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Abstract In this paper we propose a new variationnal method

for segmenting/restoring images degraded by diverse noises

and blurs. This method is based on the notion of topological

gradient. First applied by [11] to restore images degraded

by a Gaussian noise, we propose here to extend the segmen-

tation/restoration process for possibly blurred images con-

tamined either by an additive Gaussian noise, or a multi-

plicative noise of gamma law or in presence of Poissonian

statistics. We calculate, both for perforated and cracked do-

mains, the topological gradient for each noise model. Then

we present a segmentation/restoration algorithm based on

this notion and we apply it to the three degradation models

previously described. Then, we compare our method with

the Ambrosio-Tortorelli approximation of the Mumford-Shah

functional [23,1]. We also compare our results with those

given by a classical TV restoration process (see [4] for a

speckle model). Many experimental results showing the ef-

ficiency, the robustness and the rapidity of the approach are

presented.

1 Introduction

An important problem in image analysis is the reconstruc-

tion of an original image u from an observed image f. In gen-

eral this includes restoration and segmentation processes.

The transformation between f and u originates from two
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phenomena. The first phenomena is related to the acquisi-

tion process (blur created by a wrong lens adjustement or

by a movement, Poissonian photons emission rates ...) and

the second is due to the signal transmission. A lot of meth-

ods to reconstruct such degraded images exist : stochastic

methods [16,10], wavelets decomposition [21,13], morpho-

logical methods [26]. Here we are interested with variational

approaches [6]. In this context, the most famous model is

the Mumford-Shah functional [23] (1989) but other works

based on variational methods do exist ([6]). Among more

recent papers, we can cite [4] (2008) for the restoration of

images contamined by speckle noise and [25] (2013) for the

restoration of images degraded by different type of noise.

In this paper we tackle the segmentation problem by

using a topological gradient method. First introduced for

cracks detection by Sokolowski [27] and Masmoudi [22],

this notion consists in the study of the variations of a cost

function j(Ω) = JΩ (uΩ ) with respect to a topological varia-

tion, where JΩ (u) is of the form JΩ (u)=
∫

Ω F(u,∇u,∇2u, . . .)
and uΩ is a solution of a PDE defined on the image domain

Ω . In order to calculate the topological gradient, we remove

to Ω a small object ωε of size ε→ 0 centered at x0 ∈Ω (gen-

erally a ball or a curve) and we set Ωε = Ω\ωε . Two typical

examples are : for small ε > 0 (a) Ωε = Ω\{x0 + εB} and

(b) Ωε = Ω\{x0 + εσ(n)}, where B = B(O,1) is the unit

ball of R2 and σ(n) is a straight segment with normal n (a

crack). We compute the limit : I (x0) = limε→0
j(Ωε )− j(Ω)

εd

where d is the dimension of the ambiant space. I (x0) is

called the topological gradient at x0. It measures the en-

ergy contained by a perturbation centered at x0 and so the

structures that we want to detect correspond to the points x0

where I (x0) is the largest. The type of structure to be de-

tected depends on the choice of the cost function JΩ (u). Re-

cently this notion has been used in image processing. For de-

tecting edges the usual choice for the cost function is JΩ (u)=∫
Ω |∇u|2 and uΩ is a solution of a Laplace equation (see [7,
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11]). Other imaging tasks such as inpainting or classification

have been addressed by using this approach [8,9]. Note also

that topological gradient methods have been applied for the

detection of fine structures [5] such as filaments or points. In

this case the cost function is based on second order deriva-

tives.

In [7,11] only Gaussian additive noise are considered

and no blur has been introduced. In this paper we propose :

(i) to extend the model to another kinds of noise frequent in

real images and (ii) to introduce blur in the process. Restora-

tion/segmentation in imaging are in general ill-posed inverse

problems and one way to overcome this difficulty is to reg-

ularize them. A classical framework to do that is to use a

Bayesian formulation which leads to the minimization of an

energy consisting in two terms. The first one is a data fidelity

term which takes into account both the statistic of the noise

and the blur and the second one is an adequate regularizing

term. For example if we suppose that the acquisition model

is of the form f = u+ n where n is Gaussian noise then an

anti-log-likelihood estimator amounts to choose as a data fi-

delity term the L2 norm ‖u− f‖L2(Ω). If the noise follows

another statistic, of course this term varies. The regularizing

term is in general based on an Lp norm of the gradient. The

main contribution of this work is to generalize the results

given in [7,11] to blurred images contamined by speckle

noise and Poissonian process and to give the different ex-

pression of the topological gradient associated to the same

cost function JΩ (u) =
∫

Ω |∇u|2. More precisely we will con-

sider variational problems of the following form

Speckle and Gaussian noise model :

min
u∈H1(Ω)

γ

2

∫

Ω
|∇u|2 +

∫

Ω
ψ(x,Ku) (1)

Poissonian model :

min
u∈H1(Ω)

γ

2

∫

Ω
|∇u|2 + ∑

j∈Iind(Ω)

ψ j

(∫

R j

Ku

)
(2)

where Iind(Ω) is the indices set of the pixels, γ > 0 is a pa-

rameter, R j is a regular domain modeling pixel j such that

Ω is the disjoint union of (Ri)i∈Iind(Ω), K : L2(Ω)−→ L2(Ω)

is a convolution operator (generally positive and such that

K1 6= 0 ) representing the blur. The functions ψ(x,u) and

ψ j(X) will be specified in section 5 and section 6. Note that

the speckle noise is a multiplicative noise of gamma law.

It is present in SAR images, laser images, microscope im-

ages [20,18,28]. A Poisson statistic occurs in confocal mi-

croscopy [14], emission tomography [29] and single-photon

emission computed tomography [17].

In section 2, we recall the rationale for justifying the

modelization of the data fidelity term in a Bayesian approach.

In section 3 we set the variational problem taking into ac-

count the blurring. Then in section 4 we give the topologi-

cal gradient for a blurred and Gaussian noisy image. In sec-

tion 5 we establish the topological gradient for the speckle

model and for a more general variational class of problems.

In section 6 we treat the particular Poisson model since the

form of the energy in this case is not standard. The topo-

logical gradient is not only an edge detector but also as a

by-product it allows to restore the degraded observed im-

age. We explain how this is possible in section 7. Finally in

section 8 we present, for all the models, the numerical anal-

ysis for computing the topological gradient and we display

some experimental results for each of them.

We conclude this section by giving some notations and

assumptions : we suppose to simplify that x0 = 0 and we

denote by ‖u‖m,Ω the Hm(Ω)-norm of the Sobolev space

Hm(Ω) =
{

u,Dα u ∈ L2(Ω), |α| ≤ m
}

and by ‖u‖H1(Ω)/R

the norm on the quotient space H1(Ω)/R. We set JΩ (u) =∫
Ω |∇u|2 and JΩε (u) = Jε(u).

Only the proof for a perforated domain is performed

since it is more interesting than for a cracked domain in

which the explicit dependency on the data is killed by the

fact that the crack has a null Lebesgue measure. Hence we

just give the topological gradient expression for a cracked

domain (b) and develop the full proof for a perforated do-

main (a).

2 A Bayesian approach

In this section we present, according to an a priori model-

ing of the image, a statistical analysis to deduce the suitable

variational model for restoring the observed noisy image .

We denote by N the number of pixels in the support of the

image Ω . The discrete domain is denoted Ω N . We set by

uN (respectively by f N) the discrete version of the image u

to recover (respectively of the observed image f ). For each

pixels px ∈Ω N , f N(px) and uN(px) can be viewed as a real-

ization of the random variables UN(px) and FN(px) where

UN and FN stands for the random vector formed by these

variables at each pixel. We suppose that they are identically

distributed and independent. The reasoning is as follows :

we express the a priori density probability gUN |FN and then

we apply the classical reasoning which consists of finding

uN as the value maximizing this density probability called

a maximum a posteriori estimator (MAP estimator). A dis-

crete model associated to a discrete energy is deduced and

then passing to the limit when N → ∞ we get the continu-

ous variational model. Let gUN |FN be the a posteriori density

probability that we want to maximize with respect to uN .

Thanks to the Bayes rule, gUN |FN expresses as :

gUN |FN =
g(FN ,UN)

gFN

=
gFN |UN gUN

gFN

if gFN > 0, 0 otherwise
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gFN |UN depends on the noise model and gUN is an a priori

density probability. Writing that un is a minimum of

−log(gUN |FN ) we get

uN = argmin
u

EN(u)

where

EN(u) =−log(gFN |UN (u, f ))− log(gUN (u)) (3)

The a priori density gUN has to be determined, it will

play the role of regularizing term . In analogy to statistical

mechanics, a priori densities are frequently Gibbs functions

[16] of the form :

gUN (u) =Cste× e−γRN(u), γ > 0

where RN(u) is a discrete version of a non negative energy

functional R(u). The choice of the density probability gFN |UN

depends on the statistic of the model to be considered. Be-

low we review respectively the Gaussian model, the speckle

model and finally the Poisson model.

Gaussian model

A classical modeling of image formations is : FN =UN +

GN where UN is the disrete version of the image to recover

and GN a Gaussian noise of mean 0 and of standard de-

viation σ . The density of the Gaussian noise is gGN (x) =

1√
2πσ

e
− x2

σ2 . To simplify we still denote by FN , SN and UN

the random variables FN(px), SN(px) and UN(px). Let us

express the conditionnal probability density gFN |UN . From

the definition of the conditionnal probability we have :

P(FN ∈A |UN = u) =
∫

R

gFN |UN ( f |u)1 f∈A d f (4)

The conditionnal probability density gFN |UN ( f |u) is a func-

tion of the variable f and depending on a parameter u. From

the model FN =UN +GN , the independency of UN and GN

and a change of variable we get

P(FN ∈A |UN = u) = P(UN +GN ∈A |UN = u)

= P(GN ∈A −u|UN = u)

= P(GN ∈A −u)

=
∫

R

gGN (x)1x∈A−udx

=
∫

R

gGN ( f −u)1 f∈A d f

Hence by identification with (4) we deduce that gFN |UN ( f |u)=
gGN ( f−u). Thanks to the independency hypothesis, the den-

sity of FN |UN is the product with respect to each pixel px

of the probability density of FN(px)|UN(px). So the energy

given in (3) rewrites in this case as

EN(u) = ∑
px∈Ω N

1

σ2
( f N −u)2 + γRN(u)+C

with C a constant non depending on u. The constant σ2 can

be neglected in the model because it can be scaled with the

regularization parameter γ . By passing to the limit when

N→+∞ we get the following continuous energy

E(u) =
∫

Ω
( f −u)2 + γR(u)

Speckle model

For SAR images, the classical modeling of the image

is (see [28]) FN = SNUN where UN is the reflectance of

the scene (which is to be recovered) and SN the speckle

noise. Let us explicit the law of SN . SAR images are con-

structed from L ∈ N observations FN
k for 1 ≤ k ≤ L and

for each observations we have FN
k = GN

k UN . Generally GN
k

is a random variable which follows a negative exponential

law with mean 1 and with density gG(x) = e−x1{x≥0}. Then,

the observed image FN is construct from this L observa-

tions as : FN = 1
L ∑

N
k=1 FN

k =
(

1
L ∑

N
k=1 GN

k

)
UN . We set SN =

1
L ∑

N
k=1 GN

k ; SN follows a gamma law with density gSN (x) =
LL

Γ (L)xL−1e−Lx1{x≥0} with Γ (L) = (L− 1)! (the mean of SN

is 1 and its variance 1
L

). Now we can express the density

gFN |UN . To simplify we still denote by FN , SN and UN the

random variables FN(px), SN(px) and UN(px) . We start

from the definition of the conditional probability :

P(FN ∈A |UN = u) =
∫

R

gFN |UN ( f |u)1{ f∈A }d f (5)

where gFN |UN ( f |u) is a function of the variable f and de-

pending on a parameter u. Then, from the model FN = SNUN

and the independency of UN and SN we have :

P(FN ∈A |UN = u) = P(SNUN ∈A |UN = u)

= P(SN ∈ A

u
|UN = u) = P(SN ∈ A

u
)

Thanks to the definition of the probability and by a change

of variable we get :

P

(
SN ∈ A

u

)
=
∫

R

gSN (s)1{s∈A
u } =

∫

R

1

u
gSN (

f

u
)1{ f∈A }d f

Then by identification with (5) we deduce that

gFN |UN ( f |u) = 1

u
gSN (

f

u
) (6)

Thanks to the independency FN(px) and UN(px) , the

density of the conditional variable FN |UN is the product
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with respect to the pixels px of the density FN(px)|uN(px).

By taking the −log function we deduce that (3) rewrites in

this case as

EN(u) = L ∑
px∈Ω N

(
f N

u
+ log(u)

)
+ γRN(u)+C

for u ∈ R
N and u > 0, where C denotes a constant inde-

pendent of u. The factor L can be neglected since it can be

scaled with the constant γ . Passing to the limit as N→∞ we

deduce the following continuous energy

E(u) =
∫

Ω

(
f

u
+ log(u)

)
dx+ γR(u) (7)

Speckle with Log of the image (Speckle-Log model)

As we can see in (7), the energy associated with the speckle

model is not convex. By taking the logarithm of the speckle

model we get :

log(FN) = log(SN)+ log(UN)

By setting GN = log(FN), T N = log(SN) and V N = log(UN),

the new model writes as GN =V N +T N . Now the problem is

to recover V N from the observation GN . We assume that the

random variable V N follows a Gibbs prior. Let us calculate

the density function of T N :

P(T N ∈A ) = P(SN ∈ eA ) =
∫

R

gSN (s)1{s∈eA }ds

=
∫

R

gSN (er)er
1{r∈A }dr

So the density of T N is gT N (r) = gSN (er)er = LL

(L−1)! eL(r−er).

Concerning the conditional density gGN |V N we have :

P(GN ∈A |V N = v) =
∫

R

gGN |V N (g|v)1{g ∈A }dg

= P(T N ∈A − v|V N = v)

= P(T N ∈A − v)

=
∫

R

gT N (t)1{t ∈A − v}dt

=
∫

R

gT N (g− v)1{g ∈A }dg

We deduce that gT N |V N (g|v) = gT N (g− v). Hence (3)

rewrites as

EN(v) = ∑
px∈Ω N

L(v−gN + e−(v−gN))+ γRN(u)+C

where C is a constant no depending on v. By scaling the

model with the constant γ we get the continuous energy as

N→ ∞:

E(v) =
∫

Ω
(v−g)+ e−(v−g)+ γR(u) (8)

which is now a convex function of v.The recovered im-

age is then u = ev.

Poissonian model

This model is classical in astronomical and confocal mi-

croscopy images [14]. Poissonian observations originates from

the stochastic nature of photons emission. We denote R j, for

j ∈ Iind(Ω), the domain of R2 modeling the pixel j and such

that Ω is the disjoint union of all the (R j) j∈Iind(Ω). We as-

sume that f is a step function constant on each R j and we

still denote f N = f the observed image seen as the realiza-

tion of the random vector F.

More precisely for j ∈ Iind(Ω), f j is a realization of a

Poisson statistic of mean and variance equal to λ N
j =

∫
R j

uN(x)dx

where x 7→ uN(x) is a discrete version of uN ∈ R
N (may

be a step function or a bi-linear interpolation). Thanks to

the independence of Fj and UN
j , the conditional probability

P(F = f |UN = u) is given by :

P(F = f |UN = u) = ∏
j∈Iind(Ω)

λ N
j

f j e
−λ N

j

f j!

and by applying the −log function, we have :

−log
(
P(F = f |UN = u)

)
= ∑

j∈Iind(Ω)

λ N
j − f jlog(λ N

j )+C

where C is constant independent of u. We deduce that

(3) rewrites in this case as

EN(u) = ∑
j∈Iind(Ω)

(
λ N

j − f jlog(λ N
j )
)
+ γRN(u)

The dependence of EN with respect to u comes from the

definition of λ N . Passing to the limit we get the continuous

energy :

E(u) = ∑
j∈Iind(Ω)

(∫

R j

u(x)dx− f jlog

(∫

R j

u(x)dx

))
+γR(u)

(9)

3 Blurring modeling

In most imaging applications the optical material, the mo-

tion of the camera or of the target introduce a blur on the

observed image (see [24]). Generally spatially invariant blur

is modeled as a positive convolution operator u 7→ Ku with

K1 6= 0. We denote by KN the N×N matrix associated to the

discrete version of K on Ω N . From section 2 we deduce the

following models adapted to each kind of noise and taking

into account the blur :
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1. Gaussian model : the observed image writes as FN =

KNUN +GN and by the same reasoning of section 2 we

get the following energy :

E(u) =
∫

Ω
( f −Ku)2 + γR(u) (10)

2. Speckle model : the observed image writes as FN = SNKNUN

and the energy is

E(u) =
∫

Ω
log(Ku)+

f

Ku
+ γR(u) (11)

3. Speckle model with the Log of the image (Speckle-Log

model). We recall that the model writes as GN = V N +

T N with V N = log
(
KNUN

)
. The deblurring cannot be

handled simultaneously with the denoising process. Af-

ter the denoising step we must solve the problem V N =
log
(
KNUN

)
where the unknown UN can be found by a

least square formula :

UN = ((KN)T KN)−1(KN)T eV N

but we know that this problem is ill-posed, particularly

when K contains small eigenvalues. For this reason the

blurring problem is not handled for speckle noise by our

method. In this case, if we only want to correctly restore

a blurred and speckled image it is preferable to use (11).

4. Poissonian model : the observed image at pixel px is a

realization of a Poisson statistic of mean
∫

Rpx
KuN(x)dx,

so the energy is

E(u) = ∑
px∈Iind(Ω)

(∫

Rpx

Ku(x)dx− f (px)log

(∫

Rpx

Ku(x)dx

))

+ γR(u)

(12)

In the sequel we give the topological gradient for the Gaus-

sian and Poisson models with blur and for the Speckle-Log

model without blur.

4 Gaussian noise with blurring

We consider problem (1) with the energy (10) :

min
u∈H1(Ω)

γ

2

∫

Ω
|∇u|2 +ψ(x,Ku) (13)

with ψ(x,v) = 1
2
( f (x)− v)2. The main particularity of this

model is that it is linear. We do not give the calculus of the

topological gradient here because of the similarity with the

case without blurring (see [3]). We just give the topologi-

cal gradient expression and some experimental results. Note

that this expression only needs the resolution of two prob-

lems: the direct and the adjoint problems (we will see in the

next section why an adjoint problem is necessary). By fol-

lowing the notations used in [3], the direct and the adjoint

problems u0 and v0 are given in this case by:

(P0)

{
−γ∆u0 +K⋆Ku0 = K⋆ f , in Ω

∂nu0 = 0, on ∂Ω
(14)

and

(Q0)

{
−γ∆v0 +K⋆Kv0 = K⋆(2Ku0− f ), in Ω

∂nv0 = 0, on ∂Ω .
(15)

We can show (see [6] chapter 3) that problems (P0) and

(Q0) are well posed in H1(Ω) as soon as K1 6= 0 and γ > 0.

The topological gradients at x0 ∈Ω for a perforated domain

(a) Ωε = Ω\{x0 + εB} and for a cracked domain (b) Ωε =

Ω\{x0 + εσ}, denoted respectively by I b(x0) and I c(x0)
can be easily deduced from the case without blur and are

given by the following Theorem.

Theorem 1 The topological gradients associated to prob-

lems (14) and (15) and to the cost function Jε(u)=
∫

Ωε
|∇u|2,

for a perforated and a cracked domain are respectively :

I b(x0) =
π

γ
( f (x0)−Ku0(x0))(Kv0(x0)−Ku0(x0))

−2πγ∇u0(x0).∇v0(x0)
(16a)

I c(x0) = min
‖n‖=1

I c(x0,n)

with I c(x0,n) =−πγ∇u0(x0).n∇v0(x0).n
(16b)

with u0 and v0 given by (14) and (15) and γ > 0.

5 Speckle multiplicative noise

We consider the variational problem (1) with the energy given

in (8). More precisely we are going to study the minimiza-

tion problem :

min
u∈H1(Ω)

γ

2

∫

Ω
|∇u|2 +ψ(x,u) (17)

where ψ(x,u) = u−g(x)+ e−(u−g(x)) and g = log( f ) is the

logarithm of the observed image. We assume that there is no

blur i.e. K is the identity operator. To shorten notations we

write sometimes ψ(u) instead of ψ(x,u).

Remark 1 In [4] the authors propose a speckle denoising

model using the total variation model with the data fidelity

term associated to (7).

This section is organized as follows. First, we show that

(1) admits a unique solution for a more general class of func-

tions ψ (verifying Hypotheses 1) and we prove that the so-

lution verifies some min/max principles. Then we apply the

result of the general case to show that problem (17) admits a
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unique solution for the speckle model ψ(x,u) = u− g(x)+

e−(u−g(x)). Finally, we perform the topological gradient for a

general function ψ verifying Hypotheses 1. In the following

we denote by IΩ the energy IΩ (u) = γ
2

∫
Ω |∇u|2+∫Ω ψ(x,u)

and we recall that we always denote by JΩ (u) =
∫

Ω |∇u|2
the cost function.

5.1 Well-posedness of problem (1)

In this subsection we first establish the well-posedness of

(1) for a general class of functions ψ(x,u) and then we check

that the function ψ(x,u) associated to the speckle-Log model

(17) matches these hypotheses. To simplify we suppose that

γ = 1 and sometimes we write ψ(u) for ψ(x,u).

Hypotheses 1 Let ψ : Ω × I −→ R such that

– u 7→ ψ(x,u) ∈C3(I) ∀x ∈Ω

– x 7→ Duψ(x,u) ∈C0(Ω) ∀u ∈ I

– u 7→ ψ(x,u) is stricly convex on I uniformly with respect

to x ∈Ω .

– ψ is bounded from below on Ω × I

– ∃a,b∈ I such that for all x, Duψ(x,a)≤ 0 and Duψ(x,b)≥
0 with [a,b]⊂ I.

Lemma 1 Let ψ(x,u) a function verfying Hypotheses 1, then

(1) admits a unique solution u ∈ H1(Ω) which verifies a ≤
uΩ ≤ b.

Proof Existence : Let (un) a minimizing sequence. There

exists a constant C1 such that IΩ (un) ≤ C1. As ψ(x,u) is

bounded from below on Ω×I there exists a constant C2 such

that
∫

Ω ψ(x,un)≥C2. So, we deduce the following inegality

∫

Ω
|∇un|2 ≤max(C1,C1−C2)

Let vn = max(un,a), and Ω−n = Ω ∩{un ≤ a}, we have vn ≥
a and

IΩ (vn)− IΩ (un) =−
∫

Ω−n
|∇un|2 +

∫

Ω−n
ψ(a)−ψ(un)

By convexity :

ψ(un)−ψ(a)≥Duψ(a)(un−a) and
∫

Ω−n (ψ(a)−ψ(un))≤∫
Ω−n Duψ(a)(a−un)≤ 0.

We easily deduce that IΩ (vn) ≤ IΩ (un), so vn is still a

minimizing sequence and vn ≥ a. Similarly by setting wn =
min(vn,b), we deduce that wn ≤ b and that wn is still a min-

imizing sequence. Therefore we can suppose that any min-

imizing sequence un verifies a ≤ un ≤ b. It is easily seen

that un is bounded in H1(Ω). Thus, up to a subsequence

there exists u ∈ H1(Ω) such that un
L2(Ω)→ u and un

H1(Ω)
⇀ u

(where
H1(Ω)
⇀ stands for the weak topology). By using the

lower semi-continuity of JΩ (u) and Fatou’s Lemma we get

that u is a solution of (1). Moreover we have a ≤ u ≤ b a.e

on Ω .

Uniqueness : From the existence, we can work on the

set H(Ω) =
{

v ∈ H1(Ω),a≤ v≤ b
}

. Since ψ(u) is strictly

convex on [a,b]⊂ I and JΩ (u) is strictly convex on H1(Ω),
we deduce that the function IΩ (u) is strictly convex on H(Ω)

which is a convex set and that IΩ has a unique minimum

in H1(Ω). We apply below Lemma 1 to the speckle-Log

model.

Proposition 1 Let f a function such that 0 < α ≤ f ≤ β

with α and β two constants, then problem (17) with φ(u) =
|∇u|2 and ψ(x,u) = u−g(x)+ e−(u−g(x)) where g = log( f )

has a unique solution u∈H1(Ω) and we have log(α)≤ u≤
log(β ).

Proof A standard computation leads to Duψ(u)= 1−e−(u−g)

and D2
uψ(u) = e−(u−g) > 0. Hence ψ(u) is strictly convex on

]−∞,η ] ∀η ∈ R. By using that 0 < α ≤ f ≤ β we get

1− e−(u−log(β )) ≤ Duψ(u)≤ 1− e−(u−log(α))

Let a = log(α) and b = log(β ) the following inequalities

hold

Duψ(b)≥ 0 and Duψ(a)≤ 0

From Lemma 1, there exists a unique function u ∈ H1(Ω)

solution of (17). Moreover we have a≤ u≤ b.

In the next subsection we compute the topological gra-

dient for a perforated domain. We just give the result for a

cracked domain.

5.2 Computation of the topological gradient for a

perforated domain

Let uε = uΩε be the solution of problem (1) replacing Ω by

Ωε = Ω\{x0 + εB} and let Jε(u) = JΩε (u). In order to es-

tablish the topological expansion for a more general class of

PDE we assume that ψ(x,u) verifies Hypotheses 1. By writ-

ing that DIΩε (uε).v = 0 for all v ∈ H1(Ωε), we obtain the

following variational formulation : find uε ∈ H1(Ωε) such

that
∫

Ωε

γ∇uε .∇v+Duψ(x,uε)v = 0 ∀v ∈ H1(Ωε) (18)

Then by an integration by parts, we deduce the following

Euler equations associated with :

(Pε)

{
−γ∆uε +Duψ(x,uε) = 0 on Ωε

∂nuε = 0 on ∂Ωε

(19)

We introduce the following functional

Fε(u,v) =
∫

Ωε

γ∇u.∇v+Duψ(x,u)v ∀u,v ∈ H1(Ωε)
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Thus (18) rewrites as : find uε ∈ H1(Ωε) such that

Fε(uε ,v) = 0 ∀v ∈ H1(Ωε).
We denote by u0 the solution of (18) for ε = 0. We now

give the main result of this section. To simplify notations we

perform the proof with γ = 1 (but we state the Theorem with

γ > 0).

Theorem 2 We denote by I b the topological gradient for

a perforated domain. Then I b associated to problem (19)

with ψ(x,u) verifying Hypotheses 1 and with the cost func-

tion Jε(u) =
∫

Ωε
|∇u|2 is

I b(x0) =−2γπ∇u0(x0).∇v0(x0)

+
π

γ
Duψ(x0,u0)(u0(x0)− v0(x0))

(20)

with u0 and v0 given by (19) and (25) for ε = 0 and with

γ > 0.

Proof The topological gradient is given by the leading term

in the difference Jε(uε)− J0(u0). Let us introduce the func-

tional J̃ε(u) =−
∫

Ωε
Duψ(x,u)u; by using (18) with v = uε ,

it is straightforward that :

Jε(uε)− J0(u0) = J̃ε(uε)− J̃0(u0)

=−
∫

Ωε

(Duψ(uε)uε −Duψ(u0)u0)

+
∫

Bε

Duψ(u0)u0

= Lε(uε −u0)+Iε +E1

(21)

where

Lε(u) =−
∫

Ωε

(
Duψ(u0)u+D2

uψ(u0)u0u
)

Iε =
∫

Bε

Duψ(u0)u0

E1 =−
∫

Ωε

(
D2

uψ(uδε
)+

1

2
D3

uψ(uηε )u0

)
(uε −u0)

2

(22)

and where uδε
= θ1u0 +(1− θ1)uε and uηε = θ2u0 +(1−

θ2)uε with θi : Ω 7→R, 0≤ θi ≤ 1 for 1≤ i≤ 2. To compute

the term Lε(uε−u0) in (21) it is classical [2,27] to introduce

an adjoint problem. Due to the non linearity of the direct

problem, we first do a Taylor expansion at second order of

Fε(u,v) with respect to u at point u0 :

Fε(uε ,v) = Fε(u0,v)+DuFε(u0,v).(uε −u0,v)

+
1

2
D2

uFε(uδε
,v).(uε −u0,uε −u0)

= Fε(u0,v)+bε(uε −u0,v)+ cε(uε −u0,uε −u0,v)

(23)

with

bε(u,v) = DFε(u0,v).u =
∫

Ωε

∇u.∇v+
∫

Ωε

D2
uψ(u0)uv ,

cε(u, t,v) =
1

2
D2

uFε(uδε
,v).(u, t) =

∫

Ωε

1

2
D3

uψ(uηε )utv

Then the adjoint solution vε ∈ H1(Ωε) is defined as :

bε(u,vε) =−Lε(u) ∀u ∈ H1(Ωε) (24)

The Euler equations associated with (24) are :

(Qε)

{
−γ∆vε +D2

uψ(u0)vε = Duψ(u0)+D2
uψ(u0)u0 on Ωε

∂nvε = 0 on ∂Ωε

(25)

Remark 2 – In the proof, we take γ = 1.

– The adjoint problem (Qε) is linear and we can notice

that the strict convexity of u 7→ ψ(x,u) is necessary to

(Qε) be coercive. Since u 7→ψ(x,u) is C2(I) and thanks

to Lemma 1 there exists two constants A,B ∈ R such

that A<Duψ(u0)+D2
uψ(u0)u0 < B. Hence (25) is well-

posed and thanks to Lemma 1, we have the following

inegality

A

supΩ D2
uψ(u0)

≤ vε ≤
B

infΩ D2
uψ(u0)

We deduce from (21) and (23) that :

Jε(uε)− J0(u0) =−bε(uε −u0,vε)+Iε +E1

= Fε(u0,v)−Fε(uε ,vε)+ cε(uε −u0,uε −u0,vε)

+Iε +E1

= Fε(u0,vε)+E2 +Iε +E1

(26)

with

E2 = cε(uε −u0,uε −u0,vε) (27)

By using an integration by parts, the term Fε(u0,vε) ex-

presses as :

Fε(u0,vε) =
∫

Ωε

∇u0.∇vε +Duψ(u0)vε

=−
∫

∂Bε

∂nu0vε +
∫

Ωε

(−∆u0 +Duψ(u0))vε

=−
∫

∂Bε

∂nu0wε −
∫

∂Bε

∂nu0v0

with wε = vε−v0. Now for ϕ ∈H1/2(∂Bε) we introduce the

following extension on Bε :

{
∆ l

ϕ
ε = 0, on Bε

l
ϕ
ε = ϕ, sur ∂Bε

(28)
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For v ∈ H1(Ωε), we denote by lv
ε the harmonic function de-

fined on Bε such that lv
ε = v on ∂Bε . Then by integration by

parts Fε(u0,vε) writes as

Fε(u0,vε) =−
∫

Bε

(∇u0.∇v0 +∆u0v0)−
∫

Bε

(∇u0.∇lwε
ε +∆u0.l

wε
ε )

=−
∫

∂Bε

ũ0∂nv0 +
∫

Bε

ũ0∆v0−
∫

Bε

Duψ(u0)v0

−
∫

∂Bε

ũ0∂nlwε
ε −

∫

Bε

Duψ(u0)l
wε
ε

=−
∫

∂Bε

ũ0 (∂nv0 +∂nlwε
ε )−

∫

Bε

Duψ(u0)v0 +E3 +E4

= Jε +Kε +E3 +E4

(29)

with ũ0 = u0−u0(0) and

Jε =−
∫

∂Bε

ũ0 (∂nv0 +∂nlwε
ε ) Kε =−

∫

Bε

Duψ(u0)v0

E3 =
∫

Bε

ũ0∆v0 E4 =−
∫

Bε

Duψ(u0)l
wε
ε

(30)

The computation of Jε , E1, E2 and E4 needs to approximate

wε and Xε = uε − u0 in the H1(Ωε) sense. From Lemma 4

(see Appendix A) we can show that ‖Xε‖0,Ωε =O(ε2
√
−log(ε))

and that wε = εQ
(

x
ε

)
+ rε where Q is given by (56) with

g =−∇v0(0).n and ‖rε‖1,Ωε = O(ε2
√
−log(ε)).

Proposition 2 Let Iε , Jε , Kε , E1, E2, E3 and E4 given by

(22), (27) and (30), we have the following estimations :

Jε(uε)− J0(u0) = Iε +Jε +Kε +
4

∑
i=1

Ei

Iε = πε2Duψ(0,u0)u0(0)

Jε =−2πε2∇u0(0).∇v0(0)

Kε =−πε2Duψ(0,u0)v0(0)

(31)

and Ei ∼ o(ε2) for i ∈ [[1..4]]

Proof The first equality is straightforward. Lemma 4, the

regularity of ψ(x,u) stated in Hypotheses 1 and Proposition

1 permit to say that E1 and E2 are O(‖uε − u0‖2
0,Ωε

) and

then ∼ O(−ε4log(ε)). We recall the notation ψ(u) means

ψ(x,u(x)). A change of variable (CV) and the continuity of

x 7→ Duψ(x,u0(x)) lead to

Iε = ε2
∫

B
Duψ (εX ,u0(εX))u0(εX)

= ε2πDuψ(0,u0)u0(0)+o(ε2)

Kε = ε2
∫

B
Duψ(εX ,u0(εX))v0(εX)dX

= ε2πDuψ(0,u0)v0(0)+o(ε2)

Again with a CV, the equality ∆v0 = D2
uψ(u0)(v0− u0)−

Duψ(u0) and the regularity of ψ(u) we get E3 ∼ O(ε3). By

using Lemma 5 and Lemma 2 (see Appendix A) we have :

Jε =
∫

∂B
(u0−u0(0))

(
∂nl

pε
ε +∂nv0

)
+
∫

∂Bε

(u0−u0(0))∂nleε
ε

= ε2∇u0(0).
∫

∂B
λ (x)x+F1 +F2

with

λ (x) =−2∇v0(0).n

F1 =
∫

∂Bε

(u0−u0(0))(∂nv0−∇v0(0).n)

F2 =
∫

∂Bε

(u0−u0(0))∂nleε
ε

A CV and a Taylor expansion of u0 and v0 at 0 lead to F1 =

O(ε3) and

F2 ≤Cε2‖∂nl
eε
ε (εX)‖−1/2,∂B. For F2 it suffices to make a

CV and use the trace Theorem on B2\B:

‖∂nleε
ε (εX)‖−1/2,∂B ≤

1

ε
|leε

ε (εX)|1,B =
1

ε
|leε (εX)(X)|1,B

≤ C

ε
‖eε(εX)‖

H1/2(∂B)/R ≤C‖eε(εX)‖H1(B2\B)/R

Now from the equivalency of the H1(B2\B)/R-norm and the

semi norm and a CV we get ‖∂nl
eε
ε (εX)‖−1/2,∂B≤C|eε |1,Ωε .

By using Lemma 5, we obtain F2 = O(ε3
√
−log(ε)). Fi-

nally by using a CV, the continuity of ϕ 7→ lϕ from H1/2(∂B)
to H1(B), the trace Theorem on B2\B, a CV again and Lemma

5 we have :

|E4| ≤Cε2‖lwε
ε (εX)‖0,B =Cε2‖lwε (εX)(X)‖0,B

≤Cε2‖wε(εX)‖1/2,∂B ≤C‖wε(εX)‖1,B2\B

≤Cε2

(
1

ε
‖wε‖0,Ωε + |wε |1,Ωε

)
≤Cε3

√
−log(ε)

The topological expression is easily deduced from Proposi-

tion 2 and Theorem 2 is proven.

5.3 Expression of the topological gradient for a cracked

domain

For the cracked domain Ωε = Ω\x0 + εσ(n), calculus are

similar. The term Iε of (26) is zero and the term Fε(u0,vε)

expresses as Fε(u0,vε)=−
∫

Bε
∂nu0[wε ]. The asymptotic ex-

pansion of uε and vε are similar and then the computation of

the topological gradient is the same as in the linear case (see

[3,15] for more details).

Theorem 3 We denote by I c the topological gradient for

the cracked domain Ωε =Ω\{x0 + εσ(n)}. The topological
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gradient associated to problem (19) and to the cost function

Jε(u) =
∫

Ωε
|∇u|2 for a cracked domain is

I c(x0) = min
‖n‖=1

I (x0,n)

with I (x0,n) =−πγ∇u0(x0).n∇v0(x0).n
(32)

with u0 and v0 given by (19) and (25) for ε = 0 and with

γ > 0 in front of the laplacian.

6 Poissonian model with blurring

We recall that we model the observed image f as a step func-

tion defined by f j ∈ R on R j for j ∈ Iind(Ω), where R j is a

regular domain of R2 modeling the pixel j and we denote

N = |Iind(Ω)|. To simplify, we suppose that |R j| = 1 and

that Ω is the disjoint union of the (Ri)i∈Iind(Ω). We assume

that min j∈Iind(Ω) f j > 0. We recall the general minimization

problem associated to the Poisson model given in (12) :

min
u∈H1(Ω)

γ

2

∫

Ω
|∇u|2 + ∑

j∈Iind(Ω)

ψ j

(∫

R j

Ku

)
(33)

with ψ j(x)= x− f jlog(x). We denote in this section JΩ (u)=∫
Ω |∇u|2 and IΩ (u) = γ

2
JΩ (u)+∑ j∈Iind(Ω) ψ j(

∫
R j

Ku).

First we show that problem (33) is well-posed, then we

compute the topological gradient for a perforated domain (a)

: Ωε = Ω\x0 + εB, and we give the expression for a cracked

domain (b) : Ωε = Ω\x0 + εσ without proof.

6.1 Well-posedness of problem (33)

Proposition 3 Let f a step function such that mini fi > 0

and maxi fi < +∞, then problem (33) with ψ j(x) = X −
f jlog(x) for j∈ Iind(Ω) admits a unique solution u∈H1(Ω).
Besides this solution is such that α ≤ ∫Ri

u≤ β ∀i ∈ Iind(Ω)

with α = mini fi
N

and β =
∫

Ω f = ∑i∈Iind(Ω) fi.

Proof Existence : To simplify the proof we suppose that K

is the identity operator and γ = 1. The proof for the general

case is quite similar. For more details see chapter 3 of [6].

We must add a priori to (33) the condition
∫

Ri
u > 0, ∀i ∈

Iind(Ω).

We set H =
{

u ∈ H1(Ω),
∫

Ri
u > 0 ∀i ∈ Iind(Ω)

}
. Then (33)

rewrites as :

min
u∈H(Ω)

∫

Ω
|∇u|2 +∑

j

ψ j

(∫

R j

u

)

Let (un)n a minimizing sequence of IΩ (u) in H(Ω). There

exists a constant D > 0 such that JΩ (un)≤ D.

If C = ∑ j minx∈]0,+∞[ ψ j(x) = ∑ j f j− f jlog( f j) > −∞ then

we get

0≤
∫

Ω
|∇un|2 ≤max(D,D−C)

By using the positiveness of
∫

Ω |∇un|2 we deduce that

∑ j ψ j

(∫
R j

un

)
≤D. By setting Ki =∑ j 6=i minxψ j, it is straight-

forward that ψi

(∫
Ri

un

)
≤ D−Ki and then

0 < Ei ≤
∫

Ri

un ≤ Ei (34)

with Ei =max
{

ψ−1
i (D−Ki)

}
and Ei =min

{
ψ−1

i (D−Ki)
}

where we recall the notation ψ−1
i (b) = {x ∈]0,∞[ψi(x) = b}

. Hence the constraint
∫

Ri
un > 0 is fulfilled. We deduce that

∑i Ei ≤
∫

Ω un = ∑i

∫
Ri

un ≤ ∑i Ei and thanks to Poincaré-

Wirtinger Lemma we get that un is bounded in L2(Ω). So

there exist a sub-sequence unk
(still denoted un) and u ∈

H1(Ω) such that un
L2(Ω)→ u and un

H1(Ω)⋆

⇀ u. We deduce that

JΩ (u)≤ liminfJΩ (un) and thanks to (34) and Bolzano-Weierstrass

Lemma we can extract a subsequence un such that
∫

Ri
un→

li ∈ R and by continuity ψi

(∫
Ri

un

)
→ ψi (li) ∀i ∈ Iind(Ω).

Finally we have

IΩ (u)≤ liminf IΩ (un)

and so u is a minimizer of IΩ (u) in H1(Ω).
Bounds : If u∈H1(Ω) is the solution of (33) then DIΩ (u).v=

0 ∀v ∈ H1(Ω) i.e.

∫

Ω
∇u.∇v+ ∑

j∈Iind(Ω)

Dψ j

(∫

R j

u

)∫

R j

v = 0, ∀v∈H1(Ω)

(35)

with Dψ j

(∫
R j

u
)
= 1− f j∫

R j
u
.

– By taking as function test v = 1 we get the egality N =

∑ j
f j∫

R j
u
. As

f j∫
R j

u
≥ 0, ∀ j∈ Iind(Ω) and if i0 = argmin

i

∫
Ri

u,

we have N ≥ fi0∫
Ri0

u
which leads to

∫
Ri0

u≥ fi0
N
≥ mini fi

N
.

– By taking as function test v = u we get the inequality

∑i

∫
Ri

u− fi ≤ 0 which leads to maxi

∫
Ri

u ≤ ∑i

∫
Ri

u ≤
∑i fi.

Uniqueness : From the two previous points we can consider

the minimization space

H(Ω)=
{

u ∈ H1(Ω),α ≤ ∫R j
u≤ β

}
. Since ψ j(X) is strictly

convex on [α,β ] for all j ∈ Iind(Ω), by linearity of the in-

tegral we deduce that u 7→ ψ j

(∫
R j

u
)

is strictly convex on

H(Ω). As JΩ is strictly convex we deduce that IΩ (u) is

strictly convex on H(Ω) which is a convex space and that

IΩ has a unique minimum in H1(Ω).

Remark 3 – Under the same hypotheses on f, we get the

existence and uniqueness of a solution uε in H1(Ωε)

for (19). For ε small enough, we still have mini

∫
Rε

i
uε ≥

mini fi
N

and maxi

∫
Rε

i
uε ≤

∫
Ω f = ∑

N
i=1 fi, ∀i ∈ Iind(Ω).
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– When K 6= I is such that K1 6= 0 we can show that prob-

lem (33) is well-posed in H1(Ω). For more details we

refer the reader to [6] chapter 3.

– We can show that Proposition 3 holds as soon as ψ j are

bounded from below for j ∈ Iind(Ω) and strictly convex

on I ⊂ R. In the general case α and β are implicitly

defined in function of the ψ j.

6.2 Computation of the topological gradient for a

perforated domain

In this section we compute the topological gradient for a

perforated domain Ωε = Ω\{x0 + εB}. Let j0 ∈ Iind(Ω) be

such that R j0 ⊃ Bε(x0) where Bε(x0) is the ball centered at

x0 and of radius ε . For j ∈ Iind(Ω), let Rε
j be the domain

equal to R j0\Bε(x0) if j = j0 and R j otherwise. Now let us

denote Iε
j (u) =

∫
Rε

j
u, I j(u) =

∫
R j

u, Jε(u) = JΩε (u) and uε

the solution of (33) replacing Ω by Ωε .

By writing that DIΩε .v = 0 ∀v ∈H1(Ωε), we deduce the

following variational formulation of (33) :

find uε ∈ H1(Ωε) such that Fε(uε ,v) = 0 ∀v ∈ H1(Ωε)

where Fε(u,v) is the following functional on H1(Ωε)×H1(Ωε)

:

Fε(u,v) =
∫

Ωε

γ∇u.∇v+ ∑
j∈Iind(Ω)

Dψ j

(
Iε

j (Ku)
)∫

Rε
j

Kv (36)

By taking v ∈ D(Rε
j ) the space of C∞(Rε

j ) functions with

compact support in Rε
j , we get−γ∆uε +Dψ j(I

ε
j (Kuε))K

⋆
1=

0 on Rε
j , ∀ j ∈ Iind(Ω). Then if v is any test function v ∈

H1(Ω), we deduce ∂nuε = 0 on ∂Ωε therefore we have :

(Pε)

{
− γ∆uε +Dψ j

(
Iε

j (Kuε)
)

K⋆
1= 0, on Rε

j

∂nuε = 0 on ∂Ωε and [uε ]∂R j
= 0

(37)

where [uε ]∂R j
denotes the jump of uε through ∂R j.

We now to give the main result of this section. The proof

is performed in the case γ = 1 and K = I but the proof is the

same in the general case.

Theorem 4 The topological gradient I b associated to prob-

lem (37) and to the cost function Jε(u) =
∫

Ωε
|∇u|2 for a

perforated domain is

I b(x0) =−2γπ∇u0(x0).∇v0(x0)

+
π

γ
Dψ j0

(
I j0(Ku0)

)
(Ku0(x0)−Kv0(x0))

+
π

γ
D2ψ j0

(
I j0(Ku0)

)
Ku0(x0)(I j0

(
Ku0)− I j0(Kv0)

)

(38)

with u0 and v0 given by (37) and (43) for ε = 0.

Proof We set

J̃ε(u) =− ∑
j∈Iind(Ω)

∫

Rε
j

Dψ j

(
Iε

j (u)
)

u

=− ∑
j∈Iind(Ω)

Dψ j

(
Iε

j (u)
)

Iε
j (u)

The difference Jε(uε)− J0(u0) is :

Jε(uε)− J0(u0) = J̃ε(uε)− J̃ε(u0) = Lε(uε −u0)+Iε

(39)

with

Lε(u) =− ∑
j∈Iind(Ω)

∫

Rε
j

(
Dψ j0(I j0(u0))+D2ψ j0(I j0(u0))I j0(u0)

)
u

=− ∑
j∈Iind(Ω)

∫

Rε
j

u

Iε =
∫

Bε

(
Dψ j0(I j0(u0))+D2ψ j0(I j0(u0))I j0(u0)

)
u0

=
∫

Bε

u0

(40)

Then in order to introduce the adjoint problem, we make a

second order Taylor expansion with respect to u for Fε(u,v):

Fε(uε ,v) = Gε(u0,v)+bε(uε −u0,v)+ cε(v)+dε(v)

(41)

with

Gε(u,v) =
∫

Ωε

∇u.∇v+ ∑
j∈P(Ω)

Dψ j(I j(u))
∫

Rε
j

v

bε(u,v) =
∫

Ωε

∇u.∇v+ ∑
j∈Iind(Ω)

D2ψ j (I j(u0))
∫

Rε
j

u

∫

Rε
j

v

cε(v) =
1

2
∑

j∈Iind(Ω)

∫

Rε
j

D3ψ j (ξε)(I
ε
j (uε)− I0

j (u0))
2
∫

Rε
j

v

dε(v) =−D2ψ j0(I j0(u0))
∫

Bε

u0

∫

Rε
j0

v

where ξε = θ
∫

Rε
j
uε +(1−θ)

∫
R j

u0 ∈ [α,β ] with 0 < θ < 1.

Now, we introduce the adjoint problem vε ∈ H1(Ωε) such

that :

bε(u,vε) =−Lε(u) ∀u ∈ H1(Ωε) (42)

By taking u∈D(Rε
j ) and by integrating by parts, we deduce

the following Euler equations associated with (42)





−∆vε +D2ψ j (I j(u0))
∫

Rε
j

vε = 1 on Rε
j

∂nvε = 0 on ∂Ωε and [vε ]∂R j
= 0
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Remark 4 For γ 6= 1 and K 6= I the adjoint problem will be

defined by




−γ∆vε +D2ψ j (I j(Ku0))
∫

Rε
j

Kvε = K⋆
1 on Rε

j

∂nvε = 0 on ∂Ωε and [vε ]∂R j
= 0

(43)

From (39) and (41) we deduce that

Jε(uε)− J0(u0) =−Lε(uε −u0)+Iε =−bε(uε −u0,vε)+Iε

= Gε(u0,vε)+ cε(vε)+dε(vε)+Iε

= Gε(u0,vε)+Iε +Jε +E1

(44)

with

E1 = cε(vε) and Jε = dε(vε) (45)

By using an integration by parts, Gε(u0,vε) expresses as

Gε(u0,vε) =−
∫

∂Bε

∂nu0vε −
∫

Ωε

∆u0vε

+ ∑
j∈Iind(Ω)

Dψ j (I j(u0))
∫

Rε
j

vε =−
∫

∂Bε

∂nu0vε

With a similar calculus as the one made in (29) for the

speckle model, Gε(u0,vε) rewrites as :

Gε(u0,vε) =−
∫

∂Bε

ũ0 (∂nv0 +∂nlwε
ε )−Dψ j0(I j0(u0))

∫

Bε

v0

+
∫

Bε

ũ0∆v0−Dψ j0

(
I j0(u0)

)∫

Bε

lwε
ε

= Kε +Lε +E2 +E3

with ũ0 = u0−u0(0), wε = vε − v0 and

Kε =−
∫

∂Bε

ũ0 (∂nv0 +∂nlwε
ε )

Lε =−Dψ j0

(
I j0(u0)

)∫

Bε

v0

E2 =
∫

Bε

ũ0∆v0 , E3 =−Dψ j0

(
I j0(u0)

)∫

Bε

lwε
ε

(46)

In the next section we give the asymptotic expansion of the

previous quantities.

Proposition 4 Let Iε , Jε , Kε , Lε , E1, E2 and E3 given by

(40), (45) and (46), then we have the following estimations

:

Jε(uε)− J0(u0) = Iε +Jε +Kε +Lε +
3

∑
i=1

Ei

Iε = πε2
(
Dψ j0(I j0(u0))

+D2ψ j0

(
I j0(u0)

)
I j0(u0)

)
u0(0)+o(ε2)

Jε =−πε2D2ψ j0

(
I j0(u0)

)
u0(0)I j0(v0)+o(ε2)

Kε =−2πε2∇u0(0).∇v0(0)+o(ε2)

Lε =−πε2Dψ j0

(
I j0(u0)

)
v0(0)+o(ε2)

(47)

and Ei ∼ o(ε2) for i ∈ [[1..3]].

Proof The first equality is straightforward. A Taylor expan-

sion of u0 at 0 gives the first estimation. Again a Taylor ex-

pansion of u0 at 0, Lemma 7 (see Appendix B) and the fact

that Rε
j0

ε→0−→ R j0 give the second estimation. For Kε we re-

fer the reader to the proof of Proposition 2. For E1, we use

Lemma 6, the regularity of ψ(x) and that ξε ∈ [α,β ] :

|E1| ≤C ∑
j∈v

(∫

Rε
j

uε −u0

)2

+C

(∫

Bε

u0

)2

≤C‖uε −u0‖2
0,Ωε

+Cε4 = O(ε4log(ε))

By using that ∆v0 = D2ψ j0(I j0(u0))I j0(v0) and a Taylor ex-

pansion of u0 at 0 we get E2 = O(ε3). For E3, by a change

of variable and Lemma 7, we get

|E3| ≤Cε2‖lwε
ε (εX)‖0,B ≤Cε3

√
−log(ε)

(see Proposition 2).

Denoting by j0 the integer such that R j0 ∋ x0, we deduce

the expression given in Theorem 4.

6.3 Expressions of the topological gradient for a cracked

domain

For a cracked domain Ωε = Ω\{x0 + εσ(n)}, the calcu-

lus are similar. The term Iε of (44) is zero and the term

Fε(u0,vε) expresses as Fε(u0,vε)=−
∫

σε
∂nu0[wε ]. The topo-

logical expansion of uε and vε are similar with the perforated

domain and the computation of the topological gradient is

the same as the linear case (see [3,15] for more details).

Theorem 5 The topological gradient I c associated to prob-

lem (37) and to the cost function Jε(u) =
∫

Ωε
|∇u|2 for a

cracked domain is

I c(x0) = min
|n|=1

I (x0,n)

with I (x0,n) =−πγ∇u0(x0).n∇v0(x0).n
(48)

with u0 and v0 given by (37) and (43) for ε = 0.

Remark 5 The topological gradient is the same in the gen-

eral case of functions ψ j ∈ C3(I), strictly convex on I and

bounded from below on I. Just in the right hand-side of (43),

K⋆
1 must be replaced by(

D2ψ j(I j(Ku0))I j(Ku0)+Dψ j(I j(Ku0))
)

K⋆
1.
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7 Restoration using the topological gradient for a

cracked domain

As a by product the calculus of the topological gradient for

a cracked domain (TGC) allows to restore images degraded

by blur or/and various noise statistics. Once the TGC is com-

puted we define for a fixed threshold δ > 0, the set Eδ =
{x ∈Ω ; |T GC(x)| ≥ δ} and the characteristic function

χη(x) =

{
η if x ∈ Eη

1 otherwise

where η is a small positive parameter. From the computation

of the TGC we also get the normalized direction τ = n⊥ of

the edge. If n = (cos(ϕ),sin(ϕ)) is the normal to the crack

given by the TGC, we have τ = (sin(ϕ),−cos(ϕ)). Then, if

f is the degraded observed image, we want to find a restored

version u of f as the solution of the following anisotropic

PDE :

{
−div(γP

ϕ
η (x)∇u)+K⋆Dψ(Ku) = 0 on Ω

∂nu = 0 on Γ
(49)

with

ψ(u) =





1

2
( f −u)2 (Gaussian model)

∑
j∈Iind

∫

R j

u− f jlog

(∫

R j

u

)
(Poisson model)

log(u)+
f

u
(Speckle model)

and where P
ϕ
η (x) is a tensor constructed from ϕ(x) and χη(x)

and γ is a parameter to tune. More precisely, we choose

P
ϕ
η (x)∇u(x) = (∇u.τ)τ + χη(x)(∇u.n)n. A simple identifi-

cation shows that P
ϕ
η (x) is the matrix

P
ϕ
η (x) =

(
n2

2 +χη(x)n
2
1 n1n2(χη(x)−1)

n1n2(χη(x)−1) n2
1 +χη(x)n

2
2

)
(50)

where n1 = cos(ϕ(x)) and n2 = sin(ϕ(x)). The interpreta-

tion of this matrix P
ϕ
η (x) is as follows :

– if x belongs to the background, thanks to the definition of

χη(x), P
ϕ
η (x) writes as P

ϕ
η (x) = I so div(P

ϕ
η (x)∇u) = ∆u

and the smoothing is isotropic.

– if x belongs to an edge (i.e. x ∈ Eδ ), then χη(x) is close

to zero and P
ϕ
η (x)∇u(x) ≈ (∇u.τ)τ and the diffusion is

in the direction of the edge. As we will see in section 8

on numerical examples, the restoration results obtained

when applying equation (49) are very good.

8 Numerical application to 2D imaging

In this section we illustrate the theory of topological gradi-

ent by giving various experimental results for models (13),

(17) and (33).

The topological gradient expressions for the three models

are stated in section 4, 5 and 6.

For each model, to compute the topological gradient (TG)

we use Algorithm 1. The computation of the direct and ad-

joint solutions is specific to each model. If the crack model is

used, the topological expression is the same for these three

models. First, since equations (14) and (15) are linear, we

Algorithm 1 Computation of the topological gradient

1: Computation of u0 and v0 by using either Algorithm 2 or 3 accord-

ing to the model.

2: Computation of the derivatives of u0 by convolution with deriva-

tive filters.

3: Computation of the TG relatively to the model by using Theorems

of section 4, 5 and 6.

develop the numerical analysis in a specific subsection. Then

we perform the discretization of problems (17) and (33) and

finally we give the experimental results. As the adjoint prob-

lems (25) and (43) are linear with non constant coefficients

we discretize them by a finite difference scheme and we

compute the discrete solution by using a sparse solver.

8.1 Numerical analysis for Gaussian model with blurring

To discretize (14) and (15) we use a DCT1 (discrete cosine

transform of type 1) because of the symmetry properties and

the fact that the DCT1 of a convolution product of two vec-

tors is the product of the DCT1 of each vector. We choose

this discretization because of the symmetry properties guar-

anteed by the algorithm. A DCT1 of N points is equiva-

lent to a DFT (discrete Fourier transform) of 2N-2 points.

For example in 1D for N = 4 a DCT1 of [x0,x1,x2,x3] is

equivalent to a DFT of [x0,x1,x2,x3,x2,x1]. We use the FFT

(fast Fourier transform) to perform the DFT. The compu-

tation time of a FFT is a O (Nlog(N)). A numerical study

shows that for N ≤ 1010, FFT is faster than a finite difference

scheme. Algorithm 2 gives the different steps to compute the

discrete solutions (14) and (15).

It consists in the following steps :

– Symmetric extension of the initial Ny×Nx image in an

2(Ny−1)×2(Nx−1) image and extension of the 2ny +

1×2nx +1 kernel in a 2(Ny−1)×2(Nx−1) kernel. To

fix ideas in 1D and for nx = 2, the extension of the dis-

crete kernel [x−2x−1x0x1x2] is [x0x1x20...0x−2x−1].

– Computation of the DFT of the image and of the kernels.
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– Algebraic inversion in the Fourier domain.

– Computation of the solution by inverse FFT.

An important point is the choice of the frequency domain.

Indeed the natural definition of the frequency domain would

be {0, 2π
Nx
, ..., 2π(Nx−1)

Nx
}×{0, 2π

Ny
, ...,

2π(Ny−1)
Ny

}, but it is not a

good choice. This fact is explained in [19]. Let us give the

reasoning in 1D for a 1-periodic function. The trigonometric

function associated with the vector of DFT coefficients is

uN(x) =
N−1

∑
k=0

ŷN
k e

2πi
N (k+mkN)

where ŷN ∈R
N is the vector such that ŷN = DFT (yN), yN =(

uN(l/N)
)

0≤l≤N−1
and mk ∈ Z are coefficients which does

not change the function u at points xl =
l
N

, but it greatly

modifies u between these points (aliasing appears). If we

compute the L2(0,1)-norm of the first derivative we get that

‖uN‖2
L2(0,1) = (2π)2

N−1

∑
k=0

|ŷN
k |2(k+mkN)2 (51)

From (51), we see that mk changes considerably the L2(0,1)-

norm of the first derivative and the good choice for mk is

the value minimizing (k+mkN)2. If 0≤ k < N/2 then (k+

mkN)2 is minimized for mk = 0 and if N/2 ≤ k < N then

(k+mkN)2 is minimized for mk = −1. A special consider-

ation is made for k = N/2 when N is even because of the

two possible choices (mk =−1 or mk = 0, see [19] for more

details). By following these considerations we define the fre-

quency domain E =
{(

πkx

(Nx−1) ,
πky

(Ny−1)

)
,(kx,ky) ∈ Ex×Ey

}
,

with Ex = {0, ...,Nx−1,−(Nx−2), ...,−1} and

Ey =
{

0, ...,Ny−1,−(Ny−2), ...,−1
}

. We denote by Λ =

(Λx,Λy) the 2(Ny−1)×2(Nx−1) the mesh grids associated

with this discrete space and the vector of Fourier coefficients

associated to a discrete signal x ∈ R
N is denoted by X.

8.2 Numerical analysis for Poisson and Speckle models

If in fΩ f > 0, by Proposition 1 and Proposition 3, problems

(17) and (33) are well-posed and can be discretized as :

(Speckle-Log model) min
x≥log(αs)

Js(x), αs > 0 (52a)

(Poisson model) min
x≥αp

Jp(x), αp > 0 (52b)

where αs = min( f N) > 0 and αp = min( f N)
N

. f N is a dis-

cretization of f ; Jp(x) and Js(x) are respectively the discrete

versions of the energy functions (12) and (8). We choose a

simple discretization : uN(x) is the step function equals to

u( j) on pixel j, and we represent uN by a vector of RN .

Algorithm 2 Computation of the direct and adjoint solutions

1. Given an image fi j defined for (i, j) ∈ [[0,Ny−1)]× [[0,Nx−1]],
extend it to a periodic and symmetric image defined on [[0,2(Ny−
1)−1]]× [[0,2(Nx−1)−1]].

2. Given a blurring kernel of convolution k1
i j defined for (i, j) ∈

[[0,2ny]]× [[0,2nx]], use the procedure described in section 8.1 to

calculate its symmetric extension kmn for 0 ≤ m < 2(Ny− 1) and

0≤ n < 2(Nx−1).

3. Use an FFT to compute Fkl and Kkl for (k, l) ∈ [[0,2(Ny− 1)−
1]]× [[0,2(Nx−1)−1]].

4. Given Λ = (Λx,Λy) the meshgrid associated to the frequencies

domain described in section 8.1, compute

Ukl =
Kkl Fkl

|Kkl |2+γΛ 2
kl

and Vkl =
Kkl (2KklUkl−Fkl )

|Kkl |2+γΛ 2
kl

.

5. Use an inverse FFT to compute ui j and vi j for (i, j) ∈ [[0,2(Ny−
1)−1]]× [[0,2(Nx−1)−1]].

During the construction of the sequence x(k), the condi-

tion x(k) ≥αp for the Poisson model and x(k) ≥ log(αs) must

be fulfilled at each step. Hence a projection ensures this con-

dition. To solve these problems we use an iterative algorithm

based on the descent method called the SGP algorithm [12]

(scaled gradient projection). Let us write the discrete cost

functions :

Jp(x) =−
γ

2
xT Ax+

N

∑
i=1

(Kx)i− filog((Kx)i)

Js(x) =−
γ

2
xT Ax+

N

∑
i=1

(
ui−gi + e−(ui−gi)

)

where A is the Neumann Laplacian matrix, K is a discretiza-

tion of the blurring operator (circulant block matrix by as-

suming the image is periodic) and we recall that gi = log( fi).

Let us give the main ideas of the SGP algorithm. The dis-

crete energies Jp and Js are denoted by J as soon as we do

not use their expression and by δ the number equal to α for

the Poisson model and equal to log(α) for the Speckle-Log

model. We set by Λ =
{

x ∈ R
N ,x≥ δ

}
. We want to find

x⋆ ∈ Λ such that ∇J(x⋆) = 0. At step k, a first order Taylor

expansion at point x = x(k) leads to the following equation

∇J(x(k))+∇2J(x(k))(x− x(k)) = 0

If det
(

∇2J(x(k))
)
6= 0, we get x= x(k)−∇2J(x(k))−1∇J(x(k)).

We deduce by this reasoning that the direction of the descent

algorithm can be given by ∇2J(x(k))−1∇J(x(k)), but we see

that the computation of this direction is very costly. We de-

note by DL the compact set of the symmetric positive def-

inite N ×N matrices such that ‖D‖ ≤ L and ‖D−1‖ ≤ 1
L

.

The main idea of the SGP algorithm is to construct two

sequences αk and Dk ∈ DL such that αkDk approximates

∇2J(x(k)) and to project each iterate on Λ with respect to the
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norm ‖x‖D =
√

xT Dx. We set PΛ ,D−1 for D ∈DL the projec-

tor on Λ with respect to the norm ‖.‖D.

We recall the SGP algorithm in Algorithm 3 ( see [12]).

Algorithm 3 SGP algorithm

1: Set x(0) ≥α , β ,θ ∈]0,1[, 0<αmin <αmax, L> 0, and fix a positive

integer M.

2: for k = 0 : kmax do

3: Choose the parameter αk ∈ [αmin,αmax] and the scaling matrix

Dk ∈DL

4: Projection : y(k)← PΛ ,D−1
k
(x(k)−αkDk∇ f (x(k))

5: if y(k) = x(k) then

6: Stop, x(k) is a stationary point.

7: end if

8: Descent direction d(k) = y(k)− x(k);

9: λk← 1 and Jmax←max0≤ j≤min(k,M−1) J(x(k− j))
10: λk fixed by backtracking :

11: while f (x(k)+λkd(k))≤ Jmax +βλk∇J(x(k))T d(k) do

12: λk← θλk

13: end while

14: x(k+1)← x(k)+λkd(k)

15: end for

The construction of the sequences Dk and αk needs some

explanations. We choose Dk = diag(dk
i ) with

dk
i = min

(
L,max

(
1
L
, ∂ 2J

∂x2
i

(x(k))−1
))

. The approximation of

the Hessian matrix ∇2J(x(k)) is B(αk) = αkDk. By using a

first order Taylor expansion of ∇J(x) at point x(k−1) we get

that

∇J(x(k))−∇J(x(k−1)) = ∇2J(x(k)).(x(k)− x(k−1))

+o
(
(x(k)− x(k−1))2

)

Hence there two possible choices of αk can be made :

α1
k = argmin

α

∥∥∥B(αk)s
(k−1)− z(k−1)

∥∥∥
Dk

=
s(k−1)T

D−1
k D−1

k s(k−1)

s(k−1)T
D−1

k z(k−1)

α2
k = argmin

α

∥∥∥s(k−1)−B(αk)
−1z(k−1)

∥∥∥
Dk

=
s(k−1)T

Dkz(k−1)

z(k−1)T
DkDkz(k−1)

where s(k−1)= x(k)−x(k−1) and z(k−1)=∇J(x(k))−∇J(x(k−1)).

In [12] the choice of αk is the output of an algorithm called

SGP-SS Algorithm (SGP step length selection) which uses

two thresholds 0 < αmin < αmax. Let us give the derivative

of the discrete cost functions Jp and Js :

∇Jp =−γAx−KT f

Kx
+KT

1

∇2Jp =−γA+KT diag

(
f

(Kx)2

)
K

∇Js =−γAx+1− e−(x− f )

∇2Js =−γA+diag
(

e−(x− f )
)

where 1∈RN denotes the vector with each coefficient equal

to 1, diag(x) for x ∈ R
N is the diagonal matrix with the di-

agonal equal to x and for x ∈ R
N and ϕ : R −→ R a func-

tion, ϕ(x) stands for the vector (ϕ(xi))1≤i≤N . The choice of

the parameters in Algorithm 3 is the following : β = 10−4,

θ = 0.4, kmax = 600, M = 1 and for the Poisson model (33)

we set αmin = 10−10, αmax = 105 while for the Speckle-Log

model (17) we set αmin = 10−5, αmax = 1015. The initial

value of x(0) is either the observed image for the Poisson

model or its logarithm for the Speckle-Log model. Let us

note that in the case of the speckle model, (49) is performed

with ψ(u) = log(u)+ f
u

and this problem is discretized for

both the speckle and the Poisson models by the SGP algo-

rithm.

8.3 Comparison of our method with some classical models

As said in the introduction other variational methods exist

for segmenting/restorating images.

We will compare the topological gradient segmentation

process with the one performed by the Mumford-Shah model.

We will also compare the restoration proposed in (49) with

the ones given by the Mumford-Shah restoration and by the

TV restoration.

Mumford-Shah model of segmentation/restoration and

its approximation

Let u the image of support Ω and K ⊂Ω , the functional

introduced by Mumford and Shah in 1989 (see [23]) is :

F(u,γ) =
∫

Ω
|u−u0|2 +λ

∫

Ω\γ
|∇u|2 +αH 1(γ)

where f is the observed image, u is a function defined on

Ω\γ (the restored version of f ) and γ ⊂ Ω is the set of dis-

continuity of u. H 1 is the Hausdorff measure of γ , λ and α

are positive parameters. The difficulty was that the unknown

are not of same nature : u is a function and γ is a set. Am-

brosio and Tortorelli [1] proposed an approximation of this

functional as follows :

Fε(u,b)=
∫

Ω

[
|u− f |2 +λb2|∇u|2 +α

(
ε|∇b|2 + (b−1)2

4ε

)]

We will change the data fidelity term |u− f |2 according to

the a priori model (Gaussian, Poissonian and speckle model)i.e.

the model that we will compare with (49) is (see [25]) :

min
u∈H1(Ω),b∈H1(Ω)

∫

Ω

[
ψ(Ku)+λb2|∇u|2 +α

(
ε|∇b|2 + (b−1)2

4ε

)]

(53)
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where K is the blur operator, u(x) is the restored image, 1−
b(x)≈ 0 is the characteristic function of the edges and ψ(u)
depends on the model as follows :

ψ(u) =





1

2
( f −u)2 (Gaussian model)

∑
j∈Iind

∫

R j

u− f jlog

(∫

R j

u

)
(Poisson model)

log(u)+
f

u
(Speckle model)

(54)

We will call this model the Mumford-Shah model.

TV model of restoration

In most recent variational models we search for a restored

version minimizing an energy functional composed of the

total variation of the function and a data fidelity term which

depends on the a priori model (see [4] for the speckle model).

The model studied for comparisons with model (49) is the

following :

min
u∈BV (Ω)

∫

Ω
|Du|+λψ(Ku) (55)

where λ is a parameter, K the blur operator, and ψ(u) is

given in (54). In the sequel we call this model the TV model.

For more details on these models we refer the reader to

[4], [25] and [23].

8.4 Numerical results for the Gaussian model

An interesting study is the comparison of formula (16a) and

(16b) giving the topological gradient for respectively a per-

forated and a cracked domain. A priori formula (16a) (TGB),

associated to a perforated domain, would be adapted for the

detection of isotropic small structures (about 10 pixels of

aera) and formula (16b) (TGC), associated to the cracked

domain, for the detection of edges of big objects (more than

20 pixels of aera). Fig. 1 displays the TGC and the TGB

for different values of γ compared to the function b(x) per-

formed by minimizing the Mumford-Shah functional (53).

For small γ the TGC seems more robust than the TGB. For

γ = 1 the TGC better detects the black spots contours of

the cheetah compared to those given by the Mumford-Shah

model. We remark by increasing γ that the TGB becomes

singular on the black spots contours while the TGC better

detects the border of the cheetah.

We deduce that γ must be tuned with respect to the noise

but also by taking into account the size of structures to de-

tect. Moreover we must notice that if the TGB seems to be

less robust with respect to noise than the TGC, it is easier

and faster to compute the TGB than the TGC which is per-

formed by minimizing an expression over the normal n of

the crack.

(a) Initial image (b) TGB, (16a) (γ = 1)

(c) TGC, (16b) (γ = 1) (d) TGB,(16a) (γ = 10)

(e) TGC, (16b) (γ = 10) (f) Mumford-Shah (53) (λ = 5,

α = 10, ε = 10−6)

Fig. 1 Comparison of the two formula given in (16b) and (16b) for

different value of γ with Mumford-Shah segmentation (53) (b ≈ 0)

for a Gaussian noisy image (PSNR=16dB) containing mainly isotropic

small structures

Fig. 2 shows the TGC and the Mumford-Shah result for

a Gaussian noisy and Gaussian blurred image. Results are

similar but the TGC has the advantage of being very fast

(for this image the computation time is about one second on

a computer equipped with a processor Intel Core 1.9 GHz).
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(a) Initial image

(b) TGC (16b) (c) Mumford-Shah (53) (λ = 10,

α = 5, ε = 10−6)

(d) TGC (16b) : Zoom (e) Mumford-Shah (53) : Zoom

Fig. 2 Comparison of the topological gradient (16b) with the

Mumford-Shah segmentation (53) on a Gaussian noisy and blurred im-

age (PSNR=16dB, σ = 3)

Fig. 3 shows the restored version performed by (49),

(53) and (55) on a Gaussian noisy and Gaussian blurred im-

age. We see that the restoration given by the Mumford-Shah

model (53) degrades contours and does not remove com-

pletely the blur. Restorations computed by (49) and (55) are

quite similar but the computation time is shorter for (49).

Fig. 4 displays the 1D profiles of the image to recover,

its degraded versions (blurred, blurred+noisy), the restored

version (49) and the TGC (16b) across an edge. We see that

the restored version matches very well the image to recover

and the TGC detects quite well the edge.

(a) Initial image (b) Restored version (49) (γ = 5),

PSNR=26.2dB

(c) Mumford-Shah (53) (λ = 10,

α = 5, ε = 10−6), PSNR=24.4dB

(d) TV (55) (λ = 0.05),

PSNR=26.6dB

Fig. 3 Comparison of restored versions (49), (53) and (55) for a syn-

thetic Gaussian noisy (PSNR=16dB) and Gaussian blurred (σ = 3) im-

age

(a) (b)

(c)

Fig. 4 (a) A transverse cut displaying the image to recover, the

Gaussian blurred version (σ = 3), the blurred and noisy version

(PSNR=16dB), (b) the restored version (49) (γ = 5) and (c) the TGC

(16b) (γ = 1)

8.5 Numerical results for the speckle-log model.

Comparisons

In this section we still illustrate the segmentation given by

the TGC (32), the TGB (20) and the function b(x) com-

puted with the Mumford-Shah model (53). We also display

the restoration performed by (49), the Mumford-Shah model

(53) and the TV model (55).
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On Fig. 5, we compare the TGC (32) and the TGB (20)

for different values of γ with the function b(x) given by the

Mumford-Shah model for a synthetic speckled image. Sim-

ilarly to the Gaussian case, the TGC seems better compared

to the TGB and the Mumford-Shah segmentation. We still

deduce that γ must be tuned with respect to the noise and to

the size of structures to detect.

(a) Initial image (b) TGB (20) (γ = 1)

(c) TGC (32) (γ = 1) (d) TGB (20) (γ = 10)

(e) TGC (32) (γ = 10) (f) Mumford-Shah (53) (λ = 0.1,

α = 10, ε = 10−6)

Fig. 5 Comparison of the two formula (20) and (32) for different value

of γ with the Mumford-Shah segmentation (53) for an initial speckled

image (L = 6) containing mainly isotropic small structures

The result given in Fig. 6 for a real SAR image is com-

parable to the one of Fig. 5. Here we see that the TGB and

the TGC can be used for different objectives : particularly

on small structures we see that the TGB detects the entire

object while the TGC detects its edges.

(a) Initial image (b) TGB (20) (γ = 1)

(c) TGC (32) (γ = 1) (d) Mumford-Shah (53) (λ =
0.07, α = 1, ε = 10−6)

(e) Zoom on initial image (f) Zoom on TGB (20)

(g) Zoom on TGC (32) (h) Mumford-Shah (53) : Zoom

Fig. 6 Comparison of the two formula (20) and (32) with the

Mumford-Shah segmentation (53) for a real SAR image

Fig. 7 and Fig. 9 compare the restoration performed by

(49), (53) and (55) respectively on a real SAR image and on

a synthetic speckled image. Restoration given by the Mumford-

Shah degrades contours while (49) and the TV model (55)

are nearly equivalent.

On Fig. 8 we compare the TGC and the function b(x)

computed with (53) for a very noisy synthetic image (L = 1

i.e. the worst case for this model). Here the TGC gives a

quite good result with respect to (53) where edges are spread

out.
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(a) Initial image (b) Restored version (49), (γ =
5×10−4)

(c) Mumford-Shah (53) (λ =
0.05, α = 1, ε = 10−6)

(d) TV(55) (λ = 800)

Fig. 7 Comparison of restored versions (49), (53) and (55) for a real

SAR image (Zoom on Fig. 6-(a))

(a) Initial Image (b) TGC (32) (γ = 1.8)

(c) Mumford-Shah (53) (λ = 1,

α = 1, ε = 10−6)

(d) Zoom on the TGC (32)

(e) Mumford-Shah (53) : Zoom

Fig. 8 Comparison of the TGC (32) with the Mumford-Shah segmen-

tation (53) for a synthetic speckled image (L = 1)

Finally Fig. 10 shows the 1D profiles of the image to

recover, its noisy version, the restored version (49) and the

(a) Initial Image (b) Restored version (49) (γ =
0.002), PSNR=24dB

(c) Mumford-Shah (53) (λ = 1,

α = 1, ε = 10−6), PSNR=14.5dB

(d) TV (55) (λ = 90),

PSNR=22dB

Fig. 9 Comparison of restored versions (49), (53) and (55) for a speck-

led synthetic image (L=1)

TGC (32) across an edge. The restored version matches very

well the image to recover and edges are not degraded. This

shows that (49) is a good restoration process.

(a) (b)

(c)

Fig. 10 (a) A transverse cut displaying the image to recover and the

speckled image, (b) the restored version (49) (γ = 0.002) and the image

to recover, (c) TGC (32) (γ = 1.8).

8.6 Numerical results for the Poisson model. Comparisons

In this section we compare the segmentation performed by

the TGC (48), the TGB (38) and the Mumford-Shah model
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(53). We also compare the restoration computed with (49)

the Mumford-Shah model and the TV model.

Fig. 11 and Fig. 12 show respectively the segmentation

results in the case of a synthetic Poissonian image and of

a real confocal image of a rat’s neuron. TGC (48) detects

edges quite well compared to the Mumford-Shah model. We

see that TGB fills small structures (the size of these struc-

tures is related to γ).

(a) Initial image (b) TGB (38) (γ = 3×10−3)

(c) TGC (48) (γ = 3×10−3) (d) TGB (38) (γ = 3×10−2)

(e) TGC (48) (γ = 3×10−2) (f) Mumford-Shah (53) (λ =
0.07, α = 1, sε = 10−6)

Fig. 11 Comparison of the two formula (38) and (48) for different val-

ues of γ with the Mumford-Shah segmentation (53) for a Poissonian

image containing mainly isotropic small structures

(a) Initial image (b) TGB (38) (γ = 3×10−1)

(c) TGC (48) (γ = 3×10−1) (d) TGB (38) (γ = 3)

(e) TGC (48) (γ = 3) (f) Mumford-Shah (53) (λ = 0.1,

ε = 10−6, α = 1)

Fig. 12 Comparison of the two formula (38) and (48) for different val-

ues of γ with Mumford-Shah segmentation (53) for a Poissonian real

image containing rat’s neurons

Fig. 13 and Fig. 15 display the restoration computed by

(49), (53) and (55) on respectively a real confocal image and

a synthetic Poissonian image blurred by Gaussian convolu-

tion. We notice that (49) and (55) restore very well the image

by preserving edges unlike to the Mumford-Shah model (53)

which degrades contours and which does not annihilate the

blur effect.

Fig. 14 compares the TGC (48) with the function b(x)

performed by the Mumford-Shah model (53) for a Poisso-

nian image blurred by a Gaussian convolution.
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(a) Initial image (b) Restored version (49) (γ =
0.015)

(c) Mumford-Shah (53) (λ =
0.01, α = 1, ε = 10−6)

(d) TV (55) (λ = 5)

Fig. 13 Comparison of the restored versions (49), (53) and (55) for a

real Poissonian image of rat’s neurons

(a) Initial image

(b) TGC (48) (γ = 0.001) (c) Mumford-Shah (53) (λ =
0.07, ε = 10−6, α = 1)

(d) Zoom on the TGC (48) (e) Mumford-Shah (53) : Zoom

Fig. 14 Comparison of the TGC (48) with the Mumford-Shah segmen-

tation (53) on a synthetic Poissonian image

(a) Initial image (b) Restored version (49) (γ =
0.005), PSNR=29.1dB

(c) Mumford-Shah (53) (λ =
0.001, α = 1, ε = 1e − 6),
PSNR=28.3dB

(d) TV (55) (λ = 40),

PSNR=29dB

Fig. 15 Comparison of the restored versions for a Poissonian image

blurred by Gaussian convolution (σ = 3)

Finally, Fig. 16 shows the 1D profiles of the image to

recover, its degraded versions (blurred, blurred + Poissonian

process), the restored version (49) and the TGC (48) across

an edge. We see that (49) allows to recover the initial image

and that the TGC detects very well the edge.

(a) (b)

(c)

Fig. 16 (a) A transverse cut displaying the image to recover, the

Gaussian blurred version (σ = 3), the blurred and noisy version

(PSNR=16dB), (b) the restored version (49) (γ = 0.005) and (c) the

TGC (16b) (γ = 0.001)



A topological gradient method for edge detection and noise removal 21

9 Appendices

In these appendices we give the asymptotic expansion of the

differences uε − u0 and vε − v0 for the non linear problems

(Poisson and Speckle-log models). Some proofs are similar

to the linear case and so we will refer the reader to [3]. To

establish these asymptotic expansions we need the following

exterior problem

(Pext)





∆H = 0, on R
2\B

∂nH = g, on ∂B

H −→ 0, at ∞

(56)

where g∈H−1/2(∂B) and
∫

∂B gdσ = 0. For the computation

of the topological gradient we wiil need the two following

usefull lemma. We omit the proofs and we refer the reader

to [15] for more details

Lemma 2 The solution of (56) expresses as a simple layer

potential :

H(x) =
∫

∂B
λ (y)E(x− y)dσ

with E(x) = − 1
2π log(|x|) is the fundamental solution of the

Laplace operator and λ (y) = −2g(y). Denoting by lH the

solution of (28), we have the jump relations through ∂B

H− lH = 0

∂nH−∂nlH =−λ

and lu expresses also as lH(x) =
∫

∂B λ (y)E(x− y)dσ .

The following asymptotic estimations holds.

Lemma 3 Let H the solution of (56), then :

|H(x)| ≤ C

|x| , |∇H(x)| ≤ C

|x|2∥∥∥H
( x

ε

)∥∥∥
0,Ωε

= O
(√
−log(ε)

)
,
∥∥∥∇H

( x

ε

)∥∥∥
0,Ωε

= O(ε)

9.1 Appendix A

In this appendix all the proofs are performed by assuming

γ = 1, and when (19) is referenced we suppose that γ = 1.

Moreover we suppose that ψ fulfills Hypotheses 1.

Lemma 4 Let Xε = uε − u0 where uε and u0 are respec-

tively given by (19) for ε > 0 and ε = 0, and let P be the

solution of (56) with g = −∇u0(0).n, then we have the fol-

lowing asymptotic expansion :

Xε = εP
( x

ε

)
+ eε

with ‖eε‖1,Ωε = O(ε2
√
−log(ε)). Besides we have the fol-

lowing estimation

‖Xε‖0,Ωε = O
(

ε2
√
−log(ε)

)

Proof First by substracting equations (19) for ε > 0 and ε =

0 :





−∆Xε +Duψ(x,uε)−Duψ(x,u0) = 0, on Ωε

∂nXε =−∂nu0, on ∂Bε

∂nXε = 0, on Γ

(57)

Then an integration by parts gives :

∫

Ωε

∇Xε .∇v+
∫

Ωε

(Duψ(x,uε)−Duψ(x,u0))v

=−
∫

∂Bε

∇u0(0).nv ∀v ∈ H1(Ωε)
(58)

By a similar manner we integrate by parts the Euler equation

checked by εP
(

x
ε

)
on Ωε :

∫

Ωε

∇P
( x

ε

)
∇v =−

∫

∂Bε

∇u0(0).n−
∫

Γ
∂nP

( x

ε

)
v (59)

By setting eε = Xε − εP
(

x
ε

)
, by substracting (58) to (59),

we get

∫

Ωε

∇eε .∇v+
∫

Ωε

(Duψ(x,uε)−Duψ(x,u0))v

=−
∫

Γ
∂nP

( x

ε

)
v−

∫

∂Bε

(∂nu0−∇u0(0).n)v

Then, thanks to a Taylor expansion, we rewrite the second

term on the right hand-side of the above equality : Duψ(x,uε)−
Duψ(x,u0) = D2

uψ(x,uδε
)(uε − u0) with uδε

= θu0 +(1−
θ)uε , θ : Ω −→ R, 0 ≤ θ ≤ 1. We can bound from below

this term by using Lemma 1 and Hypotheses 1. Indeed since

a ≤ uδε
≤ b and ψ(u) is strictly convex on [a,b] ⊂ I, we

get that there exists δ > 0 not depending on ε such that

D2
uψ(x,uδε

) ≥ δ > 0. Thus eε is solution of the following

well-posed variational problem : find eε ∈H1(Ωε) such that

∫

Ωε

∇eε .∇v+
∫

Ωε

D2
uψ(x,uδε

)eε v =−
∫

Γ
∂nP

( x

ε

)
v

−
∫

∂Bε

(∂nu0−∇u0(0).n)v−
∫

Ωε

D2
uψ(x,uδε

)εP
( x

ε

)
v

for all v ∈ H1(Ωε). Now we split eε in eε = e1
ε + e2

ε with

– e1
ε ∈ H1(Ωε)/R solution of

∫

Ωε

∇e1
ε .∇v =−

∫

∂Bε

(∂nu0−∇u0(0).n)v ∀v ∈ H1(Ωε)

– e2
ε ∈ H1(Ωε) solution of

∫

Ωε

∇e2
ε .∇v+

∫

Ωε

D2
uψ(x,uδε

)e2
ε v =−

∫

Γ
∂nP

( x

ε

)
v

−
∫

Ωε

D2
uψ(x,uδε

)
(

εP
( x

ε

)
+ e1

ε

)
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Then, by using a change of variable (CV), a trace theorem

on B2\B (where B2 is the ball of radius 2, centered at 0), and

the equivalency of the H1(B2\B)-norm with the semi-norm

and a CV again, we get that ‖eε‖H1(Ωε )/R
= O(ε2). Then by

using Lemma 3, a trace Theorem on Ω\B and the fact that

e1
ε ∈ H1(Ωε)/R, we get that ‖e2

ε‖1,Ωε = O(ε2
√
−log(ε)).

The H1(Ωε)-norm estimation of eε is then straightforward

by using these two estimations and the following inequal-

ity ‖eε‖1,Ωε ≤ ‖e1
ε‖H1(Ωε )/R

+ ‖e2
ε‖1,Ωε ; the estimation of

‖Xε‖0,Ωε comes from ‖Xε‖0,Ωε ≤
∥∥εP

(
x
ε

)∥∥
0,Ωε

+ ‖eε‖0,Ωε

and the previous inequalities. This ends the proof. For more

details we refer the reader to [15].

Lemma 5 Let wε = vε−v0 where vε and v0 are respectively

given by (24) for ε > 0 and ε = 0, and let Q be the the solu-

tion of (56) with g =−∇v0(0).n, then we have the following

asymptotic expansion :

wε = εQ
( x

ε

)
+ rε

with ‖rε‖1,Ωε = O(ε2
√
−log(ε)). Moreover we have

‖wε‖0,Ωε = O
(

ε2
√
−log(ε)

)
, |wε |1,Ωε = O(ε)

Proof The problem is linear. From Lemma 1 and Hypothe-

ses 1, we get that there exist δ1 > 0 and δ2 > 0 such that

δ2 ≥ D2
uψ(u0) ≥ δ1. The well-posedness of the problem is

then straightforward. Then the proof can be easily deduced

from the proof of Theorem 4 or from the linear case [3].

9.2 Appendix B

In this appendix we consider problem (37) with K = I and

γ = 1. The general case (when K is a convolution operator

such that K1 6= 0) can be easily deduced (see [6] chapter 3

for the well-posedness).

Lemma 6 Let Xε = uε−u0 where uε and u0 are respectively

given by (37) for ε > 0 and ε = 0, then we have :

Xε = εP
( x

ε

)
+ eε

where P is defined by (56) with g = −∇u0(0).n and where

‖eε‖1,Ωε = O(ε2). Moreover we have the estimation :

‖Xε‖0,Ωε = O(ε2
√
−log(ε))

Proof First, let us write the Euler equations checked by Xε .

By substracting equations (37) for ε > 0 and for ε = 0, we

get for j ∈ Iind(Ω) :

(Xε)





−∆Xε +Dψ j

(∫

Rε
j

uε

)
−Dψ j

(∫

R j

u0

)
= 0

on Rε
j , j ∈ Iind(Ω)

∂nXε =−∂nu0, on ∂Bε

∂nXε = 0, on Γ

(60)

Then, by a Taylor expansion there exists ξε = θ
∫

Rε
j
uε +(1−

θ)
∫

R j
u0 with 0 < θ < 1 such that

Dψ j

(∫

Rε
j

uε

)
−Dψ j

(∫

R j

u0

)
=D2ψ j(ξε)

(∫

Rε
j

uε −
∫

R j

u0

)

From Proposition 3, it is straightforward that 0 < α ≤ ξε ≤
β where α = mini fi

N
and β = ∑i fi. (Xε) rewrites for j ∈

Iind(Ω) as

(Xε)





−∆Xε +D2ψ j(ξε)
∫

Rε
j

Xε =
∫

R j\Rε
j

u0 on Rε
j

∂nXε =−∂nu0, on ∂Bε

∂nXε = 0, on Γ

with
∫

R j\Rε
j
u0 = δ j0( j)

∫
Bε

u0, where δ is the Dirac function.

Let eε = Xε − εP
(

x
ε

)
where P is defined by (56) with g =

−∇u0(0).n. eε verifies the following equation :

(Eε)





−∆eε +D2ψ j(ξε)
∫

Rε
j

eε =−εD2ψ j(ξε)
∫

Rε
j

P
( x

ε

)

on Rε
j j ∈ Iind(Ω)

∂neε =−(∂nu0−∇u0(0).n) = ϕε(x) = O(|x|) on ∂Bε

∂neε =−∂nP
( x

ε

)
= φε(x) = O

(
ε2

|x|2
)

on Γ

(61)

We set :

K
j

ε =





−εD2ψ j(ξε)
∫

R j

P
( x

ε

)
= O(ε3), for j 6= j0

∫

Bε

u0− εD2ψ j0(ξε)
∫

Rε
j0

P
( x

ε

)
= O(ε2), for j = j0

Now we split eε in the sum eε = e1
ε + e2

ε + e3
ε with

– e1
ε ∈ H1(Ωε)/R solution of





−∆e1
ε = 0, on Ωε

∂ne1
ε = ϕε(x), on ∂Bε

∂ne1
ε = 0, on Γ

– e2
ε ∈ H1(Ωε)/R solution of





∆e2
ε = 0, on Ωε

∂ne2
ε = 0, on ∂Bε

∂ne2
ε = φε(x), on Γ

– e3
ε ∈ H1(Ωε) solution of

(E 3
ε )





−∆e3
ε +D2ψ j(ξε)

∫

R j

e3
ε = K

j
ε −D2ψ j(ξε)

∫

Rε
j

(e2
ε + e2

ε)

on Rε
j , j ∈ Iind(Ω)

∂ne3
ε = 0, on ∂Bε

∂ne3
ε = 0, on Γ
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Standard computations (see [3,15] for more details) lead to

the following estimations :

‖e1
ε‖H1(Ωε )/R

≤Cε2 ‖e2
ε‖H1(Ωε )/R

≤Cε2

To estimate e3
ε , we take the variational formulation of (E 3

ε ) :
∫

Ωε

∇e3
ε .∇v+ ∑

j∈Iind(Ω)

D2ψ j(ξε)
∫

Rε
j

e3
ε

∫

Rε
j

v

= ∑
j∈Iind(Ω)

K
j

ε

∫

Rε
j

v−D2ψε
j (ξε)

∫

Rε
j

(e1
ε + e2

ε)
∫

Rε
j

v

(62)

Standard computation of D2ψ j and Proposition 3 give for

ε ≤ ε0

max j∈Iind(Ω) f j

α2
≥ D2ψ j(ξε) =

f j

ξ 2
ε

≥
min j∈Iind(Ω) f j

β 2
> 0

where N = |Iind(Ω)|. By taking as test function v = e3
ε in

(62), we deduce the following estimations :

∫

Ωε

|∇e3
ε |2 +C ∑

j∈Iind(Ω)

(∫

Rε
j

e3
ε

)2

≤ ∑
j∈Iind(Ω)

|K j
ε |
∣∣∣∣
∫

R
j
ε

e3
ε

∣∣∣∣+
∣∣D2ψε

j (ξε)
∣∣
∫

Rε
j

(|e1
ε |+ |e2

ε |)
∣∣∣∣∣
∫

Rε
j

e3
ε

∣∣∣∣∣

≤C
(

ε2 +‖e1
ε‖L2(Ωε )/R

+‖e2
ε‖L2(Ωε )/R

)
∑

j∈Iind(Ω)

∣∣∣∣
∫

R
j
ε

e3
ε

∣∣∣∣

≤Cε2 ∑
j∈Iind(Ω)

∣∣∣∣
∫

R
j
ε

e3
ε

∣∣∣∣

Then, thanks to the following inequality which stands for

any sequence of real numbers (ai)i

(
∑

i∈Iind(Ω)

|a j|
)2

≤ |Iind(Ω)| ∑
i∈Iind(Ω)

|ai|2

and the positiveness of
∫

Ωε
|∇e3

ε |2, we obtain

∑
j∈Iind(Ω)

∣∣∣∣
∫

R
j
ε

e3
ε

∣∣∣∣≤Cε2

and then |e3
ε |1,Ωε ≤ Cε2. By using the Poincaré-Wirtinger

inequality we get :

‖e3
ε‖1,Ωε ≤

∥∥∥∥e3
ε −

1

|Ω |

∫

Ωε

e3
ε

∥∥∥∥
1,Ωε

+

∣∣∣∣
∫

Ωε

e3
ε

∣∣∣∣

≤C|e3
ε |1,Ωε +C ∑

j∈Iind(Ω)

∣∣∣∣
∫

R
j
ε

e3
ε

∣∣∣∣≤Cε2

From the inequality ‖eε‖1,Ωε ≤‖e1
ε‖H1(Ωε )/R

+‖e2
ε‖H1(Ωε )/R

+

‖e3
ε‖1,Ωε , we get the result. For the L2(Ωε)-norm estimation

of Xε , it suffices to take the L2(Ωε)-norm of its asymptotic

expansion and to use the first point of Lemma 6 and Lemma

3.

Lemma 7 Let wε = vε − v0 where vε and v0 are given by

(42) for ε > 0 and ε = 0, then we have :

wε = εQ
( x

ε

)
+ rε

where Q is defined by (56) with g = −∇v0(0).n, and where

‖rε‖1,Ωε = O(ε2
√
−log(ε)). Moreover we have :

‖wε‖0,Ωε = O(ε2
√
−log(ε), |wε |1,Ωε = O(ε)

Proof By substracting equations (43) for ε > 0 and for ε =

0, the Euler equations associated to wε are:

(Wε)





−∆wε +D2ψ j (I j(u0))
∫

Rε
j

wε = 0 on R j with j 6= j0

−∆wε +D2ψ j0

(
I j0(u0)

)∫

Rε
j0

wε

= D2ψ j0

(
I j0(u0)

)∫

Bε

v0 = O(ε2) on Rε
j0

∂nwε =−∂nv0 on ∂Bε

∂nwε = 0 on Γ

(63)

This problem is linear and from (3) we have :

max j∈Iind(Ω) f j

α2
≥ D2ψ j (I j(u0)) =

f j

I j(u0)2
≥

min j∈Iind(Ω) f j

β 2

Then the topological expansion of wε can be deduced from

the proof of Lemma 6 or from the linear case [3].

The two last estimations are straightforward by using the

topological expansion of wε and Lemma 3.
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