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Résumé

The goal of this paper is to apply the topological gradient method for segmenting/restoring
images degraded by various noises and blurs. First applied by Hintermuller [Control and Cyber-
netics, 34 (2005), pp. 305-324] and Belaid etal [C. R. Acad. Sci. Paris, 342 (2006), pp.313-318]
to restore images degraded by a Gaussian noise, we propose here to extend the method to blurred
images contaminated either by an additive Gaussian noise, or a multiplicative noise of gamma
law and to blurred Poissonian images. We compute, both for perforated and cracked domains, the
topological gradient for each noise model. Then we present a segmentation/restoration algorithm
based on this notion and we apply it to the three degradation models previously described. We
compare our method with the Ambrosio-Tortorelli approximation of the Mumford-Shah functio-
nal and with those given by a classical TV restoration process. Many experimental results showing
the efficiency, the robustness and the rapidity of the approach are presented.

1 Introduction

An important problem in image analysis is the reconstruction of an original image u from an
observed image f. In general this includes restoration and segmentation processes. The transformation
between f and u originates from two phenomena. The first phenomenon is related to the acquisition
process (blur created by a wrong lens adjustement or by a movement, Poissonian photons emission
rates ...) and the second is due to the signal transmission. A lot of methods to reconstruct such degraded
images exist : stochastic methods [22, 13], wavelets decomposition [31, 18], morphological methods
[36]. Here we are interested with variational approaches [7]. In this context, the most famous model
is the Mumford-Shah functional [33] (1989) but other works based on variational methods do exist
([7]). Among more recent papers, we can cite [8] (2008) for restoration of images contaminated by
speckle noise, [16] (2014) for blind restoration of Poissonian images, and [35] (2013) for an overview
of image restoration degraded by different type of noise.

In this paper we tackle the segmentation problem by using the topological gradient method. First
introduced for cracks detection by Sokolowski and Zochowski [37], Masmoudi [32] and applied in
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optimal design and mechanics ([3], [2], [4]), this notion consists in the study of the variations of
a cost function j(Ω) = JΩ(uΩ) with respect to a topological variation, where JΩ(u) is of the form
JΩ(u) =

∫
Ω

F(u,∇u,∇2u, . . .) and uΩ is a solution of a PDE defined on the image domain Ω. In order
to compute the topological gradient, we remove to Ω a small object ωε of size ε → 0 centered at
x0 ∈Ω (generally a ball or a curve) and we set Ωε = Ω\ωε . Two typical examples are : for small ε > 0
(a) Ωε = Ω\{x0 + εB} and (b) Ωε = Ω\{x0 + εσ(n)}, where B = B(O,1) is the unit ball of R2 and
σ(n) is a straight segment with normal n (a crack). We compute the limit : I (x0) = limε→0

j(Ωε )− j(Ω)
εd

where d is the dimension of the ambiant space. I (x0) is called the topological gradient at x0. It mea-
sures the energy contained by a perturbation centered at x0 and so the structures that we want to detect
correspond to the points x0 where I (x0) is the largest. The type of structure to be detected depends
on the choice of the cost function JΩ(u). Recently this notion has been used in image processing and
to the best of our knowledge the first works in this direction are those by [25], [30], [14]. Then other
imaging problems such as inpainting, classification, demosaicing, super resolution, have been adres-
sed using a topological gradient approach ([9, 15], [12, 11], [10], [28], [29]). In [14], only Gaussian
additive noise is considered and no blur has been introduced. Blur has been introduced in [29]. In fact,
in [29] more general degradations have been taken into account. The authors consider model of the
form f = Lu+b where f is the observed image, L a linear operator and b a Gaussian additive noise.
They compute in the case of a crack the topological gradient and illustrate their approach for various
imaging problems (segmentation/restoration, super resolution, demosaicing). Note also that topologi-
cal gradient methods have been also applied for fine structures detection (e.g. points and filaments)
[6], [5], [20]. In this case the cost function is based on second order derivatives. Restoration/segmen-
tation in imaging are in general ill-posed inverse problems and one way to overcome this difficulty is
to regularize them. A classical framework to do that is to use a Bayesian formulation which leads to
the minimization of an energy consisting in two terms. The first one is a data fidelity term which takes
into account both the statistic of the noise and the blur and the second one is an adequate regulari-
zing term. For example if we suppose that the acquisition model is of the form f = u+b where b is
Gaussian noise then an anti-log-likelihood estimator amounts to choose as a data fidelity term the L2

norm ‖u− f‖L2(Ω). If the noise follows another statistic, of course this term changes. The regularizing
term is often based on an Lp norm of the gradient. Our main contribution is to generalize the results
given in [29] to blurred images contaminated by speckle noise and Poissonian statistic and to give the
different expression of the topological gradient associated to the cost function JΩ(u) =

∫
Ω
|∇u|2. More

precisely we will consider variational problems of the following form

Speckle and Gaussian noise model :

min
u∈H1(Ω)

γ

2
JΩ(u)+

∫
Ω

ψ(x,Ku) (1)

Poissonian model :

min
u∈H1(Ω)

γ

2
JΩ(u) + ∑

j∈Iind(Ω)

ψ j

(∫
R j

Ku
)

(2)

where Iind(Ω) is the indices set of pixels, γ > 0 is a parameter, R j is a regular domain modeling pixel
j such that Ω is the disjoint union of (Ri)i∈Iind(Ω), K : L2(Ω) −→ L2(Ω) is a convolution operator
(generally positive and such that K1 6= 0 ) representing the blur. The functions ψ(x,u) and ψ j(v) will
be specified in section 5 and section 6. Note that problems (1) and (2) are semi-linear and one of our
contribution is to show they are well-posed and verify some maximum principles. Speckle noise is a
multiplicative noise of gamma law, which is present in SAR images, laser images, microscope images
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[27, 24, 38]. A Poisson statistic occurs in confocal microscopy [19], emission tomography [39] and
single-photon emission computed tomography [23].

In section 2, we recall the classical rationale justifying the modelization of the data fidelity term
in a Bayesian approach. In section 3 we set the variational problem taking into account the blurring.
Then in section 4, we give the topological gradient for a blurred and Gaussian noisy image. In section
5 we show that problem (1) is well-posed and compute the associated topological gradient both for
perforated and cracked domains (in fact, we study a more general class of problem (1)). In section 6
we treat the Poissonian model (2) whose energy is not standard. We summarize in Table 1 (section 7)
all the expressions of the topological gradient according to the type of noise and to the infinitesimal
perturbation. In section 8 we show how to apply the notion of topological gradient to restore degraded
images. Finally in section 9, we present, for all the models, a detailed numerical analysis for computing
the topological gradient and we display various experimental results illustrating each of them.

We conclude this section by giving some notations and assumptions : we suppose to simplify that
x0 = 0 and we denote by ‖u‖m,Ω the Hm(Ω)-norm of the Sobolev space Hm(Ω)=

{
u,Dαu ∈ L2(Ω), |α| ≤ m

}
and by ‖u‖H1(Ω)/R the norm on the quotient space H1(Ω)/R. We set JΩ(u) =

∫
Ω
|∇u|2 and JΩε

(u) =
Jε(u).

Only the proof for a perforated domain is performed since for a cracked domain the explicit
dependency on the data is killed by the fact that the crack has a null Lebesgue measure. Hence we
just give the topological gradient expression for a cracked domain (b) and develop the full proof for a
perforated domain (a).

2 A Bayesian approach

In this section we recall the classical Bayesian approach allowing to deduce the suitable variational
model for restoring noisy images. We denote N the number of pixels in the support of the image Ω.
The discrete domain is denoted ΩN . We set uN (respectively f N) the discrete version of the image
u to recover (respectively of the observed image f ). For each pixels px ∈ ΩN , f N(px) and uN(px)
can be viewed as a realization of the random variables UN(px) and FN(px) where UN and FN stand
for the random vector formed by these variables at each pixel. We suppose that they are identically
distributed and independent. The reasoning is as follows : we express the a priori density probability
gUN |FN and then we search for uN as the value maximizing this density probability (a Maximum A
Priori estimator). A discrete model associated to a discrete energy is deduced and then passing to the
limit when N → ∞ we get the continuous variational model. Let gUN |FN be the a posteriori density
probability that we want to maximize with respect to uN . Thanks to the Bayes rule, gUN |FN expresses
as :

gUN |FN =


g(FN ,UN)

gFN
=

gFN |UN gUN

gFN
, if gFN > 0

0, otherwise

gFN |UN depends on the noise model and gUN is an a priori density probability. Writing that uN is a
minimum of −log(gUN |FN ) we get

uN = argmin
u

EN(u)

where
EN(u) =−log(gFN |UN (u, f ))− log(gUN (u)) (3)
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The a priori density gUN has to be determined, it will play the role of a regularizing term. In
analogy to statistical mechanics, a priori densities are frequently Gibbs functions [22] of the form :

gUN (u) =C× e−
γ

2 JN(u), γ > 0

where JN(u) is a discrete version of a non negative energy functional JΩ(u) and C is a constant. The
choice of the density probability gFN |UN depends on the statistic of the model to be considered. Below
we review respectively the Gaussian model, the speckle model and finally the Poisson model.

Gaussian model

A classical modeling of image formations is : FN =UN +GN where UN is the discrete version of
the image to recover and GN a Gaussian noise of mean 0 and of standard deviation σ . The density of

the Gaussian noise is gGN (x) = 1√
2πσ

e−
x2

σ2 . To simplify we still denote by FN , SN and UN the random
variables FN(px), SN(px) and UN(px). Let us express the conditional probability density gFN |UN . From
the definition of the conditional probability we have :

P(FN ∈A |UN = u) =
∫
R

gFN |UN ( f |u)1 f∈A d f (4)

The conditional probability density gFN |UN ( f |u) is a function of the variable f and depending on
a parameter u. From the model FN = UN +GN , the independency of UN and GN and a change of
variable we get

P(FN ∈A |UN = u) = P(UN +GN ∈A |UN = u)

= P(GN ∈A −UN |UN = u)

= P(GN ∈A −u)

=
∫
R

gGN (x)1x∈A−udx

=
∫
R

gGN ( f −u)1 f∈A d f

Hence by identification with (4) we deduce that gFN |UN ( f |u) = gGN ( f − u). Thanks to the indepen-
dency hypothesis, the density of FN |UN is the product with respect to each pixel px of the densities
FN(px)|UN(px). So the energy given in (3) rewrites in this case (up to a multiplicative constant ) as

EN(u) = ∑
px∈ΩN

1
σ2 ( f N−u)2 + γJN(u)+C

with C a constant non depending on u. The constant σ2 can be neglected in the model because it
can be scaled with the regularization parameter γ . By passing to the limit when N→+∞, we get the
following continuous energy

E(u) =
∫

Ω

( f −u)2 + γJΩ(u)

Speckle model

For SAR images, the classical modeling is (see [38]) : FN = SNUN where UN is the reflectance
of the scene (which is to be recovered) and SN the speckle noise. Let us explicit the law of SN . SAR
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images are constructed from L ∈ N observations FN
k for 1 ≤ k ≤ L and for each observations we

have FN
k = GN

k UN . Generally GN
k is a random variable which follows a negative exponential law with

mean 1 and with density gG(x) = e−x1{x≥0}. Then, the observed image FN is construct from this L
observations as : FN = 1

L ∑
N
k=1 FN

k =
( 1

L ∑
N
k=1 GN

k

)
UN . We set SN = 1

L ∑
N
k=1 GN

k ; SN follows a gamma
law with density gSN (x) = LL

Γ(L)x
L−1e−Lx1{x≥0} with Γ(L) = (L− 1)! (the mean of SN is 1 and its

variance 1
L ). Now we can express the density gFN |UN . To simplify we still denote by FN , SN and UN

the random variables FN(px), SN(px) and UN(px) . We start from the definition of the conditional
probability :

P(FN ∈A |UN = u) =
∫
R

gFN |UN ( f |u)1{ f∈A }d f (5)

where gFN |UN ( f |u) is a function of the variable f and depending on a parameter u. Then, from the
model FN = SNUN and the independency of UN and SN we have :

P(FN ∈A |UN = u) = P(SNUN ∈A |UN = u)

= P(SN ∈ A

UN |U
N = u) = P(SN ∈ A

u
)

Thanks to the definition of P and by a change of variable we get :

P
(

SN ∈ A

u

)
=
∫
R

gSN (s)1{s∈A
u } =

∫
R

1
u

gSN (
f
u
)1{ f∈A }d f

Then by identification with (5), we deduce that

gFN |UN ( f |u) = 1
u

gSN (
f
u
) (6)

From the independency FN(px) and UN(px) , the density of FN |UN is the product with respect to
pixels px of the densities FN(px)|uN(px). By taking the −log function we deduce that (3) rewrites in
this case as

EN(u) = L ∑
px∈ΩN

(
f N

u
+ log(u)

)
+

γ

2
JN(u)+C

for u ∈ RN and u > 0, where C denotes a constant independent of u. The factor L can be neglected
since it can be scaled with the constant γ . Passing to the limit as N → ∞, we deduce the following
continuous energy

E(u) =
∫

Ω

(
f
u
+ log(u)

)
dx+

γ

2
JΩ(u) (7)

Speckle with Log of the image (Speckle-Log model)

One drawback of (7) is that it is nonconvex. By setting, v = Log(u) and g = Log( f ), we deduce from
(7) the expression of the data fidelity term in function of v and we introduce the following energy
function :

E(v) =
∫

Ω

v+ e−(v−g)+
γ

2
JΩ(v) (8)

which is now a convex function of v. The recovered image is then u = ev.
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Poissonian model

This model is classical in astronomical and confocal microscopy images [19]. Poissonian obser-
vations originates from the stochastic nature of photons emission. We denote R j, for j ∈ Iind(Ω), the
domain of R2 modeling pixel j and such that Ω is the disjoint union of all the (R j) j∈Iind(Ω). We assume
that f is a step function constant on each R j and we still denote f N = f the observed image seen as
the realization of the random vector F .

More precisely for j ∈ Iind(Ω), f j is a realization of a Poisson statistic of mean and variance
equal to λ N

j =
∫

R j
uN(x)dx where x 7→ uN(x) is a discrete version of uN ∈ RN (may be a step function

or a bi-linear interpolation). Thanks to the independence of Fj and UN
j , the conditional probability

P(F = f |UN = u) is given by :

P(F = f |UN = u) = ∏
j∈Iind(Ω)

λ N
j

f j e−λ N
j

f j!

and by applying the −log function, we have :

−log
(
P(F = f |UN = u)

)
= ∑

j∈Iind(Ω)

λ
N
j − f jlog(λ N

j )+C

where C is constant independent of u. We deduce that (3) rewrites in this case as

EN(u) = ∑
j∈Iind(Ω)

(
λ

N
j − f jlog(λ N

j )
)
+

γ

2
JN(u)

The dependence of EN with respect to u comes from the definition of λ N . Passing to the limit we get
the continuous energy :

E(u) = ∑
j∈Iind(Ω)

(∫
R j

u(x)dx− f jlog
(∫

R j

u(x)dx
))

+
γ

2
JΩ(u) (9)

3 Blurring modeling

In most imaging applications the optical material, the motion of the camera or of the target in-
troduce a blur on the observed image (see [34]). Generally spatially invariant blur is modeled as a
positive convolution operator u 7→ Ku with K1 6= 0. We denote by KN the N×N matrix associated to
the discrete version of K on ΩN . From section 2 we deduce the following models adapted to each kind
of noise and taking into account the blur :

1. Gaussian model : the observed image writes as FN = KNUN +GN and by the same reasoning
of section 2 we get the following energy :

E(u) =
∫

Ω

( f −Ku)2 + γJΩ(u) (10)

2. Speckle model : the observed image writes as FN = SNKNUN and the energy is

E(u) =
∫

Ω

log(Ku)+
f

Ku
+

γ

2
JΩ(u) (11)

6



3. Speckle model with the Log of the image (Speckle-Log model). We recall that the model
writes as GN = V N + T N with V N = log

(
KNUN

)
. The deblurring cannot be handled simul-

taneously with the denoising process. After the denoising step we must solve the problem
V N = log

(
KNUN

)
where the unknown UN can be found by a least square formula :

UN = ((KN)T KN)−1(KN)T eV N

but we know that this problem is ill-posed, particularly when K contains small eigenvalues. For
this reason the blurring problem is not handled for speckle noise by our method. In this case, if
we only want to correctly restore a blurred and speckled image it is preferable to use (11).

4. Poissonian model : the observed image at pixel px is a realization of a Poisson statistic of mean∫
Rpx

KuN(x)dx, so the energy is

E(u) = ∑
px∈Iind(Ω)

(∫
Rpx

Ku(x)dx− f (px)log
(∫

Rpx

Ku(x)dx
))

+
γ

2
JΩ(u) (12)

In the sequel we give the topological gradient for the Gaussian and Poisson models with blur and for
the Speckle-Log model without blur.

4 Gaussian noise with blurring

We consider problem (1) with the energy (10) :

min
u∈H1(Ω)

γJΩ(u)+
∫

Ω

ψ(x,Ku) (13)

with ψ(x,v) = ( f (x)− v)2. We do not give the computation of the topological gradient here because
of the similarity with the case without blurring (see [4], [29]). We just give the topological gradient
expression and some experimental results. Note that this expression only needs the resolution of two
problems : the direct and the adjoint problems (we will see in the next section why an adjoint problem
is necessary). By following the notations used in [4], the direct and the adjoint problems u0 and v0 are
given in this case by :

(P0)

{
−γ∆u0 +K?Ku0 = K? f , in Ω

∂nu0 = 0, on ∂Ω
(14)

and

(Q0)

{
−γ∆v0 +K?Kv0 = K?(2Ku0− f ), in Ω

∂nv0 = 0, on ∂Ω.
(15)

We can show (see [7] chapter 3) that problems (P0) and (Q0) are well-posed in H1(Ω) as soon as
K1 6= 0 and γ > 0. The topological gradients at x0 ∈Ω for a perforated domain (a) Ωε = Ω\{x0 + εB}
and for a cracked domain (b) Ωε = Ω\{x0 + εσ}, denoted respectively by Ib

Lap(x0) and Ic
Lap(x0) can

be easily deduced from the case without blur and are given in the following Theorem.

Theorem 4.1. The topological gradients associated to problems (14) and (15) and to the cost function
Jε(u) =

∫
Ωε
|∇u|2, for a perforated and a cracked domain are respectively :

Ib
Lap(x0) =−2π∇u0(x0).∇v0(x0)+

π

γ
( f (x0)−Ku0(x0))(Kv0(x0)−Ku0(x0)) (16a)
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Ic
Lap(x0) = min

‖n‖=1
I (x0,~n)

with I (x0,~n) =−π∇u0(x0).~n∇v0(x0).~n
(16b)

with u0 and v0 given by (14) and (15) and γ > 0.

5 Speckle multiplicative noise

We consider the variational problem (1) with the energy given in (8). More precisely we study the
minimization problem :

min
u∈H1(Ω)

γ

2
JΩ(u)+

∫
Ω

ψ(x,u) (17)

where ψ(x,u) = u+e−(u−g(x)) and g = log( f ) is the logarithm of the observed image. We assume that
there is no blur i.e. K is the identity operator. To shorten notations we write sometimes ψ(u) instead
of ψ(x,u).

Remark 1. In [8] the authors propose a speckle denoising model using the total variation model with
the data fidelity term associated to (7).

This section is organized as follows. First, we show that (1) admits a unique solution for a more
general class of functions ψ (verifying Hypotheses 1) and we prove that the solution verifies some
min/max principles. Then we apply the general result to show that problem (17) admits a unique so-
lution with ψ(x,u) = u+e−(u−g(x)). Next, we compute the topological gradient for a general function
ψ verifying Hypotheses 1. We still denote JΩ(u) =

∫
Ω
|∇u|2 and EΩ(u) =

γ

2 JΩ(u)+
∫

Ω
ψ(x,u).

5.1 Well-posedness of problem (1)

In this subsection we first establish the well-posedness of (1) for a general class of functions
ψ(x,u) and then we check that the function ψ(x,u) associated to the speckle-Log model (17) matches
these hypotheses. To simplify we suppose that γ = 1 and sometimes we write ψ(u) for ψ(x,u).

Hypotheses 1. Let ψ : Ω× I −→ R such that

(i) u 7→ ψ(x,u) ∈C3(I) ∀x ∈Ω

(ii) x 7→ Duψ(x,u) ∈C0(Ω) ∀u ∈ I

(iii) u 7→ ψ(x,u) is stricly convex on I, uniformly with respect to x ∈Ω.

(iv) ψ is bounded from below on Ω× I

(v) ∃a,b ∈ I such that for all x, Duψ(x,a)≤ 0 and Duψ(x,b)≥ 0 with [a,b]⊂ I.

Lemma 5.1. Let ψ(x,u) a function verifying Hypotheses 1, then (1) admits a unique solution uΩ ∈
H1(Ω) such that a≤ uΩ ≤ b.

Démonstration. Existence : Let (un) a minimizing sequence. There exists a constant C1 such that
EΩ(un)≤C1. As ψ(x,u) is bounded from below on Ω×I there exists a constant C2 such that

∫
Ω

ψ(x,un)≥
C2. Therefore : ∫

Ω

|∇un|2 ≤max(C1,C1−C2)

Let vn = max(un,a), and Ω−n = Ω∩{un ≤ a}, we have vn ≥ a and

EΩ(vn)−EΩ(un) =−
∫

Ω
−
n

|∇un|2 +
∫

Ω
−
n

ψ(a)−ψ(un)

8



By convexity :
ψ(un)−ψ(a)≥ Duψ(a)(un−a) and

∫
Ω
−
n
(ψ(a)−ψ(un))≤

∫
Ω
−
n

Duψ(a)(a−un)≤ 0.
We easily deduce that EΩ(vn)≤ EΩ(un). Thus vn is still a minimizing sequence and vn ≥ a. Simi-

larly by setting wn = min(vn,b), we get wn ≤ b and wn is a minimizing sequence. Therefore we can
suppose that any minimizing sequence un verifies a ≤ un ≤ b. It is easily seen that un is bounded in

H1(Ω). Thus, up to a subsequence there exists u ∈ H1(Ω) such that un
L2(Ω)→ u and un

H1(Ω)
⇀ u (where

H1(Ω)
⇀ stands for the weak topology). By using the lower semi-continuity of JΩ(u) and Fatou’s Lemma

we get that u is a solution of (1). Moreover we have a≤ u≤ b a.e. on Ω.

Uniqueness : From the existence, we can work on the set H(Ω) =
{

v ∈ H1(Ω),a≤ v≤ b
}

. Since
ψ(u) is strictly convex on [a,b] ⊂ I and JΩ(u) is strictly convex on H1(Ω), we deduce that EΩ(u) is
strictly convex on H(Ω) which is a convex set and that EΩ has a unique minimum in H1(Ω).
We apply below Lemma 5.1 to the speckle-Log model.

Proposition 1. Let f a function such that ∀x, 0 < α ≤ f (x) ≤ β where α and β are two constants,
then problem (17) with φ(u) = |∇u|2 and ψ(x,u) = u+ e−(u−g(x)) where g = log( f ) has a unique
solution u ∈ H1(Ω) and ∀x, log(α)≤ u≤ log(β ).

Démonstration. A standard computation leads to Duψ(u) = 1− e−(u−g) and D2
uψ(u) = e−(u−g) > 0.

Hence ψ(u) is strictly convex on ]−∞,η ] ∀η ∈ R. By using that 0 < α ≤ f ≤ β we get

1− e−(u−log(β )) ≤ Duψ(u)≤ 1− e−(u−log(α))

Let a = log(α) and b = log(β ), the following inequalities hold

Duψ(b)≥ 0 and Duψ(a)≤ 0

From Lemma 5.1, there exists a unique function u ∈ H1(Ω) solution of (17). Moreover we have
a≤ u≤ b.

In the next subsection we detail the computation of the topological gradient for a perforated do-
main and we just give the result for a cracked domain.

5.2 Computation of the topological gradient for a perforated domain

Let uε = uΩε
be the solution of problem (1) replacing Ω by Ωε = Ω\{x0 + εB} and let Jε(u) =

JΩε
(u). In order to establish the topological expansion for a more general class of problems, we assume

that ψ(x,u) verifies Hypotheses 1. By writing that DEΩε
(uε).v = 0 for all v ∈ H1(Ωε), we obtain the

following variational formulation : find uε ∈ H1(Ωε) such that∫
Ωε

γ∇uε .∇v+Duψ(x,uε)v = 0 ∀v ∈ H1(Ωε) (18)

Then by an integration by parts, uε necessarily verifies the Euler equations :

(Pε)

{
−γ∆uε +Duψ(x,uε) = 0 on Ωε

∂nuε = 0 on ∂Ωε

(19)
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If Fε stands the following functional

Fε(u,v) =
∫

Ωε

γ∇u.∇v+Duψ(x,u)v ∀u,v ∈ H1(Ωε) (20)

Then (18) rewrites as : find uε ∈ H1(Ωε) such that Fε(uε ,v) = 0 ∀v ∈ H1(Ωε).
We denote by u0 the solution of (18) for ε = 0 and we state the main result of this section. To simplify
notations we perform the proof with γ = 1 (but we state the Theorem with γ > 0).

Theorem 5.2. The topological gradient Ib
Lap associated to problem (19) with ψ(x,u) verifying Hypo-

theses 1 and with the cost function Jε(u) =
∫

Ωε
|∇u|2 for a perforated domain is

Ib
Lap(x0) =−2π∇u0(x0).∇v0(x0)+

π

γ
Duψ(x0,u0)(u0(x0)− v0(x0)) (21)

with u0 and v0 given by (19) and (26) for ε = 0 and with γ > 0.

Remark 2. The topological sensitivity for some non linear PDEs using as main operator the Laplace
operator with Dirichlet boundary conditions (on the boundary of the small perturbation) has been
studied by Amstutz [2].

Démonstration. The proof is very technical and can be skipped by readers not interested by details.
The topological gradient is given by the leading term in the difference Jε(uε)−J0(u0). Let us introduce
the functional J̃ε(u) =−

∫
Ωε

Duψ(x,u)u ; by using (18) with v = uε , it is straightforward that :

Jε(uε)− J0(u0) = J̃ε(uε)− J̃0(u0)

=−
∫

Ωε

(Duψ(uε)uε −Duψ(u0)u0)+
∫

Bε

Duψ(u0)u0

=−
∫

Ωε

Duψ(u0)(uε −u0)+(Duψ(uε)−Duψ(u0))u0

+
∫

Ωε

(Duψ(uε)−Duψ(u0))(uε −u0)

= Lε(uε −u0)+Iε +E1

(22)

where
Lε(u) =−

∫
Ωε

(
Duψ(u0)u+D2

uψ(u0)u0u
)

Iε =
∫

Bε

Duψ(u0)u0

E1 =−
∫

Ωε

(
1
2

D3
uψ(uηε

)u0 +D2
uψ(uδε

)

)
(uε −u0)

2

(23)

and where uδε
= θ1u0+(1−θ1)uε , uηε

= θ2u0+(1−θ2)uε with θi : Ω 7→R, 0≤ θi ≤ 1 for 1≤ i≤ 2.
To compute the term Lε(uε −u0) in (22) it is classical [3, 37] to introduce an adjoint problem. Due to
the non linearity of the direct problem, we first make a second order Taylor expansion of Fε(u,v) with
respect to u at point u0 :

Fε(uε ,v) = Fε(u0,v)+DuFε(u0,v).(uε −u0,v)+
1
2

D2
uFε(uδε

,v).(uε −u0,uε −u0)

= Fε(u0,v)+bε(uε −u0,v)+ cε(uε −u0,uε −u0,v)
(24)
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with
bε(u,v) = DFε(u0,v).u =

∫
Ωε

∇u.∇v+
∫

Ωε

D2
uψ(u0)uv ,

cε(u, t,v) =
1
2

D2
uFε(uδε

,v).(u, t) =
∫

Ωε

1
2

D3
uψ(uηε

)utv

Then the adjoint solution vε ∈ H1(Ωε) is defined as :

bε(u,vε) =−Lε(u) ∀u ∈ H1(Ωε) (25)

The Euler equations associated with (25) are :

(Qε)

{
−γ∆vε +D2

uψ(u0)vε = Duψ(u0)+D2
uψ(u0)u0 on Ωε

∂nvε = 0 on ∂Ωε

(26)

Remark 3. (i) In the proof, we take γ = 1.

(ii) The adjoint problem (Qε) is linear and we can notice that the strict convexity of u 7→ ψ(x,u) is
necessary to (Qε) be coercive. Since u 7→ ψ(x,u) is C2(I) and thanks to Lemma 5.1 there exist
two constants A,B ∈ R such that

A < Duψ(u0)+D2
uψ(u0)u0 < B

Hence (26) is well-posed and thanks to Lemma 5.1, we have the following inegality

A
supΩ D2

uψ(u0)
≤ vε ≤

B
infΩ D2

uψ(u0)

We deduce from (22) and (24) that :

Jε(uε)− J0(u0) =−bε(uε −u0,vε)+Iε +E1

= Fε(u0,v)−Fε(uε ,vε)+ cε(uε −u0,uε −u0,vε)+Iε +E1

= Fε(u0,vε)+E2 +Iε +E1

(27)

with
E2 = cε(uε −u0,uε −u0,vε) (28)

By using an integration by parts, the term Fε(u0,vε) expresses as :

Fε(u0,vε) =
∫

Ωε

∇u0.∇vε +Duψ(u0)vε

=−
∫

∂Bε

∂nu0vε +
∫

Ωε

(−∆u0 +Duψ(u0))vε

=−
∫

∂Bε

∂nu0wε −
∫

∂Bε

∂nu0v0

with wε = vε − v0. Now for ϕ ∈ H1/2(∂Bε) we introduce the following extension on Bε :{
∆lϕ

ε = 0, on Bε

lϕ

ε = ϕ, sur ∂Bε

(29)
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For v ∈ H1(Ωε), we denote by lv
ε the harmonic function defined on Bε such that lv

ε = v on ∂Bε . By
integration by parts Fε(u0,vε) writes as

Fε(u0,vε) =−
∫

Bε

(∇u0.∇v0 +∆u0v0)−
∫

Bε

(∇u0.∇lwε

ε +∆u0.lwε

ε )

=−
∫

∂Bε

ũ0∂nv0 +
∫

Bε

ũ0∆v0−
∫

Bε

Duψ(u0)v0−
∫

∂Bε

ũ0∂nlwε

ε −
∫

Bε

Duψ(u0)lwε

ε

=−
∫

∂Bε

ũ0 (∂nv0 +∂nlwε

ε )−
∫

Bε

Duψ(u0)v0 +E3 +E4

= Jε +Kε +E3 +E4

(30)

with ũ0 = u0−u0(0) and

Jε =−
∫

∂Bε

ũ0 (∂nv0 +∂nlwε

ε ) Kε =−
∫

Bε

Duψ(u0)v0

E3 =
∫

Bε

ũ0∆v0 E4 =−
∫

Bε

Duψ(u0)lwε

ε

(31)

The computation of Jε , E1, E2 and E4 needs to approximate wε and Xε = uε − u0 in the H1(Ωε)
sense. From Lemma 10.3 (see Appendix A), we can show that ‖Xε‖0,Ωε

= O(ε2
√
−log(ε)) and that

wε = εQ
( x

ε

)
+ rε where Q is given by (57) with g =−∇v0(0).~n and ‖rε‖1,Ωε

= O(ε2
√
−log(ε)).

Proposition 2. Let Iε , Jε , Kε , E1, E2, E3 and E4 given by (23), (28) and (31), we have the following
estimations :

Jε(uε)− J0(u0) = Iε +Jε +Kε +
4

∑
i=1

Ei

Iε = πε
2Duψ(0,u0)u0(0)

Jε =−2πε
2
∇u0(0).∇v0(0)

Kε =−πε
2Duψ(0,u0)v0(0)

(32)

and Ei ∼ o(ε2) for i ∈ [[1..4]]

Démonstration. The first equality is straightforward. Lemma 10.3, the regularity of ψ(x,u) and Pro-
position 1 allow to say that E1 and E2 are O(‖uε −u0‖2

0,Ωε
) and then ∼ O(−ε4log(ε)). We recall the

notation ψ(u) means ψ(x,u(x)). A change of variable (CV) and the continuity of x 7→ Duψ(x,u0(x))
lead to

Iε = ε
2
∫

B
Duψ (εX ,u0(εX))u0(εX) = ε

2
πDuψ(0,u0)u0(0)+o(ε2)

Kε = ε
2
∫

B
Duψ(εX ,u0(εX))v0(εX)dX = ε

2
πDuψ(0,u0)v0(0)+o(ε2)

Again with a CV, the equality ∆v0 = D2
uψ(u0)(v0−u0)−Duψ(u0) and the regularity of ψ(u), we get

E3 ∼ O(ε3). By using Lemma 10.4 and Lemma 10.1 (see Appendix A) we have :

Jε =
∫

∂B
(u0−u0(0))

(
∂nlpε

ε +∂nv0
)
+
∫

∂Bε

(u0−u0(0))∂nleε

ε

= ε
2
∇u0(0).

∫
∂B

λ (x)x+F1 +F2

12



with
λ (x) =−2∇v0(0).~n

F1 =
∫

∂Bε

(u0−u0(0))(∂nv0−∇v0(0).~n)

F2 =
∫

∂Bε

(u0−u0(0))∂nleε

ε

A CV and a Taylor expansion of u0 and v0 at 0 lead to F1 = O(ε3) and
F2 ≤Cε2‖∂nleε

ε (εX)‖−1/2,∂B. For F2 it suffices to make a CV and use the trace Theorem on B2\B :

‖∂nleε

ε (εX)‖−1/2,∂B ≤
1
ε
|leε

ε (εX)|1,B =
1
ε
|leε (εX)(X)|1,B

≤ C
ε
‖eε(εX)‖H1/2(∂B)/R ≤C‖eε(εX)‖H1(B2\B)/R

Now from the equivalency of the H1(B2\B)/R-norm with the semi norm and a CV we get ‖∂nleε

ε (εX)‖−1/2,∂B≤
C|eε |1,Ωε

. By using Lemma 10.4, we obtain F2 = O(ε3
√
−log(ε)). Finally by using a CV, the conti-

nuity of ϕ 7→ lϕ from H1/2(∂B) to H1(B), the trace Theorem on B2\B, again a CV and Lemma 10.4
we have :

|E4| ≤Cε
2‖lwε

ε (εX)‖0,B =Cε
2‖lwε (εX)(X)‖0,B

≤Cε
2‖wε(εX)‖1/2,∂B ≤C‖wε(εX)‖1,B2\B

≤Cε
2
(

1
ε
‖wε‖0,Ωε

+ |wε |1,Ωε

)
≤Cε

3
√
−log(ε)

The topological expression is easily deduced from Proposition 2 and Theorem 5.2 is proven.

5.3 Expression of the topological gradient for a cracked domain

For the cracked domain Ωε = Ω\x0 + εσ(~n), computations are similar. The term Iε of (27) is
zero and the term Fε(u0,vε) expresses as Fε(u0,vε) =−

∫
Bε

∂nu0[wε ]. The asymptotic expansion of uε

and vε are similar and then the computation of the topological gradient is the same as in the linear
case (see [4, 21] for more details).

Theorem 5.3. The topological gradient Ic
Lap associated to problem (19) and to the cost function

Jε(u) =
∫

Ωε
|∇u|2 for a cracked domain is

Ic
Lap(x0) = min

‖~n‖=1
I (x0,~n)

with I (x0,~n) =−π∇u0(x0).~n∇v0(x0).~n
(33)

with u0 and v0 given by (19) and (26) for ε = 0 and with γ > 0 in front of the Laplacian.

6 Poissonian model with blurring

We recall that we model the observed image f as a step function defined by f j ∈ R on R j for
j ∈ Iind(Ω), where R j is a regular domain of R2 modeling pixel j and we denote N = |Iind(Ω)|. To
simplify, we suppose that |R j|= 1 and that Ω is the disjoint union of the (Ri)i∈Iind(Ω). We assume that
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min j∈Iind(Ω) f j > 0. We recall the general minimization problem associated to the Poisson model given
in (12) :

min
u∈H1(Ω)

γ

2
JΩ(u)+ ∑

j∈Iind(Ω)

ψ j

(∫
R j

Ku
)

(34)

with ψ j(x) = x− f jlog(x). We still denote in this section JΩ(u) =
∫

Ω
|∇u|2 and EΩ(u) =

γ

2 JΩ(u)+
∑ j∈Iind(Ω) ψ j(

∫
R j

Ku).
First we show that problem (34) is well-posed, then we compute the topological gradient for a

perforated domain (a) : Ωε = Ω\x0 + εB, and we give the expression for a cracked domain (b) :
Ωε = Ω\x0 + εσ without proof.

6.1 Well-posedness of problem (34)

Proposition 3. Let f a step function such that mini fi > 0 and maxi fi <+∞, then problem (34) with
ψ j(x) = x− f jlog(x) for j ∈ Iind(Ω) admits a unique solution u ∈ H1(Ω).
Moreover this solution verifies α ≤

∫
Ri

u≤ β , ∀i∈ Iind(Ω) with α = mini fi
N and β =

∫
Ω

f = ∑i∈Iind(Ω) fi.

Démonstration. Existence : To simplify the proof we suppose that K is the identity operator and
γ = 1. The proof for the general case is quite similar. For more details see chapter 3 of [7].
We must add a priori to (34) the condition

∫
Ri

u > 0, ∀i ∈ Iind(Ω).
We set H =

{
u ∈ H1(Ω),

∫
Ri

u > 0 ∀i ∈ Iind(Ω)
}

. Then (34) rewrites as :

min
u∈H(Ω)

∫
Ω

|∇u|2 +∑
j

ψ j

(∫
R j

u
)

Let (un)n a minimizing sequence of EΩ(u) in H(Ω). There exists a constant D > 0 such that JΩ(un)≤
D.
If C = ∑ j minx∈]0,+∞[ ψ j(x) = ∑ j f j− f jlog( f j)>−∞, then :

0≤
∫

Ω

|∇un|2 ≤max(D,D−C)

By using the positiveness of
∫

Ω
|∇un|2, we deduce that ∑ j ψ j

(∫
R j

un

)
≤D. Setting Ki = ∑ j 6=i minxψ j,

it is straightforward that ψi
(∫

Ri
un
)
≤ D−Ki and then

0 < Ei ≤
∫

Ri

un ≤ Ei (35)

with Ei =max
{

ψ
−1
i (D−Ki)

}
and Ei =min

{
ψ
−1
i (D−Ki)

}
(we recall the notation ψ

−1
i (b)= {x ∈]0,∞[ψi(x) = b})

. Hence the constraint
∫

Ri
un > 0 is fulfilled. We deduce that ∑i Ei ≤

∫
Ω

un = ∑i
∫

Ri
un ≤ ∑i Ei and

thanks to Poincaré-Wirtinger Lemma we get that un is bounded in L2(Ω). So, there exist a sub-

sequence unk (still denoted un) and u ∈ H1(Ω) such that un
L2(Ω)→ u and un

H1(Ω)?

⇀ u. We deduce that
JΩ(u) ≤ liminfJΩ(un) and thanks to (35) and Bolzano-Weierstrass Lemma, we can extract a subse-
quence un such that

∫
Ri

un→ li ∈ R. By continuity, we have ψi
(∫

Ri
un
)
→ ψi (łi) ∀i ∈ Iind(Ω) and

EΩ(u)≤ liminfEΩ(un)
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which proves that u is a minimizer of EΩ(u) in H1(Ω).
Bounds : If u ∈ H1(Ω) is the solution of (34) then DEΩ(u).v = 0 ∀v ∈ H1(Ω) i.e.∫

Ω

∇u.∇v+ ∑
j∈Iind(Ω)

Dψ j

(∫
R j

u
)∫

R j

v = 0, ∀v ∈ H1(Ω) (36)

with Dψ j

(∫
R j

u
)
= 1− f j∫

R j
u .

(i) By taking v= 1, we get the egality N =∑ j
f j∫

R j
u . As f j∫

R j
u ≥ 0, ∀ j∈ Iind(Ω) and if i0 = argmin

i

∫
Ri

u,

we have N ≥ fi0∫
Ri0

u which leads to
∫

Ri0
u≥ fi0

N ≥
mini fi

N .

(ii) By taking v= u, we get the inequality ∑i
∫

Ri
u− fi≤ 0 which leads to maxi

∫
Ri

u≤∑i
∫

Ri
u≤∑i fi.

Uniqueness : From the two previous points we can consider the minimization space
H(Ω) =

{
u ∈ H1(Ω),α ≤

∫
R j

u≤ β

}
. Since ψ j(X) is strictly convex on [α,β ] for all j ∈ Iind(Ω), we

get from the linearity of the integral that u 7→ ψ j

(∫
R j

u
)

is strictly convex on H(Ω). As JΩ is strictly
convex, we deduce that EΩ(u) is strictly convex on the convex set H(Ω) and so that EΩ has a unique
minimum in H1(Ω).

Remark 4. (i) Under the same hypotheses on f, we get the existence and uniqueness of a solution
uε in H1(Ωε) for (19). For ε small enough, we still have mini

∫
Rε

i
uε ≥ mini fi

N and maxi
∫

Rε
i
uε ≤∫

Ω
f = ∑

N
i=1 fi, ∀i ∈ Iind(Ω).

(ii) When K 6= I is such that K1 6= 0, we can show that problem (34) is well-posed in H1(Ω). For
more details we refer the reader to [7] chapter 3.

(iii) We can show that Proposition 3 holds as soon as ψ j are bounded from below for j ∈ Iind(Ω)
and strictly convex on I ⊂ R. In the general case α and β are implicitly defined in function of
ψ j.

6.2 Computation of the topological gradient for a perforated domain

In this section we compute the topological gradient for a perforated domain Ωε = Ω\{x0 + εB}.
Let j0 ∈ Iind(Ω) be such that R j0 ⊃ Bε(x0) where Bε(x0) is the ball centered at x0 and of radius ε . For
j ∈ Iind(Ω), let Rε

j be the domain equal to R j0\Bε(x0) if j = j0 and R j otherwise. Now let us denote
Iε

j (u) =
∫

Rε
j
u, I j(u) =

∫
R j

u, Jε(u) = JΩε
(u) and uε the solution of (34) replacing Ω by Ωε .

By writing DEΩε
.v = 0 ∀v ∈ H1(Ωε), we deduce the following variational formulation of (34) :

find uε ∈ H1(Ωε) such that Fε(uε ,v) = 0 ∀v ∈ H1(Ωε)

where Fε(u,v) is the following functional on H1(Ωε)×H1(Ωε) :

Fε(u,v) =
∫

Ωε

γ∇u.∇v+ ∑
j∈Iind(Ω)

Dψ j
(
Iε

j (Ku)
)∫

Rε
j

Kv (37)

By taking v ∈D(Rε
j), the space of C∞(Rε

j) functions with compact support in Rε
j , we obtain −γ∆uε +

Dψ j(Iε
j (Kuε))K?1= 0 on Rε

j , ∀ j ∈ Iind(Ω). Then if v is any test function v ∈H1(Ω), we get ∂nuε = 0
on ∂Ωε . Therefore :

(Pε)

{
− γ∆uε +Dψ j

(
Iε

j (Kuε)
)

K?1= 0, on Rε
j

∂nuε = 0 on ∂Ωε and [uε ]∂R j = 0
(38)
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where [uε ]∂R j denotes the jump of uε through ∂R j.
We now give the main result of this section. The proof is performed in the case γ = 1 and K = I

but the proof is the same in the general case.

Theorem 6.1. The topological gradient Ib
Lap associated to problem (38) and to the cost function

Jε(u) =
∫

Ωε
|∇u|2 for a perforated domain is

Ib
Lap(x0) =−2π∇u0(x0).∇v0(x0)+

π

γ
Dψ j0 (I j0(Ku0))(Ku0(x0)−Kv0(x0))

+
π

γ
D2

ψ j0 (I j0(Ku0))Ku0(x0)(I j0 (Ku0)− I j0(Kv0))
(39)

with u0 and v0 given by (38) and (44) for ε = 0.

Démonstration. We set

J̃ε(u) =− ∑
j∈Iind(Ω)

∫
Rε

j

Dψ j
(
Iε

j (u)
)

u =− ∑
j∈Iind(Ω)

Dψ j
(
Iε

j (u)
)

Iε
j (u)

The difference Jε(uε)− J0(u0) is :

Jε(uε)− J0(u0) = J̃ε(uε)− J̃ε(u0) = Lε(uε −u0)+Iε (40)

with
Lε(u) =− ∑

j∈Iind(Ω)

∫
Rε

j

(
Dψ j0(I j0(u0))+D2

ψ j0(I j0(u0))I j0(u0)
)

u

=− ∑
j∈Iind(Ω)

∫
Rε

j

u

Iε =
∫

Bε

(
Dψ j0(I j0(u0))+D2

ψ j0(I j0(u0))I j0(u0)
)

u0

=
∫

Bε

u0

(41)

Then in order to introduce the adjoint problem, we make a second order Taylor expansion with respect
to u for Fε(u,v) :

Fε(uε ,v) = Gε(u0,v)+bε(uε −u0,v)+ cε(v)+dε(v) (42)

with
Gε(u,v) =

∫
Ωε

∇u.∇v+ ∑
j∈P(Ω)

Dψ j(I j(u))
∫

Rε
j

v

bε(u,v) =
∫

Ωε

∇u.∇v+ ∑
j∈Iind(Ω)

D2
ψ j (I j(u0))

∫
Rε

j

u
∫

Rε
j

v

cε(v) =
1
2 ∑

j∈Iind(Ω)

∫
Rε

j

D3
ψ j (ξε)(Iε

j (uε)− I0
j (u0))

2
∫

Rε
j

v

dε(v) =−D2
ψ j0(I j0(u0))

∫
Bε

u0

∫
Rε

j0

v

where ξε = θ
∫

Rε
j
uε +(1−θ)

∫
R j

u0 ∈ [α,β ] with 0 < θ < 1. Next, we introduce the adjoint problem :

find vε ∈ H1(Ωε) solution of

bε(u,vε) =−Lε(u) ∀u ∈ H1(Ωε) (43)
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By taking u ∈D(Rε
j) and by integrating by parts, we deduce the following Euler equations associated

with (43) 
−∆vε +D2

ψ j (I j(u0))
∫

Rε
j

vε = 1 on Rε
j

∂nvε = 0 on ∂Ωε and [vε ]∂R j = 0

Remark 5. For γ 6= 1 and K 6= I, the adjoint problem is defined by
−γ∆vε +D2

ψ j (I j(Ku0))
∫

Rε
j

Kvε = K?1 on Rε
j

∂nvε = 0 on ∂Ωε and [vε ]∂R j = 0
(44)

From (40) and (42), we obtain

Jε(uε)− J0(u0) =−Lε(uε −u0)+Iε =−bε(uε −u0,vε)+Iε

= Gε(u0,vε)+ cε(vε)+dε(vε)+Iε

= Gε(u0,vε)+Iε +Jε +E1

(45)

with
E1 = cε(vε) and Jε = dε(vε) (46)

By using an integration by parts, Gε(u0,vε) expresses as

Gε(u0,vε) =−
∫

∂Bε

∂nu0vε −
∫

Ωε

∆u0vε + ∑
j∈Iind(Ω)

Dψ j (I j(u0))
∫

Rε
j

vε

=−
∫

∂Bε

∂nu0vε

With a similar computation to the one made in (30) for the speckle model, Gε(u0,vε) rewrites as :

Gε(u0,vε) =−
∫

∂Bε

ũ0 (∂nv0 +∂nlwε

ε )−Dψ j0(I j0(u0))
∫

Bε

v0 +
∫

Bε

ũ0∆v0−Dψ j0 (I j0(u0))
∫

Bε

lwε

ε

= Kε +Lε +E2 +E3

with ũ0 = u0−u0(0), wε = vε − v0 and

Kε =−
∫

∂Bε

ũ0 (∂nv0 +∂nlwε

ε )

Lε =−Dψ j0 (I j0(u0))
∫

Bε

v0

E2 =
∫

Bε

ũ0∆v0 , E3 =−Dψ j0 (I j0(u0))
∫

Bε

lwε

ε

(47)

In the following proposition we give the asymptotic expansion of the previous quantities.
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Proposition 4. Let Iε , Jε , Kε , Lε , E1, E2 and E3 given by (41), (46) and (47), then we have the
following estimations :

Jε(uε)− J0(u0) = Iε +Jε +Kε +Lε +
3

∑
i=1

Ei

Iε = πε
2 (Dψ j0(I j0(u0))+D2

ψ j0 (I j0(u0)) I j0(u0)
)

u0(0)+o(ε2)

Jε =−πε
2D2

ψ j0 (I j0(u0))u0(0)I j0(v0)+o(ε2)

Kε =−2πε
2
∇u0(0).∇v0(0)+o(ε2)

Lε =−πε
2Dψ j0 (I j0(u0))v0(0)+o(ε2)

(48)

and Ei ∼ o(ε2) for i ∈ [[1..3]].

Démonstration. The first equality is straightforward. A Taylor expansion of u0 at 0 gives the first
estimation. Again a Taylor expansion of u0 at 0, Lemma 10.6 (see Appendix B) and the fact that
Rε

j0
ε→0−→ R j0 give the second estimation. For Kε we refer the reader to the proof of Proposition 2. For

E1, we use Lemma 10.5, the regularity of ψ(x) and that ξε ∈ [α,β ] :

|E1| ≤C ∑
j∈v

(∫
Rε

j

uε −u0

)2

+C
(∫

Bε

u0

)2

≤C‖uε −u0‖2
0,Ωε

+Cε
4 = O(ε4log(ε))

By using that ∆v0 = D2ψ j0(I j0(u0))I j0(v0) and a Taylor expansion of u0 at 0 we get E2 = O(ε3). For
E3, from a change of variable and Lemma 10.6, we get

|E3| ≤Cε
2‖lwε

ε (εX)‖0,B ≤Cε
3
√
−log(ε)

(see Proposition 2).

Denoting by j0 the integer such that R j0 3 x0, we deduce the expression given in Theorem 6.1.

6.3 Expression of the topological gradient for a cracked domain

For a cracked domain Ωε = Ω\{x0 + εσ(~n)}, the computations are similar. The term Iε of (45)
is zero and the term Fε(u0,vε) expresses as Fε(u0,vε) =−

∫
σε

∂nu0[wε ]. The topological expansion of
uε and vε are similar with the perforated domain and the computation of the topological gradient is
the same as the linear case (see [4, 21] for more details).

Theorem 6.2. The topological gradient Ic
Lap associated to problem (38) and to the cost function

Jε(u) =
∫

Ωε
|∇u|2 for a cracked domain is

Ic
Lap(x0) = min

|n|=1
I (x0,~n)

with I (x0,~n) =−π∇u0(x0).~n∇v0(x0).~n
(49)

with u0 and v0 given by (38) and (44) for ε = 0.

Remark 6. The topological gradient is the same in the general case of functions ψ j ∈C3(I), strictly
convex on I and bounded from below on I. Just in the right hand-side of (44), K?1 must be replaced
by
(
D2ψ j(I j(Ku0))I j(Ku0)+Dψ j(I j(Ku0))

)
K?1.
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7 Summary table of the topological gradient expressions

We summarize in Table 1, all the expressions of the topological gradient according to the type of
noise and to the infinitesimal perturbation.

Ball Crack

Gauss −2π∇u0(x0).∇v0(x0)+
π

γ
( f (x0)−Ku0(x0))(Kv0(x0)−Ku0(x0)) −π∇u0(x0).~n∇v0(x0).~n

(K 6= I)

Speckle-Log −2π∇u0(x0).∇v0(x0)+
π

γ
Duψ(x0,u0)(u0(x0)− v0(x0)) −π∇u0(x0).~n∇v0(x0).~n

(K = I) with ψ(x,u) = u−Log( f (x))+ f (x)e−u

Poisson −2π∇u0(x0).∇v0(x0)+
π

γ
Dψ j0 (I j0(Ku0))(Ku0(x0)−Kv0(x0))

(K 6= I) +π

γ
D2ψ j0 (I j0(Ku0))Ku0(x0)(I j0 (Ku0)− I j0(Kv0)) −π∇u0(x0).~n∇v0(x0).~n

with ψ j0(x) = x− f j0Log(x) and I j0(v) =
∫

R j0
v, where R j0 3 x0

TABLE 1 – Summary of the topological gradient expressions

8 Restoration using the topological gradient for a cracked domain

As a by product the computation of the topological gradient Ic
Lap for a cracked domain allows

to restore images degraded by blur or/and various noise statistics. Once Ic
Lap is computed, we define

for a fixed threshold δ > 0, the set Eδ =
{

x ∈Ω; |Ic
Lap(x)| ≥ δ

}
and the approximated characteristic

function

χη(x) =

{
η if x ∈ Eη

1 otherwise

where η is a small positive parameter. From the computation of Ic
Lap we also get the normalized

direction~τ =~n⊥ of the edge. If n = (cos(ϕ),sin(ϕ)) is the normal to the crack given by Ic
Lap, we have

~τ = (sin(ϕ),−cos(ϕ)). Then, if f is the degraded observed image, we want to find a restored version
u of f as the solution of the following anisotropic PDE :{

−div(γPϕ

η (x)∇u)+K?Dψ(Ku) = 0 on Ω

∂nu = 0 on Γ
(50)
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with

ψ(x,u) =



1
2
( f −u)2 (Gaussian model)

∑
j∈Iind

(∫
R j

u− f jlog
(∫

R j

u
))

1R j(x) (Poisson model)

log(u)+
f
u

(Speckle model)

(51)

and where Pϕ

η (x) is a tensor constructed from ϕ(x) and χη(x) and γ is a parameter to tune. More pre-
cisely, we choose Pϕ

η (x)∇u(x) = (∇u.~τ)~τ + χη(x)(∇u.~n)~n. A simple identification shows that Pϕ

η (x)
is the matrix

Pϕ

η (x) =
(

n2
2 +χη(x)n2

1 n1n2(χη(x)−1)
n1n2(χη(x)−1) n2

1 +χη(x)n2
2

)
(52)

where n1 = cos(ϕ(x)) and n2 = sin(ϕ(x)). The interpretation of this matrix Pϕ

η (x) is as follows :

(i) if x belongs to the background, thanks to the definition of χη(x), Pϕ

η (x) writes as Pϕ

η (x) = I, so
div(Pϕ

η (x)∇u) = ∆u and the smoothing is isotropic.

(ii) if x belongs to an edge (i.e. x ∈ Eδ ), then χη(x) is close to zero and Pϕ

η (x)∇u(x)≈ (∇u.~τ)~τ and
the diffusion is in the direction of the edge. As we will see in section 9 on numerical examples,
the restoration results obtained when applying equation (50) are very good.

9 Numerical application to 2D imaging

In this section we illustrate the theory of the topological gradient by giving various experimental
results for models (13), (17) and (34).

The topological gradient expressions for the three models are stated in section 4, 5 and 6 and are
summarized in section 7.

For each model, to compute the topological gradient (TG) we use Algorithm 1. The computation
of the direct and adjoint solutions is specific to each model. The topological gradients are summarized
in Table 1.

Algorithm 1 Computation of the topological gradient
1: Computation of u0 and v0 by using either Algorithm 2 or 3 according to the model.
2: Computation of the derivatives of u0 by convolution with derivative filters.
3: Computation of the TG relatively to the model by using Table 1 and/or Theorems of section 4, 5

and 6.

Remark 7. For a cracked domain, indicators Ic
Lap (16b), (33) and (49) are given by the minimal

eigenvalue of a 2×2 symmetric matrix :

Ic
Lap = λmin(M0)

with
M0 =−π∇u0∇vT

0
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First, since equations (14) and (15) are linear, we develop the numerical analysis in a specific
subsection. Then we perform the discretization of problems (17) and (34) and finally we give the
experimental results. As the adjoint problems (26) and (44) are linear with non constant coefficients
we discretize them by a finite difference scheme and we compute the discrete solution by using a
sparse solver.

9.1 Numerical analysis for Gaussian model with blurring

To discretize (14) and (15) we use a DCT1 (discrete cosine transform of type 1) thanks to the
symmetry properties and the fact that the DCT1 of a convolution product of two vectors is the pro-
duct of the DCT1 of each vector. We choose this discretization because of the symmetry properties
guaranteed by the algorithm. A DCT1 of N points is equivalent to a DFT (discrete Fourier transform)
of 2N-2 points. For example in 1D for N = 4 a DCT1 of [x0,x1,x2,x3] is equivalent to a DFT of
[x0,x1,x2,x3,x2,x1]. We use the FFT (fast Fourier transform) to perform the DFT. The computation
time of a FFT is a O (Nlog(N)). A numerical study shows that for N ≤ 1010, FFT is faster than a finite
difference scheme. Algorithm 2 gives the different steps to compute the discrete solutions (14) and
(15).

It consists in the following steps :

— Symmetric extension of the initial Ny×Nx image in an 2(Ny−1)×2(Nx−1) image and exten-
sion of the 2ny+1×2nx +1 kernel in a 2(Ny−1)×2(Nx−1) kernel. To fix ideas in 1D and for
nx = 2, the extension of the discrete kernel [x−2x−1x0x1x2] is [x0x1x20...0x−2x−1].

— Computation of the DFT of the image and of the kernels.

— Algebraic inversion in the Fourier domain.

— Computation of the solution by inverse FFT.

An important point is the choice of the frequency domain. Indeed the natural definition of the fre-
quency domain would be {0, 2π

Nx
, ..., 2π(Nx−1)

Nx
}×{0, 2π

Ny
, ...,

2π(Ny−1)
Ny

}, but it is not a good choice. This
fact is explained in [26]. Let us give the reasoning in 1D for a 1-periodic function. The trigonometric
function associated with the vector of DFT coefficients is

uN(x) =
N−1

∑
k=0

ŷN
k e

2πi
N (k+mkN)

where ŷN ∈RN is the vector such that ŷN = DFT (yN), yN =
(
uN(l/N)

)
0≤l≤N−1 and mk ∈Z are coeffi-

cients which do not change function u at points xl =
l
N , but they greatly modify u between these points

(aliasing phenomenon appears). If we compute the L2(0,1)-norm of the first derivative, we get :

‖uN‖2
L2(0,1) = (2π)2

N−1

∑
k=0
|ŷN

k |
2(k+mkN)2 (53)

From (53), we see that the mk coefficients change considerably the L2(0,1)-norm of the first derivative
and the good choice for mk is the value minimizing (k+mkN)2. If 0 ≤ k < N/2 then (k+mkN)2 is
minimized for mk = 0 and if N/2 ≤ k < N then (k +mkN)2 is minimized for mk = −1. A special
consideration is made for k = N/2 when N is even because of the two possible choices (mk = −1
or mk = 0, see [26] for more details). By following these considerations we define the frequency
domain E =

{(
πkx

(Nx−1) ,
πky

(Ny−1)

)
,(kx,ky) ∈ Ex×Ey

}
, with Ex = {0, ...,Nx−1,−(Nx−2), ...,−1} and
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Ey = {0, ...,Ny−1,−(Ny−2), ...,−1}. We denote by Λ = (Λx,Λy) the 2(Ny− 1)× 2(Nx− 1) mesh
grid associated to this discrete space. The vector of Fourier coefficients associated to a discrete signal
x ∈ RN is denoted by X.

Algorithm 2 Computation of the direct and adjoint solutions

1. Given an image fi j defined for (i, j) ∈ [[0,Ny− 1)]× [[0,Nx− 1]], extend it to a periodic and
symmetric image defined on [[0,2(Ny−1)−1]]× [[0,2(Nx−1)−1]].

2. Given a blurring convolution kernel k1
i j defined for (i, j)∈ [[0,2ny]]× [[0,2nx]], use the procedure

described in section 9.1 to calculate its symmetric extension kmn for 0 ≤ m < 2(Ny− 1) and
0≤ n < 2(Nx−1).

3. Use an FFT to compute Fkl and Kkl for (k, l) ∈ [[0,2(Ny−1)−1]]× [[0,2(Nx−1)−1]].

4. Given Λ = (Λx,Λy), the meshgrid associated to the frequencies domain described in section
9.1, compute
Ukl =

KklFkl
|Kkl |2+γΛ2

kl
and Vkl =

Kkl(2KklUkl−Fkl)

|Kkl |2+γΛ2
kl

.

5. Use an inverse FFT to compute ui j and vi j for (i, j) ∈ [[0,2(Ny−1)−1]]× [[0,2(Nx−1)−1]].

9.2 Numerical analysis for Poisson and Speckle models

If In f
Ω

f > 0, by Proposition 1 and Proposition 3, problems (17) and (34) are well-posed and can

be discretized as :

(Speckle-Log model) min
x≥log(αs)

Js(x), αs > 0 (54a)

(Poisson model) min
x≥αp

Jp(x), αp > 0 (54b)

where αs = min( f N)> 0 and αp =
min( f N)

N . f N is a discretization of f ; Jp(x) and Js(x) are respectively
the discrete versions of the energy functions (12) and (8). We choose a simple discretization : uN(x)
is the step function equals to u( j) on pixel j, and we represent uN by a vector of RN .

During the construction of the sequence x(k), the condition x(k)≥αp for the Poisson model (respec-
tively x(k) ≥ log(αs) for the speckle model) must be fulfilled at each step. Hence a projection ensures
this condition. To solve these problems we use an iterative algorithm based on the descent method
called the SGP algorithm [17] (scaled gradient projection). Let us write the discrete cost functions :

Jp(x) =−
γ

2
xT Ax+

N

∑
i=1

(Kx)i− filog((Kx)i)

Js(x) =−
γ

2
xT Ax+

N

∑
i=1

(
ui−gi + e−(ui−gi)

)
where A is the Neumann Laplacian matrix, K is a discretization of the blurring operator (circulant
block matrix if we assume that the image is periodic) and we recall that gi = log( fi). Let us give the
main ideas of the SGP algorithm. The discrete energies Jp and Js are denoted by J as soon as we

22



do not use their expression and δ wiil be the number equal to α for the Poisson model and equal to
log(α) for the Speckle-Log model. We set Λ =

{
x ∈ RN ,x≥ δ

}
. We want to find x? ∈ Λ such that

∇J(x?) = 0. At step k, a first order Taylor expansion at point x = x(k) leads to the following equation

∇J(x(k))+∇
2J(x(k))(x− x(k)) = 0

If det
(
∇2J(x(k))

)
6= 0, we get x = x(k)−∇2J(x(k))−1∇J(x(k)). We deduce by this reasoning that the di-

rection of the descent algorithm can be given by ∇2J(x(k))−1∇J(x(k)), but we see that the computation
of this direction is very costly. We denote by DL the compact set of the symmetric positive definite
N×N matrices such that ‖D‖ ≤ L and ‖D−1‖ ≤ 1

L . The main idea of the SGP algorithm is to construct
two sequences αk and Dk ∈DL such that αkDk approximates ∇2J(x(k)) and to project each iterate on
Λ with respect to the norm ‖x‖D =

√
xT Dx. We set PΛ,D−1 for D ∈DL the projector on Λ with respect

to the norm ‖.‖D.

We recall the SGP algorithm in Algorithm 3 ( see [17]).

Algorithm 3 SGP algorithm

1: Set x(0) ≥ α , β ,θ ∈]0,1[, 0 < αmin < αmax, L > 0, and fix a positive integer M.
2: for k = 0 : kmax do
3: Choose the parameter αk ∈ [αmin,αmax] and the scaling matrix Dk ∈DL

4: Projection : y(k)← P
Λ,D−1

k
(x(k)−αkDk∇ f (x(k))

5: if y(k) = x(k) then
6: Stop, x(k) is a stationary point.
7: end if
8: Descent direction d(k) = y(k)− x(k) ;
9: λk← 1 and Jmax←max0≤ j≤min(k,M−1) J(x(k− j))

10: λk fixed by backtracking :
11: while f (x(k)+λkd(k))≤ Jmax +βλk∇J(x(k))T d(k) do
12: λk← θλk
13: end while
14: x(k+1)← x(k)+λkd(k)

15: end for

The construction of the sequences Dk and αk needs some explanations. We choose Dk = diag(dk
i )

with dk
i =min

(
L,max

(
1
L ,

∂ 2J
∂x2

i
(x(k))−1

))
. The approximation of the Hessian matrix ∇2J(x(k)) is B(αk)=

αkDk. By using a first order Taylor expansion of ∇J(x) at point x(k−1) we get that

∇J(x(k))−∇J(x(k−1)) = ∇
2J(x(k)).(x(k)− x(k−1))+o

(
(x(k)− x(k−1))2

)
Hence two possible choices of αk can be made :

α
1
k = argmin

α

∥∥∥B(αk)s(k−1)− z(k−1)
∥∥∥

Dk
=

s(k−1)T
D−1

k D−1
k s(k−1)

s(k−1)T D−1
k z(k−1)

α
2
k = argmin

α

∥∥∥s(k−1)−B(αk)
−1z(k−1)

∥∥∥
Dk

=
s(k−1)T

Dkz(k−1)

z(k−1)T DkDkz(k−1)
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where s(k−1) = x(k)− x(k−1) and z(k−1) = ∇J(x(k))−∇J(x(k−1)). In [17] the choice of αk is the output
of an algorithm called SGP-SS Algorithm (SGP step length selection) which uses two thresholds
0 < αmin < αmax. Let us give the derivative of the discrete cost functions Jp and Js :

∇Jp =−γAx−KT f
Kx

+KT1

∇
2Jp =−γA+KT diag

(
f

(Kx)2

)
K

∇Js =−γAx+1− e−(x− f )

∇
2Js =−γA+diag

(
e−(x− f )

)
where 1 ∈ RN denotes the vector with each coefficient equal to 1, diag(x) for x ∈ RN is the diagonal
matrix with diagonal entries equal to x. For x ∈ RN and ϕ : R −→ R a function, ϕ(x) stands for
the vector (ϕ(xi))1≤i≤N . The choice of the parameters in Algorithm 3 is the following : β = 10−4,
θ = 0.4, kmax = 600, M = 1 and for the Poisson model (34) we set αmin = 10−10, αmax = 105 while
for the Speckle-Log model (17) we set αmin = 10−5, αmax = 1015. The initial value of x(0) is either the
observed image for the Poisson model or its logarithm for the Speckle-Log model. Let us note that in
the case of the speckle model, (50) is performed with ψ(u) = log(u)+ f

u .

9.3 Comparison of our method with some classical models

As said in the introduction other variational methods exist for segmenting/restorating images.
We will compare the topological gradient segmentation process with the one performed by the

Mumford-Shah model. We will also compare the restoration proposed in (50) with the ones given by
the Mumford-Shah restoration and by the TV restoration.

Mumford-Shah model of segmentation/restoration and its approximation

Let u the image of support Ω, the functional introduced by Mumford and Shah in 1989 (see [33])
is :

F(u,γ) =
∫

Ω

|u−u0|2 +λ

∫
Ω\γ
|∇u|2 +αH 1(γ)

where f is the observed image, u is a function defined on Ω\γ (the restored version of f ) and γ ⊂ Ω

is the set of discontinuity of u. H 1 is the Hausdorff measure of γ , λ and α are positive parameters.
The difficulty was that the unknown are not of same nature : u is a function and γ is a set. Ambrosio
and Tortorelli [1] proposed an approximation of this functional as follows :

Fε(u,b) =
∫

Ω

[
|u− f |2 +λb2|∇u|2 +α

(
ε|∇b|2 + (b−1)2

4ε

)]
We will change the data fidelity term |u− f |2 according to the a priori model (Gaussian, Poissonian
and speckle model) i.e. the model that we will compare with (50) is (see [35]) :

min
u∈H1(Ω),b∈H1(Ω)

∫
Ω

[
ψ(x,Ku)+λb2|∇u|2 +α

(
ε|∇b|2 + (b−1)2

4ε

)]
(55)
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where K is the blur operator, u(x) is the restored image, 1−b(x)≈ 0 is the characteristic function of
the edges and ψ(x,u) is given in (51). We will call this model the Mumford-Shah model (MS).

TV model of restoration

The TV model is well-known : we search for a restored version u minimizing an energy functio-
nal which is the sum of the total variation ||Du|| and a data fidelity term which depends on the a priori
model (see [8] for the speckle model and [16] for the Poisson one). Thus, we will compare our model
(50) to :

min
u∈BV (Ω)

∫
Ω

|Du|+λψ(x,Ku) (56)

where λ is a parameter, K the blur operator, and ψ(u) is given in (51). In the sequel we call this model
the TV model.

For more details on these models we refer the reader to [16], [8], [35] and [33].
For restoration comparisons on synthetic images we use two indicators :

— the PSNR which is defined for a noisy observation I of an image I0 by

PSNR(I) = 10Log
(

2552

‖I− I0‖2
2/N

)
where N is the number of pixels in the image.

— the SSIM defined as

SSIM(I) =
(2µIµI0 + c1)(2cov(I, I0)+ c2)

(µ2
I +µ2

I0
+ c2)

where µx stands for the mean of x, cov is the covariance operator and c1 and c2 are constants
given for RGB images by c1 = (255k1)

2 and c2 = (255k2)
2 with k1 = 0.01 and k2 = 0.03.

9.4 Numerical results for the Gaussian model

An interesting study is the comparison of formula (16a) and (16b) giving the topological gradient
for respectively a perforated and a cracked domain. A priori Ib

Lap (16a), associated to a perforated
domain, would be adapted for the detection of isotropic structures while Ic

Lap (16b) would seem more
adapted to detect edges straight. Fig. 1 compares, for different values of γ , Ic

Lap and Ib
Lap to b(x)

obtained by minimizing MS (55). For small γ , Ic
Lap seems the most robust indicator to detect the black

spots contours of the cheetah. We remark by increasing γ that Ib
Lap becomes smooth and singular on

the entire black spots and not only on its contours, while Ic
Lap better detects the border of the cheetah.

We deduce that γ must be tuned with respect to the noise but also by taking into account the size
of structures to detect.

25



(a) Initial image (b) Ib
Lap, (16a) (γ = 1) (c) Ic

Lap, (16b) (γ = 1) (d) Ib
Lap,(16a) (γ = 10)

(e) Ic
Lap, (16b) (γ = 10) (f) MS (55) (λ = 5, α = 10,

ε = 10−6)

FIGURE 1 – Comparison of the two formula given in (16b) and (16b) for different value of γ with the
MS model (55) (b≈ 0) for a Gaussian noisy image (PSNR=16dB) containing mainly isotropic small
structures.

Fig. 2 shows Ic
Lap and the MS result for a Gaussian noisy and Gaussian blurred image. Results are

similar but Ic
Lap has the advantage of being very fast (for this image the computation time is about one

second on a computer equipped with a processor Intel Core 1.9 GHz, see section 9.7 for more details).

(a) Initial image

(b) Ic
Lap (16b) (c) MS (55) (λ = 10, α = 5,

ε = 10−6)
(d) Ic

Lap (16b) : Zoom (e) MS (55) : Zoom

FIGURE 2 – Comparison of the topological gradient (16b) with the MS segmentation (55) on a Gaus-
sian noisy and blurred image (PSNR=16dB, σ = 3).

Fig. 3 shows the restored version performed by (50), (55) and (56) on a Gaussian noisy and
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Gaussian blurred image. We see that the restoration given by MS (55) degrades contours and does
not remove completely the blur. Restorations computed by (50) and (56) are quite similar but the
computation time is shorter for (50).

(a) Initial image,
PSNR=16dB, SSIM=0.721

(b) Restored version (50)
(γ = 5), PSNR=26.2dB,

SSIM=0.964

(c) MS (55) (λ = 10,
α = 5, ε = 10−6),

PSNR=24.4dB,
SSIM=0.943

(d) TV (56) (λ = 0.05),
PSNR=26.6dB,

SSIM=0.968

FIGURE 3 – Comparison of restored versions (50), (55) and (56) for a synthetic Gaussian noisy and
Gaussian blurred (σ = 3) image.

Fig. 4 displays the 1D profiles of the image to recover, its degraded versions (blurred, blur-
red+noisy), the restored version (50) and Ic

Lap (16b) across an edge. We see that the restored version
matches very well the image to recover and Ic

Lap detects quite well the edge.

(a) (b) (c)

FIGURE 4 – (a) A transverse cut displaying the image to recover, the Gaussian blurred version (σ =
3), the blurred and noisy version (PSNR=16dB), (b) the restored version (50) (γ = 5) and (c) the
Topological gradient (16b) (γ = 1).

9.5 Numerical results for the speckle-log model. Comparisons

In this section we still illustrate the segmentation given by Ic
Lap (33), Ib

Lap (21) and b(x) computed
with the MS model (55). We also display the restoration performed by (50), the MS model (55) and
the TV model (56).

On Fig. 5, we compare Ic
Lap (33) and Ib

Lap (21) for different values of γ with the function b(x)
given by the MS model for a synthetic speckled image. Similarly to the Gaussian case, Ib

Lap seems
more adapted to detect isotropic structures and we still deduce that γ must be tuned with respect to
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the noise and to the size of structures to detect. Comparing Ic
Lap and MS, similar results are obtained

for the cheetah.

(a) Initial image (b) Ib
Lap(21) (γ = 1) (c) Ic

Lap (33) (γ = 1) (d) Ib
Lap(21) (γ = 10)

(e) Ic
Lap (33) (γ = 10) (f) MS (55) (λ = 0.1,

α = 10, ε = 10−6)

FIGURE 5 – Comparison of the two formula (21) and (33) for different values of γ with the MS
segmentation (55) for an initial speckled image (L = 6) containing mainly isotropic small structures.

The result given in Fig. 6 for a real SAR image is similar to the one of Fig. 5. Here we see that
Ib
Lap and Ic

Lap can be used for different objectives : particularly on small isotropic structures we see that
Ib
Lap detects the entire object while Ic

Lap detects its edges.

(a) Initial image (b) Ib
Lap (21) (γ = 1) (c) Ic

Lap (33) (γ = 1) (d) MS (55) (λ = 0.07,
α = 1, ε = 10−6)

(e) Zoom on initial image (f) Zoom on Ib
Lap(21) (g) Zoom on Ic

Lap (33) (h) MS (55) : Zoom

FIGURE 6 – Comparison of the two formula (21) and (33) with the MS segmentation (55) for a real
SAR image.

Fig. 7 and Fig. 9 compare the restoration performed by (50), (55) and (56) respectively on a
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real SAR image and on a synthetic speckled image. Restoration given by the MS degrades contours
while (50) and the TV model (56) are nearly equivalent. However, on Fig. 9, we can notice that the
restoration performed by (50) is better than the TV one and computation times are equivalent (see
section 9.7).

(a) Initial image (b) Restored version (50),
(γ = 5×10−4)

(c) MS (55) (λ = 0.05,
α = 1, ε = 10−6)

(d) TV(56) (λ = 800)

FIGURE 7 – Comparison of restored versions (50), (55) and (56) for a real SAR image (Zoom on Fig.
6-(a)).

On Fig. 8 we compare Ic
Lap and b(x) computed with MS (55) for a very noisy synthetic image

(L = 1 i.e. the worst case for this model). Here Ic
Lap gives a quite good result with respect to MS where

edges are spread out.

(a) Initial Image (b) Ic
Lap (33) (γ = 1.8) (c) MS (55) (λ = 1, α = 1,

ε = 10−6)
(d) Zoom on Ic

Lap (33)

(e) MS (55) : Zoom

FIGURE 8 – Comparison of the topological gradient (33) with the MS segmentation (55) for a synthetic
speckled image (L = 1).
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(a) Initial Image,
PSNR=9.6dB, SSIM=0.304

(b) Restored version (50)
(γ = 0.002), PSNR=24dB,

SSIM=0.945

(c) MS (55) (λ = 1, α = 1,
ε = 10−6), PSNR=14.5dB,

SSIM=0.924

(d) TV (56) (λ = 90),
PSNR=22dB, SSIM=0.927

FIGURE 9 – Comparison of restored versions (50), (55) and (56) for a speckled synthetic image (L =
1).

Finally Fig. 10 shows the 1D profiles of the image to recover, its noisy version, the restored version
(50) and Ic

Lap (33) across an edge. The restored version matches very well the image to recover and
edges are not degraded. This shows that (50) is a good restoration process.

(a) (b) (c)

FIGURE 10 – (a) A transverse cut displaying the image to recover and the speckled image, (b) the
restored version (50) (γ = 0.002) and the image to recover, (c) Ic

Lap (33) (γ = 1.8).

9.6 Numerical results for the Poisson model. Comparisons

In this section we compare the segmentation performed by Ic
Lap (49), Ib

Lap (39) and the MS model
(55). We also compare the restoration computed with (50), the MS and the TV model.

Fig. 11 and Fig. 12 show respectively the segmentation results in the case of a synthetic Poissonian
image and of a real confocal image of a rat’s neuron. Ic

Lap (49) detects edges quite well compared to
the MS model. We see that Ib

Lap fills small structures (the size of these structures is related to γ as for
the Gaussian and Poissonian cases).
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(a) Initial image (b) Ib
Lap(39) (γ = 3×10−3) (c) Ic

Lap (49) (γ = 3×10−3) (d) Ib
Lap(39) (γ = 3×10−2)

(e) Ic
Lap (49) (γ = 3×10−2) (f) MS (55) (λ = 0.07,

α = 1, sε = 10−6)

FIGURE 11 – Comparison of the two formula (39) and (49) for different values of γ with the MS
segmentation (55) for a Poissonian image containing mainly isotropic small structures.

(a) Initial image (b) Ib
Lap(39) (γ = 10−1) (c) Ic

Lap (49) (γ = 10−1) (d) Ib
Lap(39) (γ = 3)

(e) Ic
Lap (49) (γ = 3) (f) MS (55) (λ = 0.1,

ε = 10−6, α = 1)

FIGURE 12 – Comparison of the two formula (39) and (49) for different values of γ with the MS
segmentation (55) for a Poissonian real image containing rat’s neurons.

Fig. 13 and Fig. 15 display the restoration computed by (50), (55) and (56) on respectively a real
confocal image and a synthetic Poissonian image blurred by Gaussian convolution. We notice that (50)
and (56) restore very well the image preserving edges unlike to the MS model (55) which degrades
contours and which does not annihilate the blur effect.
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(a) Initial image (b) Restored version (50)
(γ = 0.015)

(c) MS (55) (λ = 0.01,
α = 1, ε = 10−6)

(d) TV (56) (λ = 5)

FIGURE 13 – Comparison of the restored versions (50), (55) and (56) for a real Poissonian image of
rat’s neurons.

Fig. 14 compares Ic
Lap (49) with b(x) performed by the MS model (55) for a Poissonian image

blurred by a Gaussian convolution.

(a) Initial image

(b) Ic
Lap (49) (γ = 0.001) (c) MS (55) (λ = 0.07,

ε = 10−6, α = 1)
(d) Zoom on Ic

Lap (49) (e) MS (55) : Zoom

FIGURE 14 – Comparison of Ic
Lap (49) with the MS segmentation (55) on a synthetic Poissonian image.
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(a) Initial image,
PSNR=23.8dB, SSIM=0.940

(b) Restored version (50)
(γ = 0.005),

PSNR=29.1dB,
SSIM=0.976

(c) MS (55) (λ = 0.001,
α = 1, ε = 1e−6),

PSNR=28.3dB,
SSIM=0.971

(d) TV (56) (λ = 40),
PSNR=29dB, SSIM=0.976

FIGURE 15 – Comparison of the restored versions for a Poissonian image blurred by Gaussian convo-
lution (σ = 3).

Finally, Fig. 16 shows the 1D profiles of the image to recover, its degraded versions (blurred,
blurred + Poissonian process), the restored version (50) and Ic

Lap (49) across an edge. We see that (50)
allows to recover the initial image and that Ic

Lap detects very well the edge.

(a) (b) (c)

FIGURE 16 – (a) A transverse cut displaying the image to recover, the Gaussian blurred version (σ =
3), the blurred and noisy version (PSNR=16dB), (b) the restored version (50) (γ = 0.005) and (c) Ic

Lap
(16b) (γ = 0.001).

9.7 Computational time comparisons for the three methods

On Fig. 17 and Fig. 18 are compared the three methods for K = I (no blur) : Mumford-Shah
(MS), TV and the topological gradient method (TG). The experiments are performed on a computer
equipped with a processor Intel Core 1.9 GHz and all algorithms are implemented in Matlab. In
the Gaussian case, since all the equations are linear, the topological gradient method is the fastest
method both for segmentation and restoration. To fix ideas, for an image containing 6.4×105 pixels,
the computational time for the segmentation performed by the topological gradient is less than one
second and the restoration is about four seconds.
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FIGURE 17 – Comparisons of the computational time of the three methods in function of the number
of pixels in the Gaussian case

For the nonlinear cases (Poissonian and speckle models), the computation of the topological gra-
dient still remains the fastest but the restoration step performed by (50) takes approximately the same
time as for a restoration given by a TV model. Let us notice that the TV model is implemented by
using an iterative algorithm (explicit schema with fixed step length with at maximum 1000 iterations)
and that the Mumford-Shah model solution is computed by minimizing the approximate functional
alternatively with respect to u and b. When this latter model is associated to non quadratic data fidelity
terms (Poisson and speckle), the minimization with respect to u (at b fixed) is made by using Algo-
rithm 3 and we perform 15 iterations. Finally let us precise that we present on Fig. 18 the computation
time only for the Poissonian model because similar results are obtained from the speckle one.
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FIGURE 18 – Comparisons of the computational time of the three methods of restoration in function
of the number of pixels in the Poissonian case

10 Appendices

In these appendices we give the asymptotic expansion of the differences uε − u0 and vε − v0 for
the non linear problems (Poisson and Speckle-log models). Some proofs are similar to the linear case
and so we will refer the reader to [4]. To establish these asymptotic expansions we need the following
exterior problem

(Pext)


∆H = 0, on R2\B

∂nH = g, on ∂B

H −→ 0, at ∞

(57)

where g ∈ H−1/2(∂B) and
∫

∂B gdσ = 0. For the computation of the topological gradient we will use
the two following lemma. We omit the proofs and we refer the reader to [21] for more details

Lemma 10.1. The solution of (57) expresses as a simple layer potential :

H(x) =
∫

∂B
λ (y)E(x− y)dσ

with E(x) = − 1
2π

log(|x|) is the fundamental solution of the Laplace operator and λ (y) = −2g(y).
Denoting by lH the solution of (29), we have the jump relations through ∂B

H− lH = 0

∂nH−∂nlH =−λ

and lu expresses also as lH(x) =
∫

∂B λ (y)E(x− y)dσ .

35



The following asymptotic estimations holds.

Lemma 10.2. Let H the solution of (57), then :

|H(x)| ≤ C
|x|

, |∇H(x)| ≤ C
|x|2∥∥∥H

( x
ε

)∥∥∥
0,Ωε

= O
(√
−log(ε)

)
,
∥∥∥∇H

( x
ε

)∥∥∥
0,Ωε

= O(ε)

10.1 Appendix A

In this appendix all the proofs are performed assuming γ = 1, and when (19) is referenced we
suppose that γ = 1. Moreover we suppose that ψ fulfills Hypotheses 1.

Lemma 10.3. Let Xε = uε−u0 where uε and u0 are respectively given by (19) for ε > 0 and ε = 0, and
let P be the solution of (57) with g =−∇u0(0).n, then we have the following asymptotic expansion :

Xε = εP
( x

ε

)
+ eε

with ‖eε‖1,Ωε
= O(ε2

√
−log(ε)). Moreover we have the following estimation

‖Xε‖0,Ωε
= O

(
ε

2
√
−log(ε)

)
Démonstration. First by substracting equations (19) for ε > 0 and ε = 0 :

−∆Xε +Duψ(x,uε)−Duψ(x,u0) = 0, on Ωε

∂nXε =−∂nu0, on ∂Bε

∂nXε = 0, on Γ

(58)

Then an integration by parts gives :∫
Ωε

∇Xε .∇v+
∫

Ωε

(Duψ(x,uε)−Duψ(x,u0))v =−
∫

∂Bε

∇u0(0).~nv ∀v ∈ H1(Ωε) (59)

With a similar manner we integrate by parts the Euler equation checked by εP
( x

ε

)
on Ωε :∫

Ωε

∇P
( x

ε

)
∇v =−

∫
∂Bε

∇u0(0).~n−
∫

Γ

∂nP
( x

ε

)
v (60)

By setting eε = Xε − εP
( x

ε

)
and substracting (59) to (60), we get∫

Ωε

∇eε .∇v+
∫

Ωε

(Duψ(x,uε)−Duψ(x,u0))v =−
∫

Γ

∂nP
( x

ε

)
v−

∫
∂Bε

(∂nu0−∇u0(0).~n)v

Then, thanks to a Taylor expansion, we rewrite the second term on the right hand-side of the above
equality : Duψ(x,uε)−Duψ(x,u0) = D2

uψ(x,uδε
)(uε −u0) with uδε

= θu0 +(1−θ)uε , θ : Ω−→ R,
0≤ θ ≤ 1. We can bound from below this term by using Lemma 5.1 and Hypotheses 1. Indeed, since
a≤ uδε

≤ b and ψ(u) is strictly convex on [a,b]⊂ I, we get that there exists δ > 0 not depending on ε

such that D2
uψ(x,uδε

) ≥ δ > 0. Thus eε is solution of the following well-posed variational problem :
find eε ∈ H1(Ωε) such that∫

Ωε

∇eε .∇v+
∫

Ωε

D2
uψ(x,uδε

)eεv =−
∫

Γ

∂nP
( x

ε

)
v−

∫
∂Bε

(∂nu0−∇u0(0).~n)v

−
∫

Ωε

D2
uψ(x,uδε

)εP
( x

ε

)
v

for all v ∈ H1(Ωε). Now we split eε in eε = e1
ε + e2

ε with
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(i) e1
ε ∈ H1(Ωε)/R solution of∫

Ωε

∇e1
ε .∇v =−

∫
∂Bε

(∂nu0−∇u0(0).~n)v ∀v ∈ H1(Ωε)

(ii) e2
ε ∈ H1(Ωε) solution of∫

Ωε

∇e2
ε .∇v+

∫
Ωε

D2
uψ(x,uδε

)e2
εv =−

∫
Γ

∂nP
( x

ε

)
v−

∫
Ωε

D2
uψ(x,uδε

)
(

εP
( x

ε

)
+ e1

ε

)
Then, by using a change of variable (CV), a trace theorem on B2\B (where B2 is the ball of radius
2, centered at 0), and the equivalency of the H1(B2\B)-norm with the semi-norm and a CV again,
we get that ‖eε‖H1(Ωε )/R = O(ε2). Next, by using Lemma 10.2, a trace Theorem on Ω\B and the
fact that e1

ε ∈ H1(Ωε)/R, we get that ‖e2
ε‖1,Ωε

= O(ε2
√
−log(ε)). The H1(Ωε)-norm estimation of

eε is then straightforward by using these two estimations and the following inequality ‖eε‖1,Ωε
≤

‖e1
ε‖H1(Ωε )/R+‖e

2
ε‖1,Ωε

; the estimation of ‖Xε‖0,Ωε
comes from ‖Xε‖0,Ωε

≤
∥∥εP

( x
ε

)∥∥
0,Ωε

+‖eε‖0,Ωε

and the previous inequalities. This ends the proof. For more details we refer the reader to [21].

Lemma 10.4. Let wε = vε − v0 where vε and v0 are respectively given by (25) for ε > 0 and ε = 0,
and let Q be the the solution of (57) with g = −∇v0(0).n, then we have the following asymptotic
expansion :

wε = εQ
( x

ε

)
+ rε

with ‖rε‖1,Ωε
= O(ε2

√
−log(ε)). Moreover we have

‖wε‖0,Ωε
= O

(
ε

2
√
−log(ε)

)
, |wε |1,Ωε

= O(ε)

Démonstration. The problem is linear. From Lemma 5.1 and Hypotheses 1, we get that there exist
δ1 > 0 and δ2 > 0 such that δ2 ≥ D2

uψ(u0)≥ δ1. The well-posedness of the problem is then straight-
forward. Then the proof can be easily deduced from the proof of Theorem 10.3 or from the linear case
[4].

10.2 Appendix B

In this appendix we consider problem (38) with K = I and γ = 1. The general case (when K
is a convolution operator such that K1 6= 0) can be easily deduced (see [7] chapter 3 for the well-
posedness).

Lemma 10.5. Let Xε = uε −u0 where uε and u0 are respectively given by (38) for ε > 0 and ε = 0,
then we have :

Xε = εP
( x

ε

)
+ eε

where P is defined by (57) with g = −∇u0(0).~n and where ‖eε‖1,Ωε
= O(ε2). Moreover we have the

estimation :
‖Xε‖0,Ωε

= O(ε2
√
−log(ε))
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Démonstration. First, let us write the Euler equations checked by Xε . By substracting equations (38)
for ε > 0 and for ε = 0, we get for j ∈ Iind(Ω) :

(Xε)



−∆Xε +Dψ j

(∫
Rε

j

uε

)
−Dψ j

(∫
R j

u0

)
= 0

on Rε
j , j ∈ Iind(Ω)

∂nXε =−∂nu0, on ∂Bε

∂nXε = 0, on Γ

(61)

Then, by a Taylor expansion there exists ξε = θ
∫

Rε
j
uε +(1−θ)

∫
R j

u0 with 0 < θ < 1 such that

Dψ j

(∫
Rε

j

uε

)
−Dψ j

(∫
R j

u0

)
= D2

ψ j(ξε)

(∫
Rε

j

uε −
∫

R j

u0

)
From Proposition 3, it is straightforward that 0 < α ≤ ξε ≤ β where α = mini fi

N and β = ∑i fi. (Xε)
rewrites for j ∈ Iind(Ω) as

(Xε)


−∆Xε +D2

ψ j(ξε)
∫

Rε
j

Xε =
∫

R j\Rε
j

u0 on Rε
j

∂nXε =−∂nu0, on ∂Bε

∂nXε = 0, on Γ

with
∫

R j\Rε
j
u0 = δ j0( j)

∫
Bε

u0, where δ is the Dirac function. Let eε = Xε − εP
( x

ε

)
where P is defined

by (57) with g =−∇u0(0).~n. eε , then eε verifies the following equation

(Eε)



−∆eε +D2
ψ j(ξε)

∫
Rε

j

eε =−εD2
ψ j(ξε)

∫
Rε

j

P
( x

ε

)
on Rε

j j ∈ Iind(Ω)

∂neε =−(∂nu0−∇u0(0).~n) = ϕε(x) = O(|x|) on ∂Bε

∂neε =−∂nP
( x

ε

)
= φε(x) = O

(
ε2

|x|2

)
on Γ

(62)

We set :

K j
ε =


−εD2

ψ j(ξε)
∫

R j

P
( x

ε

)
= O(ε3), for j 6= j0∫

Bε

u0− εD2
ψ j0(ξε)

∫
Rε

j0

P
( x

ε

)
= O(ε2), for j = j0

Now we split eε in the sum eε = e1
ε + e2

ε + e3
ε with

(i) e1
ε ∈ H1(Ωε)/R solution of 

−∆e1
ε = 0, on Ωε

∂ne1
ε = ϕε(x), on ∂Bε

∂ne1
ε = 0, on Γ

(ii) e2
ε ∈ H1(Ωε)/R solution of 

∆e2
ε = 0, on Ωε

∂ne2
ε = 0, on ∂Bε

∂ne2
ε = φε(x), on Γ
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(iii) e3
ε ∈ H1(Ωε) solution of

(E 3
ε )



−∆e3
ε +D2

ψ j(ξε)
∫

R j

e3
ε = K j

ε −D2
ψ j(ξε)

∫
Rε

j

(e2
ε + e2

ε)

on Rε
j , j ∈ Iind(Ω)

∂ne3
ε = 0, on ∂Bε

∂ne3
ε = 0, on Γ

Standard computations (see [4, 21] for more details) lead to the following estimations :

‖e1
ε‖H1(Ωε )/R ≤Cε

2 ‖e2
ε‖H1(Ωε )/R ≤Cε

2

To estimate e3
ε , we take the variational formulation of (E 3

ε ) :∫
Ωε

∇e3
ε .∇v+ ∑

j∈Iind(Ω)

D2
ψ j(ξε)

∫
Rε

j

e3
ε

∫
Rε

j

v = ∑
j∈Iind(Ω)

K j
ε

∫
Rε

j

v−D2
ψ

ε
j (ξε)

∫
Rε

j

(e1
ε + e2

ε)
∫

Rε
j

v (63)

An easy computation of D2ψ j and Proposition 3 give for ε ≤ ε0

max j∈Iind(Ω) f j

α2 ≥ D2
ψ j(ξε) =

f j

ξ 2
ε

≥
min j∈Iind(Ω) f j

β 2 > 0

where N = |Iind(Ω)|. By taking as test function v = e3
ε in (63), we deduce the following estimations :

∫
Ωε

|∇e3
ε |2 +C ∑

j∈Iind(Ω)

(∫
Rε

j

e3
ε

)2

≤ ∑
j∈Iind(Ω)

|K j
ε |
∣∣∣∣∫R j

ε

e3
ε

∣∣∣∣+ ∣∣D2
ψ

ε
j (ξε)

∣∣∫
Rε

j

(|e1
ε |+ |e2

ε |)

∣∣∣∣∣
∫

Rε
j

e3
ε

∣∣∣∣∣
≤C

(
ε

2 +‖e1
ε‖L2(Ωε )/R+‖e

2
ε‖L2(Ωε )/R

)
∑

j∈Iind(Ω)

∣∣∣∣∫R j
ε

e3
ε

∣∣∣∣
≤Cε

2
∑

j∈Iind(Ω)

∣∣∣∣∫R j
ε

e3
ε

∣∣∣∣
Then, thanks to the following inequality which stands for any sequence of real numbers (ai)i(

∑
i∈Iind(Ω)

|a j|

)2

≤ |Iind(Ω)| ∑
i∈Iind(Ω)

|ai|2

and the positiveness of
∫

Ωε
|∇e3

ε |2, we obtain

∑
j∈Iind(Ω)

∣∣∣∣∫R j
ε

e3
ε

∣∣∣∣≤Cε
2

and then |e3
ε |1,Ωε

≤Cε2. By using the Poincaré-Wirtinger inequality we get :

‖e3
ε‖1,Ωε

≤
∥∥∥∥e3

ε −
1
|Ω|

∫
Ωε

e3
ε

∥∥∥∥
1,Ωε

+

∣∣∣∣∫
Ωε

e3
ε

∣∣∣∣
≤C|e3

ε |1,Ωε
+C ∑

j∈Iind(Ω)

∣∣∣∣∫R j
ε

e3
ε

∣∣∣∣≤Cε
2
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From the inequality ‖eε‖1,Ωε
≤ ‖e1

ε‖H1(Ωε )/R + ‖e2
ε‖H1(Ωε )/R + ‖e3

ε‖1,Ωε
, we get the result. For the

L2(Ωε)-norm estimation of Xε , it suffices to take the L2(Ωε)-norm of its asymptotic expansion and to
use the first point of Lemma 10.5 and Lemma 10.2.

Lemma 10.6. Let wε = vε−v0 where vε and v0 are given by (43) for ε > 0 and ε = 0, then we have :

wε = εQ
( x

ε

)
+ rε

where Q is defined by (57) with g = −∇v0(0).n, and where ‖rε‖1,Ωε
= O(ε2

√
−log(ε)). Moreover

we have :
‖wε‖0,Ωε

= O(ε2
√
−log(ε), |wε |1,Ωε

= O(ε)

Démonstration. By substracting equations (44) for ε > 0 and for ε = 0, the Euler equations associated
to wε are :

(Wε)



−∆wε +D2
ψ j (I j(u0))

∫
Rε

j

wε = 0 on R j with j 6= j0

−∆wε +D2
ψ j0 (I j0(u0))

∫
Rε

j0

wε

= D2
ψ j0 (I j0(u0))

∫
Bε

v0 = O(ε2) on Rε
j0

∂nwε =−∂nv0 on ∂Bε

∂nwε = 0 on Γ

(64)

This problem is linear and from (3) we have :

max j∈Iind(Ω) f j

α2 ≥ D2
ψ j (I j(u0)) =

f j

I j(u0)2 ≥
min j∈Iind(Ω) f j

β 2

Then the topological expansion of wε can be deduced from the proof of Lemma 10.5 or from the linear
case [4].
The two last estimations are straightforward by using the topological expansion of wε and Lemma
10.2.
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