
HAL Id: hal-01018124
https://hal.science/hal-01018124v1

Preprint submitted on 3 Jul 2014 (v1), last revised 25 Jul 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Brief Tutorial On Recursive Estimation: Examples
From Intelligent Vehicle Applications (Part II)

Hao Li

To cite this version:
Hao Li. A Brief Tutorial On Recursive Estimation: Examples From Intelligent Vehicle Applications
(Part II). 2014. �hal-01018124v1�

https://hal.science/hal-01018124v1
https://hal.archives-ouvertes.fr


A Brief Tutorial On Recursive Estimation:
Examples From Intelligent Vehicle

Applications (Part II)

Hao Li

Abstract

In a previous related tutorial [1], we have given a sketch on the
overview of recursive estimation, with examples from intelligent vehi-
cle applications. In this article, we focus rather on a “local” issue, i.e.
the system model, and show the importance of a suitable system
model for an estimation process.

Keywords: recursive estimation, state, system model, Kalman filter
(KF), intelligent vehicles

1 Introduction

This article is well related to the previous tutorial on recursive estimation [1],
in which we have reviewed several basic concepts concerning estimation and
explained the generic spirit of recursive estimation using Bayesian inference.
One can treat this previous tutorial [1] as an “introduction” to a series of
articles that we are planning, i.e. the series “A brief tutorial on recursive

estimation: Examples from intelligent vehicle applications”. This article is
the second part of this series. In each of this article and potential articles in
future, we would rather focus on only one basic issue concerning (recursive)
estimation and clarify this basic issue more than we did in [1]. In this article,
we focus on the issue of system model.

As we have introduced in [1], for a state, a system model is defined as
a (mathematical) model describing the laws (physical, chemical, biological

1



etc) that govern the evolution (change) of the state. In fact, additional
explanations should be given to clarify this definition.

Before continuing, we would remind readers of the difference between
the world (or the nature, the universe etc) existing objectively there and
the world in our knowledge. Here, we simply call the former the objec-
tive world and call the latter the image world—Along thousands of years
of the development of human civilization, many philosophers have reflected
on the relationship between the objective world and the image world. The
basic difference in their points of view can be summarized, if expressed in
mathematical terms, as one point: they calculated the correlation between
the objective world and the image world differently. For example, for Lao

Zi (the creator of Taoism or “Dao Jiao”) and many scientists, this corre-
lation can asymptotically converge to 1 as the human strives to know more
and more about the objective world. For Buddha, this correlation can never
be more than 0, because the objective world is totally “empty” in his opin-
ion. For some others, this correlation may achieve a certain value but not 1
because certain “God” would not allow the human to know too much.

Here we have no intention to distract readers with stories and opinions of
this or that philosopher. The efforts of all those clever philosophers tell us a
fact, i.e. what we indeed try to highlight with above philosopher examples:
system modeling in an absolutely objective way is difficult—it is even
difficult to represent objectively the entities that we try to examine, not to
say to describe objectively the evolution of these entities.

In practice, we need approximation for system modeling. First, we
need to choose a state to approximately characterize an entity that we care
about. Then we need to establish a system model in terms of the chosen
state to approximately describe the evolution of the entity. For the same
entity, the system model may be established (including the choice of the
state itself) in different ways, depending on how we approximate the entity
and its evolution.

To have desirable estimation of a property of the entity, establishing a
suitable system model is an important preliminary task. We stop abstract
explanations here and continue our explanations with concrete examples in
following sections.

2



2 Examples: Vehicle Localization (1D)

In many vehicle localization applications such as presented in [2] [3] [4] [5]
[6], the vehicle pose is treated as the vehicle state x, whereas the vehicle
speed, yawrate etc are measurable and treated explicitly as the system input
u. Here, we also consider the example of vehicle localization in a 1D case
presented in [1], where the vehicle position p is treated as the state and the
vehicle speed v is treated as the system input. The system model is given as
the following 1D kinematic model:

pt = pt−1 + vt∆T (1)

Given current vehicle position and vehicle speed, the vehicle position in next
period can be predicted via (1). This reflects an important characteristic of
system models, i.e. deterministic—the “deterministic” here is in proba-
bilistic sense: the uncertainty of the state prediction depends only on the
uncertainty of current state and system input. In other words, if there is
no error in current state estimate and system input measurement, and if
there is no system model error, then the state in next period can be precisely
predicted by the system model.

2.1 System modeling in different ways

Now imagine that we do not have measurements on the vehicle speed and
we only have measurements on the vehicle position. We still want to carry
out estimation on the vehicle position. In this case, the system model (1) is
no longer suitable for this estimation task, because it has an undetermined
variable and can not satisfy the requirement of being deterministic (in proba-
bilistic sense)—As we can see here, for the same objective entity (the vehicle)
and its evolution (its motion), a system model may be suitable in some cases
and may not in other cases. So the appropriateness of a system model is not

absolute but depends on concrete system configurations.
To handle the problem that the system model (1) is no longer determinis-

tic (in probabilistic sense), we have to resort to certain a priori knowledge
on the vehicle to establish a deterministic (in probabilistic sense) system
model for its motion.

Constant position (CP) model: If we have a priori knowledge that the
vehicle is stationary, we may establish a constant position (CP) model to

3



describe its motion. In this case, the system model is formulated as:

pt = pt−1 +∆pt (2)

where ∆pt represents the vehicle position variation which may be treated
as a random noise and may be assumed to follow the Gaussian distribution
N(0,Σp). The covariance Σp may be set according to our experience, de-
pending on the degree of our certitude on the a priori knowledge.

Constant velocity (CV) model: If we have a priori knowledge that the
vehicle moves at constant velocity, we may establish a constant velocity (CV)
kinematic model to describe its motion and the system model is formulated
as:

[

pt
vt

]

=

[

1 ∆T
0 1

] [

pt−1

vt−1

]

+

[

0
∆vt

]

(3)

where ∆vt represents the vehicle velocity variation which may be treated
as a random noise and may be assumed to follow the Gaussian distribution
N(0,Σv). The system model (3) may be understood as follows: imagine
the vehicle has been moving at constant velocity vt−1 during the current
system period and at the last instant of this period the vehicle velocity sud-
denly jumps to vt with the difference ∆vt following the Gaussian distribution
N(0,Σv).

Constant acceleration (CA) model: if we have a priori knowledge that
the vehicle moves at constant acceleration, we may establish a constant accel-
eration (CA) kinematic model to describe its motion and the system model
is formulated as:





pt
vt
at



 =





1 ∆T ∆T 2/2
0 1 ∆T
0 0 1









pt−1

vt−1

at−1



+





0
0

∆at



 (4)

where ∆at represents the vehicle acceleration variation which may be treated
as a random noise and may be assumed to follow the Gaussian distribution
N(0,Σa). The system model (4) may be understood as follows: imagine
the vehicle has been moving at constant acceleration during the current sys-
tem period and at the last instant of this period the vehicle acceleration
suddenly jumps to at with the difference ∆at following the Gaussian distri-
bution N(0,Σa).

4



2.2 Application of the Kalman filter using the CP, CV,
and CA models

After introducing the CP, CV, and CA models, we return to the problem
of estimating the vehicle position given a sequence of raw position mea-
surements. We still use the Kalman filter (KF) [7] whose essence has been
explained in the previous tutorial part [1].

Denote the vehicle position measurement as z; denote the measurement
error as γ, which is assumed to follow the Gaussian distribution with zero
mean and the covariance Σγ, i.e. γ ∼ N(0,Σγ). If we use the CP model as
the system model, then the measurement model is given as:

zt = pt + γt (5)

If we use the CV model as the system model, then the measurement
model is given as:

zt = Hcv

[

pt
vt

]

+ γt (6)

Hcv =
[

1 0
]

If we use the CA model as the system model, then the measurement
model is given as:

zt = Hca





pt
vt
at



+ γt (7)

Hca =
[

1 0 0
]

Concrete formulas of the KF using the CP model, using the CV model,
and using the CA model are given respectively as follows:

2.2.1 The KF using the CP model

Prediction:

p̄t = p̂t−1

Σ̄t = Σ̂t−1 + Σp

5



Update:

K = Σ̄t(Σ̄t + Σγ)
−1

p̂t = p̄t +K(zt − p̄t)

Σ̂t = (1−K)Σ̄t

2.2.2 The KF using the CV model

Prediction:
[

p̄t
v̄t

]

=

[

1 ∆T
0 1

] [

p̂t−1

v̂t−1

]

Σ̄t =

[

1 ∆T
0 1

]

Σ̂t−1

[

1 0
∆T 1

]

+

[

0 0
0 Σv

]

Update:

K = Σ̄tH
T

cv
(HcvΣ̄tH

T

cv
+ Σγ)

−1

[

p̂t
v̂t

]

=

[

p̄t
v̄t

]

+K(zt −Hcv

[

p̄t
v̄t

]

)

Σ̂t = (I−KHcv)Σ̄t

2.2.3 The KF using the CA model

Prediction:




p̄t
v̄t
āt



 =





1 ∆T ∆T 2/2
0 1 ∆T
0 0 1









p̂t−1

v̂t−1

ât−1





Σ̄t =





1 ∆T ∆T 2/2
0 1 ∆T
0 0 1



 Σ̂t−1





1 ∆T ∆T 2/2
0 1 ∆T
0 0 1





T

+





0 0 0
0 0 0
0 0 Σa





Update:

K = Σ̄tH
T

ca
(HcaΣ̄tH

T

ca
+ Σγ)

−1





p̂t
v̂t
ât



 =





p̄t
v̄t
āt



+K(zt −Hca





p̄t
v̄t
āt



)

Σ̂t = (I−KHca)Σ̄t

6



2.3 Simulation

We test the performance of the KF using respectively the CP model, the CV
model and the CA model in simulation—As presented in the previous article
[1], in this article, and potentially in further articles in this series of tutorial,
we always prefer simulation to demonstrate the performance of this or that
method we present. This is by no means to imply that simulation is more
important than practice in real applications. On the contrary, real applica-
tions are important as they are usually the core motivation for developing
estimation methods and they are the final “judge” to evaluate the feasibility
of these methods. The reasons why we prefer simulation in this series of
tutorial are mainly two-folds. First, the purpose of this series of tutorial is to
enlighten beginners on basic spirit of recursive estimation and on characteris-
tics of some commonly used recursive estimation methods, whereas showing
the feasibility of certain estimation method in certain application is out of
our focus. So we employ simulation to demonstrate the “pure” performance
of the presented estimation methods, exempt from the influence of ad hoc

implementation factors in real practice. Second, in simulation, we can carry
out a fair comparative study among different methods, because in simulation
we can eliminate any ad hoc implementation factor that may bias the esti-
mates towards or against this or that method. Note that a fair comparative
study among different candidate methods is usually a valuable guide for real
practice.

2.3.1 Performance of the KF using the CP model

In the simulation, the ground-truth was synthesized according to the CP
model: let pt ≡ 10(m). The position measurements were synthesized accord-
ing to zt ∼ N(pt,Σγ); let Σγ = 5.02(m2). For the estimation process, let
∆T = 1(s); let Σp = 0, as we had the “a priori knowledge” that the vehicle
was stationary. We set the initial estimate arbitrarily (say p̂0 = 0(m)) with
an “infinite” covariance Σ̂0 to indicate our total incertitude on the initial
“guess”—In programming, we can not really set an infinite value, instead we
can choose to set a very large value; however, not too large, otherwise the nu-
merical structure of the estimation procedures might be poor and numerical
problems might arise.

The KF using the CP model was applied to the synthesized data and
estimates on the vehicle position were obtained. The estimate errors were

7



computed and compared with the measurement errors. The result of 100
Monte Carlo trials is shown in Fig.1.

0 10 20 30 40 50 60
0

1

2

3

4

5

6

Time Index

E
rr

o
r 

(m
)

measurement errors

estimation errors

Figure 1: Position estimate and measurement errors for 100 Monte Carlo
trials

2.3.2 Performance of the KF using the CV model

In the simulation, the ground-truth was synthesized according to the CV
model: let p0 = 10(m) and vt ≡ 10(m/s). The position measurements were
synthesized according to zt ∼ N(pt,Σγ); let Σγ = 52(m2). For the estimation
process, let ∆T = 1(s); let Σv = 0, as we had the “a priori knowledge” that
the vehicle was moving at constant velocity. We set the initial estimate
arbitrarily (say p̂0 = 0(m) and v̂0 = 0(m/s)) with an “infinite” covariance
Σ̂0 to indicate our total incertitude on the initial “guess”.

The KF using the CV model was applied to the synthesized data and the
estimates were compared with the ground-truth. The results of 100 Monte
Carlo trials are shown in Fig.2 and Fig.3.

8



0 10 20 30 40 50 60
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Time Index

P
o
s
it
io

n
 E

rr
o
r 

(m
)

measurement errors

estimation errors

Figure 2: Position estimate and measurement errors for 100 Monte Carlo
trials

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

Time Index

V
e
lo

c
it
y
 E

rr
o
r 

(m
/s

)

estimation errors

Figure 3: Velocity estimate errors for 100 Monte Carlo trials

9



2.3.3 Performance of the KF using the CA model

In the simulation, the ground-truth was synthesized according to the CA
model: let p0 = 10(m), v0 = 0(m/s), and at ≡ 0.2(m/s2). The position
measurements were synthesized according to zt ∼ N(pt,Σγ); let Σγ = 52(m2).
For the estimation process, let ∆T = 1(s); let Σa = 0, as we had the “a priori

knowledge” that the vehicle was moving at constant acceleration. We set the
initial estimate arbitrarily (say p̂0 = 0(m), v̂0 = 0(m/s), and â0 = 0(m/s2))
with an “infinite” covariance Σ̂0 to indicate our total incertitude on the initial
“guess”.

The KF using the CA model was applied to the synthesized data and the
estimates were compared with the ground-truth. The results of 100 Monte
Carlo trials are shown in Fig.4 and Fig.5.

0 10 20 30 40 50 60
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Time Index

P
o
s
it
io

n
 E

rr
o
r 

(m
)

measurement errors

estimation errors

Figure 4: Position estimate and measurement errors for 100 Monte Carlo
trials

2.4 Result interpretation and discussion

As we can see from results presented in previous subsections, if we have ideal
a priori knowledge and have a suitable system model, we can have rather
desirable estimates on the state. As shown in Fig.1, Fig.2, and Fig.4, the

10



0 10 20 30 40 50 60
0

5

10

15

Time Index

V
e
lo

c
it
y
 E

rr
o
r 

(m
/s

) estimation errors

0 10 20 30 40 50 60
0

5

10

15

Time Index

A
c
c
e
le

ra
ti
o
n
 E

rr
o
r 

(m
/s

2
)

estimation errors

Figure 5: Velocity and acceleration estimate errors for 100 Monte Carlo trials

position estimate errors are considerably smaller than the raw measurement
errors and decrease monotonically—Here, we have just shown the results in a
limited interval of time. In fact, if we extend the time index to enough long,
one will easily see the tendency that the estimate errors converge asymptoti-
cally to zero—Besides, as shown in Fig.3 and Fig.5, the vehicle velocity is well
recovered by the estimation methods, as the velocity estimate errors also con-
verge asymptotically to zero—Note that we only have direct measurements
on the vehicle position—Above results demonstrate once again the utilities
of estimation methods that we have already explained in the previous article
[1], i.e. “can know” and “know better”.

Estimating the full state i.e. the position, the velocity etc of an object,
given measurements only on the object position, is a tracking (or object
tracking) process [8]. In the context of intelligent vehicles, tracking of sur-
rounding objects of a vehicle is important, especially for applications of col-
lision avoidance [9] [10] [11] [12]. For a vehicle, to guarantee its navigation
safety, it has to monitor in real time current positions of its surrounding
objects; besides, it also has to predict future positions of these objects so
that it can take anticipatory action to avoid potential collision with these
objects. In order to achieve this, it needs to know the velocities of these

11



objects. Perceptive sensors usually installed on an intelligent vehicle, such
as laser scanners etc, can only have measurements on the object position.
Therefore, the vehicle needs to estimate indirectly the velocities of its sur-
rounding objects with measurements on the positions of these objects. In
other words, the vehicle needs to track its surrounding objects.

The results presented above are desirable, it seems that we have some
methods which can well fulfill the task specified at the beginning of this
section, i.e. estimating the position of the vehicle. Not limited to this, we
can even have accurate estimates on the vehicle velocity and the vehicle
acceleration, though no information on them is directly available. In one
word, “all is perfect”.

Yes, we are right; “all is perfect” and this “all” also includes the scenarios
and the a priori knowledge assumed available. First, the scenarios conceived
were perfectly simple; the vehicle was set to be strictly stationary, be moving
at strictly constant velocity, or be moving at strictly constant acceleration.
However, this sort of ideal movement can only appear in tutorials or text-
books and can hardly happen in reality. Second, even more perfectly, we
could have a priori knowledge that is completely consistent with the truth.
However, how can this normally be possible in reality? For above examples,
how can the estimator know beforehand the movement pattern of the vehicle
in the next period?

What would be the performance of previously presented estimation tech-
niques (the KF using the CP model, the KF using the CV model, and the KF
using the CA model) if the a priori knowledge was wrong? Would we still
get desirable results as those presented previously? We will examine these
problems in Section 3.

3 System Model Mismatch

A system model which describes a phenomenon normally relies on certain a

priori knowledge or assumptions on this phenomenon. The CP model, the
CV model, and the CA model are examples where assumptions of constant
vehicle position, of constant vehicle velocity, and of constant vehicle accel-
eration are followed respectively. On the other hand, there will normally
exist certain inconsistency between our assumptions and the truth. Con-
sequently, there will also exist certain inconsistency between how an entity
actually evolves and what a system model describes. This inconsistency is

12



what we call as system model mismatch or model mismatch for short.
A method working perfectly in ideal cases may perform poorly in cases with
system model mismatch, as will be shown soon.

3.1 Mismatch 1: low-order model vs. high-order move-
ment

We return to the examples described in section 2. In another set of trials, we
used data synthesized according to the CA model (see section 2.3.3). Instead
of applying the KF using the CA model to these data, we applied the KF
using the CV model. In other words, we carried out the estimation as if
the vehicle was moving at constant velocity, whereas the vehicle was actually
accelerating. We can notice apparent model mismatch in this estimation
case. The results of 100 Monte Carlo trials are shown in Fig.6 and Fig.7.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Time Index

P
o
s
it
io

n
 E

rr
o
r 

(m
)

measurement errors

estimation errors

Figure 6: Position estimate and measurement errors for 100 Monte Carlo
trials

As we can see in Fig.6 and Fig.7, both the position estimates and the
velocity estimates diverge severely from the ground-truth. This example
shows that system model mismatch can severely degrade the performance of
an estimation method and even make the estimates useless.

13



0 10 20 30 40 50 60
1

2

3

4

5

6

7

Time Index

V
e
lo

c
it
y
 E

rr
o
r 

(m
/s

)

estimation errors

Figure 7: Velocity estimate errors for 100 Monte Carlo trials

We give some intuitive explanations on why the model mismatch i.e. the
inconsistency between the CV model and the actual movement of acceleration
degrades the performance of the KF using the CV model (see section 2.2.2).
Recall that we set Σv = 0 (see section 2.3.2) as we followed strictly the
constant velocity assumption in the tests. This means that we lay too much
confidence on the predictive ability of the CV model; this over-confidence
on the CV model tends to bias the estimates towards the predicted a priori

and make it difficult for the estimates to be corrected (updated) by new
measurements. As a result, the estimates diverge far and far away from the
ground-truth.

As an expedient solution to handle potential velocity variation while using
the CV model, one may set Σv empirically to certain value to represent the
uncertainty of the constant velocity assumption that underlies the CV model.
In other words, we use Σv to reflect the degree of potential mismatch of the
CV model. For example, we set Σv = 0.12 and performed again the KF
using the CV model on synthesized data generated according to the CA
model. The results of 100 Monte Carlo trials are shown in Fig.8 and Fig.9.
We set Σv = 1.02, the results of 100 Monte Carlo trials are shown in Fig.10
and Fig.11. We set Σv = 10.02, the results of 100 Monte Carlo trials are

14



shown in Fig.12 and Fig.13.

0 10 20 30 40 50 60
3

4

5

6

7

8

9

10

Time Index

P
o
s
it
io

n
 E

rr
o
r 

(m
)

measurement errors

estimation errors

Figure 8: Position estimate and measurement errors for 100 Monte Carlo
trials

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

Time Index

V
e
lo

c
it
y
 E

rr
o
r 

(m
/s

)

estimation errors

Figure 9: Velocity estimate errors for 100 Monte Carlo trials

As shown in Fig.8 and Fig.9, the estimates under Σv = 0.12 no longer
diverge like the estimates under Σv = 0.0, yet still suffering from rather
large errors. As shown in Fig.10 and Fig.11, the estimates under Σv = 1.02

become even better: the position estimates are apparently smaller than the
raw position measurements and the velocity estimate errors become much
smaller. It seems that increasing Σv can improve the estimation performance.

15



0 10 20 30 40 50 60
2.5

3

3.5

4

4.5

5

5.5

6

Time Index

P
o
s
it
io

n
 E

rr
o
r 

(m
)

measurement errors

estimation errors

Figure 10: Position estimate and measurement errors for 100 Monte Carlo
trials

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

Time Index

V
e
lo

c
it
y
 E

rr
o
r 

(m
/s

)

estimation errors

Figure 11: Velocity estimate errors for 100 Monte Carlo trials

However, as we further increase Σv to Σv = 10.02, the estimates deteriorate
again, as shown in Fig.12 and Fig.13.

Discussion

The tendency reflected by Fig.8 to Fig.13 seems to imply that given a move-
ment of acceleration there would be an optimal Σv under which the KF using
the CV model achieves best performance. On the other hand, this optimal
Σv is not fixed for all cases. As the acceleration changes, the optimal Σv will

16



0 10 20 30 40 50 60
3.5

4

4.5

5

5.5

6

Time Index

P
o
s
it
io

n
 E

rr
o
r 

(m
)

measurement errors

estimation errors

Figure 12: Position estimate and measurement errors for 100 Monte Carlo
trials

0 10 20 30 40 50 60
2

2.5

3

3.5

4

4.5

5

5.5

6

Time Index

V
e
lo

c
it
y
 E

rr
o
r 

(m
/s

)

estimation errors

Figure 13: Velocity estimate errors for 100 Monte Carlo trials

also change. This causes difficulties to tuning the Σv in real practice if we
use the CV model to handle cases of acceleration movement. More generally,
it is usually difficult to tune the process noise (in above example, i.e. the
model error part represented by Σv) if we use a lower-order model to handle
cases of higher-order movement.

Besides, no matter how Σv is set in above tests, one can notice the static
errors of the velocity estimates, as shown in Fig.9, Fig.11, and Fig.13. The
reason for the existence of these static errors may be understood intuitively
as follows: in the CV model, the velocity variation is modeled as a random

17



noise and hence the average acceleration is still assumed to be zero. Thus
in an acceleration movement, the estimator tends to favor velocity estimates
with bias according to which the prediction may better “catch up with” the
actual acceleration movement on the whole.

In contrast with the results shown in Fig.9, Fig.11, and Fig.13, the ve-
locity estimates shown in Fig.5 converge asymptotically to the ground-truth,
without any static estimate error.

Above discussions tell us a point: for a higher-order movement, we had
better utilize a system model matching this movement, not a lower-order
system model with certain expedient adaptation.

3.2 Mismatch 2: high-order model vs. low-order move-
ment

In the previous subsection, we have shown a kind of model mismatch i.e.
using a lower-order system model to characterize a higher-order movement.
In this subsection, we will show an opposite kind of model mismatch i.e.
using a higher-order system model to characterize a lower-order movement.

One may think that a lower-order movement is a special case of a higher-
order movement. For example, the movement of constant velocity can be seen
as a special case of the movement of constant acceleration i.e. a movement
of constant acceleration zero. A model being able to describe a higher-order
movement can also describe a lower-order movement. So using a higher-order
system model in the estimation will yield at least no worse results than using
a lower-order system model.

This argument seems plausible. We do not make any judgement on this
argument for the moment but check it with simulation tests first. We used
data synthesized according to the CV model (see section 2.3.2). We applied
both the KF using the CV model and the KF using the CA model to these
synthesized data simultaneously. We set Σv = 0 and Σa = 0 because we
“knew” a priori that the vehicle was set to be moving at constant velocity
(also at constant acceleration zero). The results of 100 Monte Carlo trials
are shown in Fig.14 and Fig.15.

As we can see, errors of the estimates obtained by using the CV model and
by using the CA model both have the tendency of decreasing monotonically.
We can also easily note that the estimate errors associated with use of the
CV model decrease more quickly than those associated with use of the CA

18



0 10 20 30 40 50 60
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

TimeVIndex

P
o

s
it
io

n
VE

rr
o

rV
(m

)

measurementVerrors

errorsVofVestimationVusingVCA

errorsVofVestimationVusingVCV

Figure 14: Position estimate and measurement errors for 100 Monte Carlo
trials

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

TimeuIndex

V
e

lo
c
it
y
uE

rr
o

ru
(m

/s
)

errorsuofuestimationuusinguCA

errorsuofuestimationuusinguCV

Figure 15: Velocity estimate errors for 100 Monte Carlo trials

19



model. In other words, the KF using the CV model performs better than
the KF using the CA model in the sense that it is more responsive than the
latter.

Discussion

The test results presented in this subsection tell us another point: for a
lower-order movement, we had better utilize a system model matching this
movement, not a higher-order system model which seems to be more gener-
alized.

These discussions, together with discussions in the previous subsection,
lead to the final point: establishing a suitable system model is impor-
tant for achieving desirable estimation performance. We had better
neither use a system model that is not flexible enough to characterize the
state evolution (this can be regarded as an underfitting problem) nor use a
system model that is too generalized and captures useless trends in the state
evolution (this can be regarded as an overfitting problem).

Arriving at this point, we can conclude this article and leave rest discus-
sions to section 4.

4 Conclusion

In this article i.e. the second part of the planned series “A brief tutorial

on recursive estimation: Examples from intelligent vehicle applications”, we
have explained with concrete examples of vehicle tracking the importance of
a suitable system model for an estimation process—How we can know about

the world depends on how we represent the world ; the better can we represent
the world, the better can we know about the world.

On the other hand, establishing a suitable system model, it is easy to say
than to do. Still consider the examples in this article, how can we know a pri-

ori the movement pattern of the vehicle? Besides, the vehicle may sometimes
be stationary, may sometimes move at constant velocity, and may sometimes
move at constant acceleration etc. So using a single system model may not
suit well various possibilities of vehicle movement patterns. To handle this
problem, we may prepare a set of candidate system models and use an on-line
identification mechanism to evaluate dynamically the degree of consistency
between each candidate system model and the observed vehicle movements;

20



then in the estimation, we can rely more on candidate system models with
high degree of consistency while relying less on those with low degree of
consistency. This is the basic idea of many multiple-model-based estimation
methods, such as the Interacting Multiple Model (IMM) [13], which have
already been employed in intelligent vehicle applications [14] [15] [16].

References

[1] H. Li. A brief tutorial on recursive estimation: Examples from intelligent
vehicle applications. HAL Open Archives, hal-01011733(version 2), 2014.

[2] H. Li, F. Nashashibi, and G. Toulminet. Localization for intelligent
vehicle by fusing mono-camera, low-cost gps and map data. In IEEE

International Conference on Intelligent Transportation Systems, pages
1657–1662, 2010.

[3] H. Li and F. Nashashibi. Cooperative multi-vehicle localization using
split covariance intersection filter. IEEE Intelligent Transportation Sys-

tems Magazine, 5(2):33–44, 2013.

[4] H. Li and F. Nashashibi. Multi-vehicle cooperative localization using in-
direct vehicle-to-vehicle relative pose estimation. In IEEE International

Conference on Vehicular Electronics and Safety, pages 267–272, 2012.

[5] H. Li and F. Nashashibi. Multi-vehicle cooperative perception and aug-
mented reality for driver assistance: A possibility to see through front
vehicle. In IEEE International Conference on Intelligent Transportation

Systems, pages 242–247, 2011.

[6] H. Li, F. Nashashibi, and M. Yang. Split covariance intersection filter:
Theory and its application to vehicle localization. IEEE Transactions

on Intelligent Transportation Systems, 14(4):1860–1871, 2013.

[7] R.E. Kalman. A new approach to linear filtering and prediction problem.
ASME Trans, Ser. D, J. Basic Eng., 82:35–45, 1960.

[8] Y. Bar-Shalom and X.R. Li. Multitarget-multisensor tracking: principles

and techniques. Storrs, CT: University of Connecticut, 1995.

21



[9] C.C. Wang, C. Thorpe, and S. Thrun. Simultaneous localization, map-
ping and moving object tracking. International Journal of Robotics Re-
search, 26(9):889–916, 2007.

[10] M. Aeberhard, S. Schlichtharle, N. Kaempchen, and T. Bertram. Track-
to-track fusion with asynchronous sensors using information matrix fu-
sion for surround environment perception. IEEE Transactions on Intel-

ligent Transportation Systems, 13(4):1717–1726, 2012.

[11] M.S. Darms, P.E. Rybski, C. Baker, and C. Urmson. Obstacle detection
and tracking for the urban challenge. IEEE Transactions on Intelligent

Transportation Systems, 10(3):475–485, 2009.

[12] H. Li, F. Nashashibi, B. Lefaudeux, and E. Pollard. Track-to-track
fusion using split covariance intersection filter-information matrix fil-
ter (scif-imf) for vehicle surrounding environment perception. In IEEE

International Conference on Intelligent Transportation Systems, pages
1430–1435, 2013.

[13] H.A.P. Blom and Y. Bar-Shalom. The interacting multiple model algo-
rithm for systems with markovian switching coefficients. IEEE Trans-

actions on Automatic Control, 33(8):780–783, 1988.

[14] K. Jo, K. Chu, and M. Sunwoo. Interacting multiple model filter-based
sensor fusion of gps with in-vehicle sensors for real-time vehicle po-
sitioning. IEEE Transactions on Intelligent Transportation Systems,
13(1):329–343, 2012.

[15] T.N. Nguyen, B. Michaelis, A. Al-Hamadi, M. Tornow, and M. Mei-
necke. Stereo-camera-based urban environment perception using oc-
cupancy grid and object tracking. IEEE Transactions on Intelligent

Transportation Systems, 13(1):154–165, 2012.

[16] T.D. Vu. Vehicle perception: Localization, mapping with detection, clas-

sification and tracking of moving objects. Ph.D. Thesis, Institut National
Polytechnique de Grenoble, 2009.

22


