (35b)

where αs = min f and αp =
min f

N ; Jp(u) and Js(u) are respectively the discrete versions of energies (10) and
(7).

During the construction of a minimizing sequence u(k), the condition u(k) ≥ αp for the Poisson model
(respectively u(k) ≥ log(αs) for the speckle model) must be fulfilled at each step. Hence a projection ensures
this condition. To solve these problems we use an iterative algorithm based on the SGP algorithm [18]. Let
us write the discrete cost functions:

Js(u) =−
γ

2
uT Au+

N

∑
i=1

(
ui−gi + e−(ui−gi)

)
Jp(u) =−

γ

2
uT Au+

N

∑
i=1

(Ku)i− filog((Ku)i)

where A is the Neumann Laplacian matrix, K is a discretization of the blurring operator (circulant block
matrix if we assume that the image is periodic) and we recall that gi = log( fi). Let us give the main ideas of
the SGP algorithm. The discrete energies Js and Jp are denoted by J as soon as we do not use their expression
and δ will be the number equal to α for the Poisson model and equal to log(α) for the Speckle-log model.
We set Λ =

{
u ∈ RN ,u≥ δ

}
. We want to find u? ∈ Λ such that ∇J(u?) = 0. At step k, a first order Taylor

expansion at point u = u(k) leads to the following equation

∇J(u(k))+∇
2J(u(k))(u−u(k)) = 0

If det
(

∇2J(u(k))
)
6= 0, we get u= u(k)−∇2J(u(k))−1∇J(u(k)). We deduce by this reasoning that the direction

of the descent algorithm can be given by ∇2J(u(k))−1∇J(u(k)), but the computation of this direction is very
costly. We denote by DL the compact set of symmetric positive definite N×N matrices such that ‖D‖ ≤ L
and ‖D−1‖ ≤ 1

L . The main idea of the SGP algorithm is to construct two sequences αk and Dk ∈DL such that
αkDk approximates ∇2J(u(k)) and to project each iterate on Λ with respect to the norm ‖u‖D =

√
uT Du. We

set P
Λ,D−1 for D ∈DL the projector on Λ with respect to the norm ‖.‖D. For more details on Algorithm 2, we

refer the reader to [18] and we only give some explanations on the construction of the sequences Dk and αk.
We choose Dk = diag(dk

i ) with dk
i = min

(
L,max

(
1
L ,

∂ 2J
∂u2

i
(u(k))−1

))
. The approximation of the Hessian

matrix ∇2J(u(k)) is B(αk) = αkDk. By using a first order Taylor expansion of ∇J(u) at point u(k−1) we get
that

∇J(u(k))−∇J(u(k−1)) = ∇
2J(u(k)).(u(k)−u(k−1))+o

(
(u(k)−u(k−1))2

)
Hence two possible choices of αk can be made:

α
1
k = argmin

α

∥∥∥B(αk)s(k−1)− z(k−1)
∥∥∥

Dk
=

s(k−1)T
D−1

k D−1
k s(k−1)

s(k−1)T D−1
k z(k−1)

α
2
k = argmin

α

∥∥∥s(k−1)−B(αk)
−1z(k−1)

∥∥∥
Dk

=
s(k−1)T

Dkz(k−1)

z(k−1)T DkDkz(k−1)

where s(k−1) = u(k)−u(k−1) and z(k−1) = ∇J(u(k))−∇J(u(k−1)). In [18] the choice of αk is the output of an
algorithm called SGP-SS Algorithm (SGP step length selection) which uses two thresholds 0 < αmin < αmax.
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Algorithm 2 SGP algorithm

1: Set u(0) ≥ α , β ,θ ∈]0,1[, 0 < αmin < αmax, L > 0, and fix a positive integer M.
2: for k = 0 : kmax do
3: Choose the parameter αk ∈ [αmin,αmax] and the scaling matrix Dk ∈DL
4: Projection: y(k)← P

Λ,D−1
k
(u(k)−αkDk∇ f (u(k))

5: if y(k) = u(k) then
6: Stop, u(k) is a stationary point.
7: end if
8: Descent direction d(k) = y(k)−u(k);
9: λk← 1 and Jmax←max0≤ j≤min(k,M−1) J(u(k− j))

10: λk fixed by backtracking:
11: while f (u(k)+λkd(k))≤ Jmax +βλk∇J(u(k))T d(k) do
12: λk← θλk
13: end while
14: u(k+1)← u(k)+λkd(k)

15: end for

The derivative of the discrete cost functions Jp and Js are:

∇Jp =−γAu−KT f
Ku

+KT1

∇
2Jp =−γA+KT diag

(
f

(Ku)2

)
K

∇Js =−γAu+1− e−(u− f )

∇
2Js =−γA+diag

(
e−(u− f )

)
where 1 ∈ RN denotes the vector whose each coordinate is equal to 1, diag(x) for x ∈ RN is the diagonal
matrix with diagonal entries equal to x. For x ∈RN and ϕ : R−→R, ϕ(x) stands for the vector (ϕ(xi))1≤i≤N .
The choice of the parameters in Algorithm 2 is the following: β = 10−4, θ = 0.4, kmax = 600, M = 1 and
for the Poisson model (16) we set αmin = 10−10, αmax = 105 while for the Speckle-log model (11) we set
αmin = 10−5, αmax = 1015. The initial value of u(0) is either the observed image for the Poisson model or
its logarithm for the Speckle-log model. Let us note that in the case of equation (32), the matrix A is the
finite differences discretisation of the operator div(Pϕ

η ∇.) and for the speckle model of restoration we use the
function ψ(u) = log(u)+ f

u .

8.2 Comparison of our method with some classical models
We compare the results given by the topological gradient approach with the ones performed by the Mumford-Shah
and TV models. We will also compare our detection process with the well-known Canny edge detector.

Mumford-Shah model of segmentation/restoration and its approximation

Let u be the image of support Ω, the functional introduced by Mumford and Shah in 1989 (see [34]) is:

F(u,γ) =
∫

Ω

|u−u0|2 +λ

∫
Ω\γ
|∇u|2 +αH 1(γ)
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where f is the observed image, u is a function defined on Ω\γ (the restored version of f ) and γ ⊂Ω is the set
of discontinuity of u. H 1 is the Hausdorff measure of γ , λ and α are positive parameters. The difficulty is
that the unknown are not of same nature: u is a function and γ is a set. Ambrosio and Tortorelli [1] proposed
an approximation of this functional as follows:

Fε(u,b) =
∫

Ω

[
|u− f |2 +λb2|∇u|2 +α

(
ε|∇b|2 + (b−1)2

4ε

)]
We will change the data fidelity term |u− f |2 according to the a priori model (speckle and Poissonian models)
i.e. we will compare (32) with the solution of (see [37]):

min
u∈H1(Ω),b∈H1(Ω)

∫
Ω

[
ψ(x,Ku)+λb2|∇u|2 +α

(
ε|∇b|2 + (b−1)2

4ε

)]
(36)

where K is the blur operator, u(x) is the restored image, 1−b(x)≈ 0 is the characteristic function of the edges
and ψ(x,u) is given in (33). We will call this model the Mumford-Shah model (MS).

TV model of restoration

The TV model is well-known: we search for a restored version u minimizing an energy functional which
is the sum of the total variation ||Du|| and a data fidelity term which depends on the a priori model (see [6]
for the speckle model and [17] for the Poisson one). TThus, we will compare model (32) to:

min
u∈BV (Ω)

∫
Ω

|Du|+λψ(x,Ku) (37)

where λ is a parameter, K the blur operator, and ψ(u) is given in (33). In the sequel we call this model the
TV model.

The Canny edge detector

We will also compare the edge detection performed by our approach with the Canny edge detector which
is the norm of the gradient of a regularization of the image by a Gaussian convolution at scale σ .
For more details on these models we refer the reader to [17, 6, 37, 34] and for the numerical approximations
to [9] and the references therein.

For restoration comparisons on synthetic images we use two indicators:

• the PSNR which is defined for a noisy observation I of an image I0 by

PSNR(I) = 10Log
(

2552

‖I− I0‖2
2/N

)
where N is the number of pixels in the image.

• the SSIM defined as

SSIM(I) =
(2µI µI0 + c1)(2cov(I, I0)+ c2)

(µ2
I +µ2

I0
+ c2)

where µx stands for the mean of x, cov is the covariance operator and c1 and c2 are constants given for
RGB images by c1 = (255k1)

2 and c2 = (255k2)
2 with k1 = 0.01 and k2 = 0.03.
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8.3 Numerical results for the speckle-log model. Comparisons
In this section we illustrate the detection process given by Ic

Lap (15), Ib
Lap (14), b(x) (computed with the MS

model (36)) and the Canny edge detector. All edge detectors are displayed up to a normalisation in order to
have edges in black and the background of the image in white. We also display the restoration performed by
(32), the MS model (36) and the TV model (37).

On Fig. 1, we compare Ic
Lap (15) and Ib

Lap (14) for different values of γ with b(x) and with the Canny
edge detector for a synthetic speckled image. Ib

Lap seems more adapted to detect isotropic structures and we
deduce that γ must be tuned with respect to the noise and to the size of structures to detect. Comparing Ic

Lap,
MS and the Canny edge detector, similar results are obtained for the cheetah.

(a) Initial image

(b) Ib
Lap(14) (γ = 1) (c) Ic

Lap (15) (γ = 1) (d) Ib
Lap(14) (γ = 10)

(e) Ic
Lap (15) (γ = 10) (f) MS (36) (λ = 0.1, α = 10, ε = 10−6) (g) Canny edge detector (σ = 3)

Figure 1: Comparison of (14) and (15) for different values of γ with the MS edge detection (36) and the
Canny edge detector for an initial speckled image (L = 6) containing mainly isotropic small structures.

Remark 5. Let us note that for large γ an edge doubling phenomena appears for Ic
Lap on Fig. 1-(e). As

shown in [4], in the linear case (Gaussian noise), the edge doubling can be avoided by using as cost function
the opposite of the square of the L2-norm. More generally we have remarked that the edge doubling can
be avoided for the speckle-log model by adding in the cost function the term

∫
Ω

ψ(u). Let us recall that
the direct and adjoint models given in (12) and (13) are associated to the auxiliary cost function J̃(Ω,u) =
−
∫

Ω
Duψ(x,u)u. Fig. 2 shows profiles of the direct and adjoint models and Ic

Lap (15) associated to J̃(Ω,u)
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and to J̃2(Ω,u) = J̃(Ω,u)+
∫

Ω
ψ(u).
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Figure 2: (a) The cut on the speckled image (L = 6), (b)-(e) the topological gradients Ic
Lap (15) (γ = 30),

(c)-(f) a transverse cut displaying the image to recover, the direct and the adjoint models, (d)-(e) a tranverse
cut of Ic

Lap . (b)-(c)-(d) are associated to J̃(Ω,u) and (e)-(f)-(g) to J̃2(Ω,u)

21



The result given in Fig. 3 for a real SAR image is similar to the one of Fig. 1. Here we see that Ib
Lap and

Ic
Lap can be used for different objectives: particularly on small isotropic structures we see that Ib

Lap detects the
entire object while Ic

Lap and the other indicators detect its edges. Let us notice that Ic
Lap detects only edges

while the Canny edge detectors is also sensitive to texture.

(a) Initial image (b) Zoom on initial image

(c) Ib
Lap (14) (γ = 1) (d) Ic

Lap (15) (γ = 1) (e) MS (36) (λ = 0.07, α = 1,
ε = 10−6)

(f) Canny edge detector
(σ = 2)

(g) Zoom on Ib
Lap(14) (h) Zoom on Ic

Lap (15) (i) MS (36): Zoom (j) Canny edge detector: Zoom

Figure 3: Comparison of (14) and (15) with the MS edge detection (36) and the Canny edge detector for a
real SAR image.

Fig. 4 and Fig. 6 compare the restoration performed by (32), (36) and (37) respectively on a real SAR
image and on a synthetic speckled image. Restoration given by the MS degrades contours while (32) and the
TV model (37) are nearly equivalent. However, on Fig. 6, we can notice that the restoration performed by
(32) is better than the TV one and computation times are equivalent (see section 8.5).
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(a) Initial image (b) Restored version (32),
(γ = 5×10−4)

(c) MS (36) (λ = 0.05, α = 1,
ε = 10−6)

(d) TV(37) (λ = 800)

Figure 4: Comparison of the restored versions (32), (36) and (37) for a real SAR image (Zoom on Fig. 3-(a)).

On Fig. 5 we compare Ic
Lap, b(x) computed with MS (36) and the Canny edge detector for a very noisy

synthetic image (L = 1 i.e. the worst case for this model). Here Ic
Lap gives a quite good result with respect to

MS where edges are spread out and the Canny edge detector which detects a lot of noise.

(a) Initial Image (b) Ic
Lap (15) (γ = 1.8) (c) MS (36) (λ = 1, α = 1,

ε = 10−6)
(d) Canny edge detector

(σ = 7/2)

(e) Zoom Initial Image (f) Zoom on Ic
Lap (15) (g) MS (36): Zoom (h) Canny edge detector: Zoom

Figure 5: Comparison of the topological gradient (15) with the MS edge detection (36) and the Canny edge
detector for a synthetic speckled image (L = 1).
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(a) Initial Image,
PSNR=9.6dB, SSIM=0.304

(b) Restored version (32)
(γ = 0.002), PSNR=24dB,

SSIM=0.945

(c) MS (36) (λ = 1, α = 1,
ε = 10−6), PSNR=14.5dB,

SSIM=0.924

(d) TV (37) (λ = 90),
PSNR=22dB, SSIM=0.927

Figure 6: Comparison of restored versions (32), (36) and (37) for a speckled synthetic image (L = 1).

Finally Fig. 7 shows the 1D profiles of the image to recover, its noisy version, the restored version (32)
and Ic

Lap (15) across an edge. The restored version matches very well the image to recover and edges are not
degraded except on strong angular point with low contrast where the direction of the diffusion in (32) is not
well defined and the topological gradient Ic

Lap is low in magnitude. This shows that (32) is a good restoration
process.
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(a) (b) (c)

(d) (e) (f)

Figure 7: (a)-(d) Image and transverse cut of the speckled image (L = 1), (b)-(e) the restored version (32)
(γ = 0.01) and (c)-(f) Ic

Lap (15) (γ = 1.8).

8.4 Numerical results for the Poisson model. Comparisons
In this section we compare the edge detection performed by Ic

Lap (31), Ib
Lap (21), the MS model (36) and the

Canny edge detector. We also compare the restoration computed with (32), the MS and the TV model.
Fig. 8 and Fig. 10 show respectively the edge detection results in the case of a synthetic Poissonian image

and of a real confocal image of a rat’s neuron. Ic
Lap (31) detects edges quite well compared to the MS model.

Results performed by the Canny edge detector are similar to those obtained with Ic
Lap for small γ while for

large γ an edge doubling phenomena still appear. We see that Ib
Lap fills small structures (the size of these

structures is related to γ as for the speckle case).
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(a) Initial image

(b) Ib
Lap (21) (γ = 3×10−3) (c) Ic

Lap (31) (γ = 3×10−3) (d) Ib
Lap(21) (γ = 3×10−2)

(e) Ic
Lap (31) (γ = 3×10−2) (f) MS (36) (λ = 0.07, α = 1, sε = 10−6) (g) Canny edge detector (σ = 5/2)

Figure 8: Comparison of (21) and (31) for different values of γ with the MS edge detection (36) and the
Canny edge detector for a Poissonian image containing mainly isotropic small structures.

Remark 6. We can still do a similar remark as Remark 5 for Fig. 8-(e). Here also we have remarked that the
edge doubling can be avoided for Poissonian model by adding in the cost function the term ∑

N0
j=1 ψ j(I j(Ku)).

Let us recall that the direct and adjoint models given in (19) and (20) are associated to the auxiliary cost
function J̃(Ω,u) = −∑

N0
j=1
∫

Ω
ψ ′(I j(Ku)I j(Ku). Fig. 9 shows profiles of the direct and adjoint models and

Ic
Lap (31) associated to J̃(Ω,u) and to J̃2(Ω,u) = J̃(Ω,u)+∑

N0
j=1 ψ j(I j(Ku)).

Fig. 12 compares Ic
Lap (31) with b(x) performed by the MS model (36) and the Canny edge detector, for

a Poissonian image blurred by a Gaussian convolution. Similar results are obtained from the MS model and
Ic
Lap while edges detected by the Canny edge detector are more spread out (if we decrease the scale parameter

σ texture is detected significantly). Fig. 11 and Fig. 13 display the restoration computed by (32), (36) and
(37) on respectively a real confocal image and a synthetic Poissonian image blurred by Gaussian convolution.
We notice that (32) and (37) restore very well the image preserving edges unlike to the MS model (36) which
degrades contours and which does not annihilate the blur effect.
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Figure 9: (a) The cut on the Poissonian image, (b)-(e) the topological gradient Ic
Lap (31) (γ = 3×10−1), (c)-(f)

a transverse cut displaying the image to recover, the direct and the adjoint models, (d)-(g) a transverse cut of
Ic
Lap . (b)-(c)-(d) are associated to J̃(Ω,u) and (e)-(f)-(g) to J̃2(Ω,u)
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(a) Initial image (b) Ib
Lap(21) (γ = 10−1) (c) Ic

Lap (31) (γ = 10−1) (d) Ib
Lap(21) (γ = 3)

(e) Ic
Lap (31) (γ = 3) (f) MS (36) (λ = 0.1,

ε = 10−6, α = 1)
(g) Canny edge detector

(σ = 3)

Figure 10: Comparison of (21) and (31) for different values of γ with the MS edge detection (36) and the
Canny edge detector for a Poissonian real image containing rat’s neurons.

(a) Initial image (b) Restored version (32)
(γ = 0.03)

(c) MS (36) (λ = 0.01, α = 1,
ε = 10−6)

(d) TV (37) (λ = 5)

Figure 11: Comparison of the restored versions (32), (36) and (37) for a real Poissonian image of rat’s
neurons.
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(a) Initial image (b) Ic
Lap (31) (γ = 0.001) (c) MS (36) (λ = 0.07,

ε = 10−6, α = 1)
(d) Canny edge detector

(σ = 2)

(e) Zoom on Initial image (f) Zoom on Ic
Lap (31) (g) MS (36): Zoom (h) Canny edge detector:

Zoom

Figure 12: Comparison of Ic
Lap (31) with the MS edge detection (36) and the Canny edge detector on a

synthetic Poissonian image blurred by a Gaussian convolution of scale σ = 3.

(a) Initial image,
PSNR=23.8dB, SSIM=0.940

(b) Restored version (32)
(γ = 0.005), PSNR=29.1dB,

SSIM=0.976

(c) MS (36) (λ = 0.001,
α = 1, ε = 1e−6),

PSNR=28.3dB, SSIM=0.971

(d) TV (37) (λ = 40),
PSNR=29dB, SSIM=0.976

Figure 13: Comparison of the restored versions for a Poissonian image blurred by a Gaussian convolution of
scale σ = 3.

Finally, Fig. 14 shows the 1D profiles of the image to recover, its degraded versions (blurred, blurred +
Poissonian process), the restored version (32) and Ic

Lap (31) across an edge. We see that (32) allows to recover
the initial image and that Ic

Lap detects very well the edge.
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(a) (b) (c)

(d) (e) (f)

Figure 14: (a)-(d) Image and transverse cut of the Gaussian blurred (σ = 3) Poissonian image, (b)-(e) the
restored version (32) (γ = 0.005) and (c)-(f) Ic

Lap (31) (γ = 0.001).

8.5 Computational time comparisons for the three methods
On Fig. 15 are compared the three methods for K = I (no blur): Mumford-Shah (MS), TV and the topological
gradient method (TG). The experiments are performed on a computer equipped with a processor Intel Core
1.9 GHz and all algorithms are implemented in Matlab. The computation time for the Canny edge detector is
not displayed because it just consists in a convolution which is very fast and so it would be very close to the
y-axis compared to other methods.

For Poisson and speckle models, the computation of the topological gradient still remains the fastest but
the restoration step performed by (32) takes approximately the same time as for a restoration given by a TV
model. Let us notice that the TV model is implemented by using an iterative algorithm (explicit schema with
fixed step length with at maximum 1000 iterations) and that the Mumford-Shah model solution is computed
by minimizing the approximate functional alternatively with respect to u and b. The minimization with
respect to u (at b fixed) is made by using Algorithm 2 and we perform 15 iterations. Finally let us precise
that we present on Fig. 15 the computation time only for the Poissonian model because similar results are
obtained from the speckle one.
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Figure 15: Comparisons of the computational time (in sec.) of the three methods of restoration in function of
the number of pixels in the Poissonian case

9 Appendices
In these appendices we give the asymptotic expansion of the differences uε−u0 and vε−v0 for the non linear
problems (Poisson and Speckle-log models). Some proofs are similar to the linear case and so we will refer
the reader to [5]. To establish these asymptotic expansions we need the following exterior problem

(Pext)


∆P = 0 in R2\B

∂nP = g on ∂B

P−→ 0 at ∞

(38)

where g ∈ H−1/2(∂B) and
∫

∂B gdσ = 0. For the computation of the topological gradient we will use the two
following lemma. We omit the proofs and we refer the reader to [22] for more details

Lemma 9.1. The solution of (38) expresses as a single layer potential:

P(x) =
∫

∂B
λ (y)E(x− y)dσ

with E(x) =− 1
2π

log(|x|) is the fundamental solution of the Laplace operator and λ (y) =−2g(y). Denoting
by lP the solution of {

∆lp = 0 in B

∂nlP = 0 on ∂B

we have the jump relations through ∂B
P− lP = 0

∂nP−∂nlP =−λ
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and lP expresses as lP(x) =
∫

∂B λ (y)E(x− y)dσ .

The following asymptotic estimations holds.

Lemma 9.2. Let P the solution of (38), then:

|P(x)| ≤ C
|x|

, |∇P(x)| ≤ C
|x|2∥∥∥P

( x
ε

)∥∥∥
0,Ωε

= O
(√
−log(ε)

)
,
∥∥∥∇P

( x
ε

)∥∥∥
0,Ωε

= O(ε)

9.1 Appendix A
In this appendix we perform the asymptotic expansion of uε (19) in H1(Ωε)-norm when ε → 0. We assume
along this appendix that x0 = 0.

Lemma 9.3. Let Xε = uε −u0 where uε and u0 are respectively given by (19) for ε > 0 and ε = 0, then we
have:

Xε = εP
( x

ε

)
+ eε

where P is defined by (38) with g = −∇u0(0).n and where ‖eε‖1,Ωε
= O(ε2). Moreover we have the

estimation:
‖Xε‖0,Ωε

= O(ε2
√
−log(ε))

Proof. First, let us write the Euler equations checked by Xε . By substracting equations (19) for ε > 0 and for
ε = 0, we get for j ∈ {1, ...,N0}:

(Xε)


−∆Xε +ψ

′
j

(∫
Rε

j

Kuε

)
−ψ

′
j

(∫
R j

Ku0

)
= 0 in Rε

j , j ∈ {1, ...,N0}

∂nXε =−∂nu0, on ∂Bε

∂nXε = 0, on Γ

(39)

Then, by a Taylor expansion, there exists ξ
j

ε ∈]
∫

R j
Ku0,

∫
Rε

j
Kuε [ such that

ψ
′
j

(∫
Rε

j

Kuε

)
−ψ

′
j

(∫
R j

Ku0

)
= ψ

′′
j (ξ

j
ε )

(∫
Rε

j

Kuε −
∫

R j

Ku0

)

From Proposition 2, it is straightforward that 0 < α ≤ ξ
j

ε ≤ β where α = mini fi
N and β = ∑i fi. (Xε) rewrites

for j ∈ {1, ...,N0} as

(Xε)


−∆Xε +ψ

′′
j (ξ

j
ε )
∫

Rε
j

KXε =
∫

R j\Rε
j

Ku0 in Rε
j

∂nXε =−∂nu0, on ∂Bε

∂nXε = 0, on Γ

with
∫

R j\Rε
j
Ku0 = δ j0( j)

∫
Bε

Ku0, where δ is the Dirac function. Let eε = Xε − εP
( x

ε

)
where P is defined by
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(38) with g =−∇u0(0).n. eε , then eε verifies the following equation

(Eε)



−∆eε +ψ
′′
j (ξ

j
ε )
∫

Rε
j

Keε =−εψ
′′
j (ξ

j
ε )
∫

Rε
j

KP
( x

ε

)
in Rε

j j ∈ {1, ...,N0}
∂neε = g1(x) = O(|x|) on ∂Bε

∂neε = gε
2(x) = O

(
ε2

|x|2

)
on Γ

(40)

where g1 = ∂nu0(x)−∇u0(0).n(x) ∈ H−1/2(∂Bε) and gε
2(x) =−∂nP

( x
ε

)
∈ H−1/2(Γ). We set:

F j
ε =


−εψ

′′
j (ξ

j
ε )
∫

R j

KP
( x

ε

)
= O(ε3), for j 6= j0∫

Bε

Ku0− εψ
′′
j0(ξ

j
ε )
∫

Rε
j0

KP
( x

ε

)
= O(ε2), for j = j0

Now we split eε into the sum eε = e1
ε + e2

ε + e3
ε with

(i) e1
ε ∈ H1(Ωε)/R solution of 

−∆e1
ε = 0, in Ωε

∂ne1
ε = g1(x), on ∂Bε

∂ne1
ε = 0, on Γ

(ii) e2
ε ∈ H1(Ωε)/R solution of 

∆e2
ε = 0, in Ωε

∂ne2
ε = 0, on ∂Bε

∂ne2
ε = gε

2(x), on Γ

(iii) e3
ε ∈ H1(Ωε) solution of

(E 3
ε )


−∆e3

ε +ψ
′′
j (ξ

j
ε )
∫

R j

Ke3
ε = F j

ε −ψ
′′
j (ξ

j
ε )
∫

Rε
j

K(e1
ε + e2

ε) in Rε
j , j ∈ {1, ...,N0}

∂ne3
ε = 0, on ∂Bε

∂ne3
ε = 0, on Γ

Standard computations (see [5, 22] for more details) lead to the following estimations:

‖e1
ε‖H1(Ωε )/R ≤Cε

2 ‖e2
ε‖H1(Ωε )/R ≤Cε

2

To estimate e3
ε , we take the variational formulation of (E 3

ε ):∫
Ωε

∇e3
ε .∇v+

N0

∑
j=1

ψ
′′
j (ξ

j
ε )
∫

Rε
j

Ke3
ε

∫
Rε

j

Kv =
N0

∑
j=1

F j
ε

∫
Rε

j

Kv−ψ
′′
j (ξ

j
ε )
∫

Rε
j

K(e1
ε + e2

ε)
∫

Rε
j

Kv (41)

An easy computation of ψ ′′j and Proposition 2 give for ε ≤ ε0

min j∈{1,...,N0} f j

β 2 ≤ ψ
′′
j (ξ

j
ε ) =

f j

(ξ j
ε )2
≤

max j∈{1,...,N0} f j

α2
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By taking as test function v = e3
ε in (41), we deduce the following estimations:

∫
Ωε

|∇e3
ε |2 +C

N0

∑
j=1

(∫
Rε

j

Ke3
ε

)2

≤
N0

∑
j=1
|F j

ε |
∣∣∣∣∫R j

ε

Ke3
ε

∣∣∣∣+ ∣∣∣ψ ′′j (ξ j
ε )
∣∣∣∫

Rε
j

(|Ke1
ε |+ |Ke2

ε |)

∣∣∣∣∣
∫

Rε
j

Ke3
ε

∣∣∣∣∣
≤C

(
ε

2 +‖e1
ε‖L2(Ωε )/R+‖e2

ε‖L2(Ωε )/R

) N0

∑
j=1

∣∣∣∣∫R j
ε

Ke3
ε

∣∣∣∣
≤Cε

2
N0

∑
j=1

∣∣∣∣∫R j
ε

Ke3
ε

∣∣∣∣
Then, thanks to the following inequality which stands for any sequence of real numbers (ai)i(

∑
i∈{1,...,N0}

|a j|

)2

≤ N0

N0

∑
j=1
|a j|2

and the positiveness of
∫

Ωε
|∇e3

ε |2, we obtain

N0

∑
j=1

∣∣∣∣∫R j
ε

Ke3
ε

∣∣∣∣≤Cε
2

and then |e3
ε |1,Ωε

≤Cε2. By splitting e3
ε into the sum e3

ε =
(

e3
ε − 1

|Ω|
∫

Ωε
e3

ε

)
+ 1
|Ω|
∫

Ωε
e3

ε and using Poincaré-Wirtinger

inequality and the fact that K1 6= 0 (as in Proposition 2) we get ‖e3
ε‖1,Ωε

≤Cε2.
From the inequality ‖eε‖1,Ωε

≤ ‖e1
ε‖H1(Ωε )/R+ ‖e2

ε‖H1(Ωε )/R+ ‖e3
ε‖1,Ωε

, we obtain the estimation. For
the L2(Ωε)-norm estimation of Xε , it suffices to take the L2(Ωε)-norm of its asymptotic expansion and to use
the first point of Lemma 9.3 and Lemma 9.2.

Lemma 9.4. Let wε = vε − v0 where vε and v0 are given by (26) for ε > 0 and ε = 0, then we have:

wε = εP
( x

ε

)
+ rε

where P is defined by (38) with g =−∇v0(0).n, and where ‖rε‖1,Ωε
= O(ε2

√
−log(ε)). Moreover we have:

‖wε‖0,Ωε
= O(ε2

√
−log(ε), |wε |1,Ωε

= O(ε)

Proof. By substracting equations (20) for ε > 0 and for ε = 0, the Euler equations associated to wε are:

(Wε)



−∆wε +ψ
′′
j (I j(u0))

∫
Rε

j

Kwε = 0 in R j with j 6= j0

−∆wε +ψ
′′
j0

(
I j0(Ku0)

)∫
Rε

j0

Kwε = ψ
′′
j0

(
I j0(Ku0)

)∫
Bε

Kv0 = O(ε2) in Rε
j0

∂nwε =−∂nv0 on ∂Bε

∂nwε = 0 on Γ

(42)
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This problem is linear and from Proposition 2 we have:

min j∈{1,...,N0} f j

β 2 ≤ ψ
′′
j (I j(u0)) =

f j

I j(u0)2 ≤
max j∈{1,...,N0} f j

α2

Then the topological expansion of wε can be deduced from the proof of Lemma 9.3 or from the linear case
with constant coefficient [5]. See also Nedelec [35] for details on the analysis.
The two last estimations are straightforward by using the topological expansion of wε and Lemma 9.2.
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