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Résumé 

 

L’isocyanate de phényle réagit avec des complexes phénanthroline de palladium(II) bis-

acetate pour former quasi-quantitativement des palladacycles à six chaînons.  Dans cette 

nouvelle réaction, le ligand acétate joue possiblement le rôle d’agent décarbonylant vis-

à-vis de l’isocyanate an formant les palladacycles isolés par un réarrangement 

intramoléculaire. 

 

Abstract 

 

Phenylisocyanate reacts with palladium(II) bis-acetate phenanthroline complexes to 

give six-membered palladacycles in nearly quantitative yields.  In this new reaction, the 

acetate ligands act as decarbonylating agents toward the isocyanate functionality by 

possibly forming the isolated palladacycles via an intramolecular rearrangement. 

 

 

 

 

Keywords: Isocyanate, Dimine Pd(II) Complex,  Palladacycle, Catlaytic 

Carbonylation of Nitroaromatics 
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1. Introduction 

 

To date, the reactivity of isocyanates in the coordination sphere of various group-

VIII metal centers is still a field only partially explored.[1-3] Such reactions can provide 

a very valuable access to various types of heterocycles and are thus especially attractive 

with respect to atom-economy considerations.[4-7] Moreover, they often bring some 

information about the possible deactivation pathways of catalytic processes involving 

isocyanate as reactant or product.[8-10]  In this regard, we have previously shown that 

diimine-Pd(0) precursors catalytically trimerize arylisocyanates to form 

triarylisocyanurates (1, Scheme 1),[11] while some inactive palladacycles like 2, 3 or 

4a,[9, 12] which possibly result from deactivation of the active species, are eventually 

also formed. 

 

 

Scheme 1. Cyclotrimer and palladacycles formed from diimine-Pd(0) and Pd(II) 

complexes. 

 

In the process of exploring the scope of this reaction, we have now investigated the 

reaction of PhNCO with various Pd(II)-phenanthroline precursors, like Pd(N-N)(OAc)2 

complexes (5a-c), where N-N represents 1,10-phenanthroline (o-phen), 3,4,7,8-tetra-

methylphenanthroline (tmphen) and 2,9-dimethylphenanthroline (dmphen), 
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respectively.  In a manner similar to the reaction with Pd(0) precursors, a reaction 

yielding the six-membered palladacycles 4a-c took place, providing thereby an easy 

access to these interesting compounds. 

 

2. Results and discussion  

 

When reacted with one equivalent phenylisocyanate in dichloromethane at 20 °C, the 

bis-acetato diimine Pd(II) complex 5a[13, 14] forms the known 6-membered 

palladacycle 4a[9, 12] in ca. 30 % yield after two days. In presence of an excess of 

PhNCO (20 eq.), this reaction becomes nearly quantitative, allowing isolation of ca. 95 

% of 4a after the same time. This reaction can also be performed at higher temperature 

in an aromatic solvent like toluene, 4a being then quantitatively isolated after 16 h 

(Scheme 2).   

 

Scheme 2. Reaction between 5a and PhNCO. 

 

This reaction can also be performed with the analogue of 5a possessing a tmphen 

(5b) ligand instead of phen to give the corresponding palladacycle 4b in good yields. 

This new palladacycle was characterized by high resolution mass spectrometry 

(HRMS), infrared and 1H NMR. In contrast, this reaction is not observed from other 

Pd(II) precursors such as Pd(o-phen)Cl2, Pd(OAc)2 or from an equimolar Pd(acac)2/o-

phen mixture, pointing at the need to have a carboxylate anion and a diimine ligand 

simultaneously present in the medium for this reaction to proceed.  Notably, we have 
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checked that this reaction takes place with similar yield from a carefully dried complex 

5a in anhydrous toluene, suggesting that traces of water are not involved in its 

mechanism.[15] 

We then turned our attention toward the Pd(II) precursor 5c, presenting the more 

bulky dmphen ligand in place of o-phen,[14] and with this sterically crowded Pd(II) 

complex, the reaction takes also place and a nearly complete conversion of 5c into 4c is 

observed in dichloromethane at ambient temperature after 2 days (Scheme 3). The new 

palladacycle 4c is the 2,9-dimethylated analogue of 4a. This complex was fully 

characterized, allowing notably for the observation of the two strong carbonyl CO 

stretching modes near 1645 and 1625 cm-1 diagnostic of the three carbonyl groups of 

this metallacycle.[9]  Attempts to perform this reaction at 80 °C in toluene or other 

aromatic solvents were, however, not successful with partial decomposition of 5c taking 

place.   

 

Scheme 3. Reaction between 5c and PhNCO. 

 

The steric pressure exerted by the two methyl groups is revealed by the X-ray 

structure presently obtained for 5cOEt2OH2 (Figure 1).[16] It results in a bending of 

ca. 30° of the phenanthroline core with the mean plane defined by the square planar 

coordination sphere around the Pd(II) atom. These crystallographic data are in line with 

those previously obtained for this and the related complex 5a and clearly indicate that 

5a-c are mononuclear species.[14, 17]  
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Figure 1.  ORTEP plot of the palladacycle of 5cOEt2OH2. Thermal ellipsoids are at 

the 50% probability level (see Supporting Information for details). Selected bond 

lengths (Å) and angles (deg): Pd1-O1 1.998(3), Pd1-O2 3.015, Pd1-O3 2.008(3), Pd1-

O4 2.963, Pd1-N1 2.021(4), Pd1-N2 2.033(4), C15-O1 1.280(8), C15-O2 1.259(9), 

C17-O3 1.290(7), C17-O4 1.219(7), N1-Pd1-N2 81.64(16), O1-Pd1-O3 85.74(16), O1-

Pd1-N1 94.58(16), O3-Pd1-N2 96.89(16). 

 

This reaction presents some analogy with the trimerization reaction of PhNCO 

catalyzed by “(N-N)Pd0” species previously studied by some of us.[11] However, the 

isocyanurate cyclotrimer 1 was never isolated as side-product during any reaction of 5a 

with PhNCO, suggesting that “(o-phen)Pd0” is presently not transiently formed in the 

medium.  Furthermore, the catalytic trimerization of PhNCO was previously shown not 

to take place with the sterically crowded 2,9-dimethylphenanthroline ligand. When this 

ligand was used, decomposition of the catalyst into metallic palladium was 

observed.[11] In contrast, the formation of palladacycle 4c takes readily place at 

ambient temperatures with the complex 5c. Thus, it is quite likely that the mechanistic 

pathway for the formation of 4a-c does not involve an elusive "(N-N)Pd0" intermediate.  
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Actually, the reaction is observed only from dimine Pd(II) precursors having acetate 

ligands. A possible reaction mechanism should therefore involve the Pd(II) diimine  

center and the acetate ligand(s). 

 

 

Scheme 4. Reaction mechanism proposed for the formation of 4a-c. 

 

A tentative mechanistic proposal for this transformation is given in Scheme 4.  The 

first step would involve the formal insertion of PhNCO into the Pd-O bond of the 

carboxylate ligand, possibly on a [Pd(N-N)(OAc)]+ intermediate, followed by further 

insertion of PhNCO into the resulting Pd-N bond (n = 2 or 3). These steps would be in 

line with the well established insertion chemistry for this kind of cationic species.[18]  

It is indeed well known that on such complexes the carboxylate ligands are labile and 

can be exchanged for other ligands.[9, 14] Alternatively, this reaction sequence might 

be seen as a [Pd(N-N)(OAc)]+-assisted anionic oligomerization of PhNCO by the 

acetate ion, the latter acting as the nucleophile. This makes sense given the fact that 

simple acetate salts such as KOAc, in a manner similar to many other inorganic 

salts,[19] are known to catalyze the cyclotrimerization of arylisocyanates.[20] 

Moreover, their activity as catalysts in this reaction has been shown to be strongly 

influenced by the nature of the associated cation.[21] However, this anionic-

oligomerization process would not ultimately lead to the cyclotrimer 1, but to the 

palladacycle 4a due to the presence of the second acetate ligand on the nearby Pd(II) 
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center. Indeed, the final steps would involve an intramolecular rearrangement taking 

place by elimination of acetic anhydride and carbon dioxide to form the metallacyclic 

core by ring closure. Such an acetate-based intramolecular rearrangement resemble that 

which was proposed by Moiseev to rationalize the reduction of Pd(II) acetate clusters in 

presence of CO,[22] except that the “CO” molecule is presently replaced by PhNCO.  

Then, depending on the number of inserted isocyanate molecules after ring closure, 

either 3a-c (n = 1) or 4a-c (n = 2) would be generated in the medium. Since we have 

previously clearly established that strained palladacycles such as 3a react readily with 

arylisocyanate to form 4a,[9] this mechanism rationalizes the selective formation of the 

6-membered palladacycles 4a-c in presence of excess PhNCO.[23] Also, based on 

literature reports,[14, 25] the acetate ligand should be more labile in 5c than in 5a. If the 

first insertion of isocyanate in the Pd-OAc bond in the former complex is rate 

determining, the reaction might take place as fast with 5c than with 5a, in line with our 

preliminary observations.  

 

3. Conclusions 

 

In conclusion we report here a novel and efficient reaction toward the six-membered 

palladacycles 4a-c from air-stable phenanthroline Pd(II) acetate complexes and 

phenylisocyanate. While revealing that the particular complexes 5a-c are reactive 

toward arylisocyanates, this contribution clearly shows that other synthetic routes than 

these previously evidenced from [(N-N)Pd0] intermediates are possible to obtain 

palladacycles such as 2-4. Thus, such species might also be directly formed from Pd(II) 

catalyst precursors when carboxylate ligands are present in the medium. This 

observation is particularly important in the context of Pd-catalyzed reductive 
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carbonylations of nitroaromatics, because (Pd(II)/diimine/carboxylic acid) catalytic 

systems are among the most active ones[10] and because the formation of 2-4 and 

related palladacycles[26] has been proposed to be at the origin of the rapid deactivation 

of these catalytic systems, [8, 9] especially when these reactions are performed in 

absence of alcohol or amine able to trap the isocyanate formed.[27]  The scope and 

reaction mechanism of this new reaction is currently under investigation. 

 

 

4. Experimental 

 

4.1. General 

 

The solvents were dried and distilled prior to use and the reaction were performed 

under inert (Ar) atmospheres in deaerated solvents. Unless otherwise specified, all 

reagents were purchased from commercial suppliers and used without further 

purification.  Infrared spectra were recorded on a Bruker IFS28 spectrometer (400-4000 

cm-1). 1H NMR spectra were obtained on Bruker SY 200 (200 MHz) or SY 400 (400 

MHz) Fourier Transform spectrometers. Chemical shifts are given in parts per million 

relative to tetramethylsilane (TMS) for 1H spectra. Mass spectral studies and elemental 

analyses were submitted to the corresponding services of the Centre Régional de 

Mesures Physiques de l'Ouest (CRMPO). The complexes 5a-c were synthesized 

according to reported procedures (see also Supporting Information).[13, 14] 

 

4.1. Reactions of Pd(N-N)(OAc)2 and PhNCO 

 



10 
 

Pd(phen){N(C6H5)C(O)N(C6H5C(O)N(C6H5)} (4a).  To 100 mg of Pd(phen)(OAc)2 

(0.24 mmol) were added 600 mg phenyl isocyanate (20 eq.) dissolved in 15 mL toluene. 

The pale-yellow suspension was subsequently heated at 80 °C under stirring. After 16 h, 

an abundant orange-yellow suspension has formed in the reaction medium.  The 

medium was cooled and 10 mL of ethanol were added to neutralize the excess 

isocyanate.  The suspension is then decanted and washed with several fractions of 

diethylether yielding 140 mg of yellow-orange solid after subsequent vacuum-drying. 

This solid is identified as palladacycle 4a by comparison with authentic samples (95%). 

 

Pd(tmphen){N(C6H5)C(O)N(C6H5C(O)N(C6H5)} (4b). To 50 mg of 

Pd(tmphen)(OAc)2 (0.11 mmol) were added 630 mg phenyl isocyanate (50 eq.) 

dissolved in 15 mL toluene. The pale-yellow suspension was subsequently heated at 80 

°C under stirring. After 16 h, the dark red reaction medium was cooled and 1 mL of 

EtOH followed by excess diethylether were added. The suspension is then decanted and 

washed with several fractions of diethylether yielding 39 mg of brown-orange solid 

after vacuum-drying. This solid is identified as palladacycle 4b (54%). Color: Brown-

orange. HRMS (positive ESI, CH2Cl2/MeOH, m/Z) z 672.1578 [M+H]+, m/z calc’d for 

[C36H32N5O2Pd] 672.1591. FT-IR (KBr, , cm-1) 1642 (s, C=O), 1623 (s, C=O). 1H 

NMR (200 MHz, CDCl3, , ppm) 8.53 (d, 3JHH = 8 Hz, 4H, HPh), 8.05 (s, 24H, Hphen), 

7.88 (s, 2H, Hphen), 7.53 (t, 3JHH = 8 Hz, 4H, HPh), 7.36 -6.98 (m, 7H, HPh), 2.68 (s, 6H, 

CH3/phen), 2.20 (s, 6H, CH3/phen). 
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Pd(dmphen){N(C6H5)C(O)N(C6H5C(O)N(C6H5)} (4c).  To 100 mg of 

Pd(dmphen)(OAc)2 (0.23 mmol) dissolved in 15 mL of CH2Cl2 were added 550 mg of 

phenylisocyanate (ca. 20 eq.). The orange solution was stirred 2 days at ambient 

temperature.  The solution is filtrated and diethylether is added to precipitate the title 

complex as an orange solid.  It is collected, washed with several fractions of 

diethylether and dried in vacuo, yielding 130 mg of the title palladacycle (88 %). Color: 

Orange.  Dec. Pt: 180 ± 10 °C. HRMS (positive ESI, CH2Cl2, m/Z) 644.1291 [M+H]+, 

m/z calc’d for [C34H28N5O2Pd] 644.1278.  Anal. Calc'd. for C34H27N5O2Pd•H2O: C, 

61.68; H, 4.42; N, 10.58; Found: C, 61.67; H, 4.48; N, 10.52.  FT-IR (KBr/Nujol, , 

cm-1) 1645 (s, C=O), 1625 (s, C=O). 1H NMR (200 MHz, CD2Cl2, , ppm) 8.26 (d, 

3JHH = 8 Hz, 2H, Hphen), 8.01 (d, 3JHH = 7 Hz, 4H, HPh), 7.90 (s, 2H, Hphen), 7.69 (d, 3JHH 

= 8 Hz, 2H, Hphen), 7.49 (t, 3JHH = 8 Hz, 2H, HPh), 7.37 (t, 3JHH = 8 Hz, 4H, HPh), 7.26 

(d, 3JHH = 8 Hz, 2H, HPh), 6.89 (t, 3JHH = 7 Hz, 4H, HPh), 6.69 (t, 3JHH = 7 Hz, 1 H, HPh), 

2.72 (s, 6H, CH3/phen). 

 

X-Ray Crystallography. Diffraction data frames for 5c were collected on a CCD 

Saphire 3 Xcalibur apparatus using the graphite monochromatized MoK radiation ( = 

0.71073 Å).  The cell parameters are obtained with Denzo and Scalepack,[28] with 10 

frames (psi rotation : 1° per frame). The data collection leads to 4235 independent 

reflections from which 3338 with I > 2.0(I).[29] The structures were solved by direct 

methods using the SIR97 program,[30] and then refined with full-matrix least-square 

methods based on F2 (SHELX-97). [31] The contribution of the disordered solvents (i.e. 

one molecule of diethylether and one molecule of water) to the calculated structure 

factors was removed using the SQUEEZE option in PLATON.  Atomic scattering 

factors were taken from the International Tables for X-ray Crystallography (1992).[32] 
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Ortep views were realized with PLATON98.[33] 

 

Supplementary material 

Synthesis and characterization of 5a-d.  CCDC-221834 contains the supplementary 

crystallographic data for this paper. These data can be obtained free of charge from The 

Cambridge Crystallographic Data Centre via: www.ccdc.cam.ac.uk/data_request.cif. 
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Captions 

 

Scheme 1. Cyclotrimer and palladacycles formed from diimine-Pd(0) complexes. 

 

Scheme 2. Reaction between 5a and PhNCO. 

 

Scheme 3. Reaction between 5c and PhNCO. 

 

Scheme 4. Reaction mechanism proposed for the formation of 4a-c. 

 

 

 

Figure 1.  ORTEP plot of the palladacycle of 5cOEt2OH2. Thermal ellipsoids are at 

the 50% probability level (see Supporting Information for details). Selected bond 

lengths (Å) and angles (deg): Pd1-O1 1.998(3), Pd1-O2 3.015, Pd1-O3 2.008(3), Pd1-

O4 2.963, Pd1-N1 2.021(4), Pd1-N2 2.033(4), C15-O1 1.280(8), C15-O2 1.259(9), 

C17-O3 1.290(7), C17-O4 1.219(7), N1-Pd1-N2 81.64(16), O1-Pd1-O3 85.74(16), O1-

Pd1-N1 94.58(16), O3-Pd1-N2 96.89(16). 
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Synthesis of Pd(N-N)(OAc)2 complexes 5a-c 

 

The diimine (N-N) in 10 mL of solvent is added to 250 mg palladium acetate (1.1 

mmol) in 15 mL of the same solvent.  The brown suspension is stirred 48 h at ambient 

temperature and becomes clearer.  A yellow precipitate forms.  This air-stable solid is 

filtered and washed by several fractions of benzene, Et2O and n-pentane, before being 

died in vacuo.   

 

Pd(o-phen)(OAc)2 (5a). Benzene was used as solvent with 1.4 equiv. of 

phenanthroline.  Yield: 91 %. Dec. Pt: 215 ± 5 °C.  MS (positive LSI, 3-NBA, m/Z) 345 

(M-OAc); 286 (M-2OAc); 181 (phen+1).  Elemental analysis, Calc'd for C16H14N2O4Pd: 

C 47.48, H 3.49, N 7.00; Fnd: C 47.04, 3.25, N 6.92.  FT-IR (KBr/Nujol, , cm-1) 1600 

(vs, OAc).  1H NMR (200 MHz, CD2Cl2, , ppm) 8.32 (d, 3JHH = 5 Hz, 2H, H1+H9), 

8.11 (d, 3JHH = 8 Hz, 2H, H4+H7), 7.99 (s, 2H, H5+H6), 7.56 (dd, 3JHH = 8 Hz and 3JHH = 

5 Hz, 2H, H3+H8); 2,04 (s, 6H, CH3).   

 

Pd(tmphen)(OAc)2 (5b). Benzene was used as solvent with 1.0 equiv. of 3,4,7,8-

tetramethylphenanthroline. Yield: 91 %.  Dec. Pt: 204 ± 2 °C. Elemental analysis, 

Calc'd for C20H22N2O4Pd•1/2 H2O: C 51.13, H 4.93, N 5.96; Fnd: C 51.26, 4.72, N 5.96.  

FT-IR (KBr/Nujol, , cm-1) 1630 (vs, OAc).  1H NMR (200 MHz, CD2Cl2, , ppm) 8.24 

(s, 2H, H1+H4), 8.10 (s, 2H, H2+H9), 8.00 (s, 2H, H5+H6), 2.74, 2.55 (s, 12 H, CH3/Phen), 

2.10 (s, 6H, OC(O)CH3). 

 

Pd(dmphen)(OAc)2 (5c). THF was used as solvent with 6.0 equiv. of 2,9-

dimethylphenanthroline. Yield: 95 %.  Dec. Pt: 143 ± 5 °C.  Elemental analysis, Calc'd 
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for C18H18N2O4Pd•H2O: C 47.96, H 4.44, N 6.21; Fnd: C 47.51, 4.25, N 6.07.  MS 

(positive ESI, CH2Cl2, m/Z) 432 (M+, 3%), 373 (M-OAc, 3%); 286 (M-2OAc, < 1%); 

209 (dmphen+1, 10%).  HRMS (positive ESI, CH2Cl2, m/Z) z 432.0301 [M]+, m/z 

calc’d for [C16H15N2O2Pd] 373.0173. FT-IR (KBr/Nujol, , cm-1) 1620 (vs, OAc).  1H 

NMR (200 MHz, CD2Cl2, , ppm) 8.37 (d, 3JHH = 8 Hz, 2H, H4+H7); 7.85 (s, 2H, 

H5+H6), 7.50 (d, 3JHH = 8 Hz, 2H, H3+H8), 2.88 (s, 6H, CH3/Phen), 1.93 (s, 6H, 

OC(O)CH3). 
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2. Table of crystallographic parameters for Pd(dmphen)(OAc)2 

 

Table S1.  Crystal Data, Data Collection, and Refinement 

Parameters for 5cOEt2OH2 without the solvate(s). 

Cpnd 5c 

formula C36H36N4O8Pd2 

fw 865.49 

temp (K) 120(2) 

cryst. syst. monoclinic 

space group C2/c 

a (Å) 18.3528(5) 

b (Å) 18.1223(6) 

c (Å) 13.4071(4) 

(deg) 90.0 

 (deg) 119.4590(10) 

 (deg) 90.0 

V(Å3) 3882.6(2) 

Z 4 

D(calcd) (g cm-3) 1.481 (1.796 with solvates) 

crystal size (mm) 0.220.120.08 

F(000) 1744 

abs. coefmm-1) 0.978 

 range 2.85-27.00 

h k l range 0/23 

0/23 

-17/14 
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number total refl. 4235 

number unique refl.  4235 

number obs. refl. 

[I > 2(I)] 

3338 

 

R(int) 0.000 

restraints / parameters 0/228 

 = 1/[2(Fo)2+(aP)2+bP]  

(where P = [Fo2+Fc2]/3) 

a = 0.1 

b = 0.0 

final R 0.0583 

Rw 0.1714 

R indices (all data) 0.0736 

Rw (all data) 0.1935 

Goodness of fit/F2(Sw) 1.539 

max (e Å-3) 2.396 

min (e Å-3) -2.324 
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