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Formation de palladacycles à six chaînons à partir de précurseurs bisacétate phénantroline Pd(II) et d'isocyanate de phényle Formation of six-membered Palladacycles from Phenanthroline Pd(II) Bisacetate Precursors and Phenylisocyanate
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L'isocyanate de phényle réagit avec des complexes phénanthroline de palladium(II) bisacetate pour former quasi-quantitativement des palladacycles à six chaînons. Dans cette nouvelle réaction, le ligand acétate joue possiblement le rôle d'agent décarbonylant visà-vis de l'isocyanate an formant les palladacycles isolés par un réarrangement intramoléculaire.

Introduction

To date, the reactivity of isocyanates in the coordination sphere of various group-VIII metal centers is still a field only partially explored. [1][2][3] Such reactions can provide a very valuable access to various types of heterocycles and are thus especially attractive with respect to atom-economy considerations. [4][5][6][7] Moreover, they often bring some information about the possible deactivation pathways of catalytic processes involving isocyanate as reactant or product. [8][9][10] In this regard, we have previously shown that diimine-Pd(0) precursors catalytically trimerize arylisocyanates to form triarylisocyanurates (1, Scheme 1), [11] while some inactive palladacycles like 2, 3 or 4a, [9,12] which possibly result from deactivation of the active species, are eventually also formed. Scheme 1. Cyclotrimer and palladacycles formed from diimine-Pd(0) and Pd(II) complexes.

In the process of exploring the scope of this reaction, we have now investigated the reaction of PhNCO with various Pd(II)-phenanthroline precursors, like Pd(N-N)(OAc) 2 complexes (5a-c), where N-N represents 1,10-phenanthroline (o-phen), 3,4,7,8-tetramethylphenanthroline (tmphen) and 2,9-dimethylphenanthroline (dmphen), respectively. In a manner similar to the reaction with Pd(0) precursors, a reaction yielding the six-membered palladacycles 4a-c took place, providing thereby an easy access to these interesting compounds.

Results and discussion

When reacted with one equivalent phenylisocyanate in dichloromethane at 20 °C, the bis-acetato diimine Pd(II) complex 5a[13, 14] forms the known 6-membered palladacycle 4a [9,12] in ca. 30 % yield after two days. In presence of an excess of PhNCO (20 eq.), this reaction becomes nearly quantitative, allowing isolation of ca. 95 % of 4a after the same time. This reaction can also be performed at higher temperature in an aromatic solvent like toluene, 4a being then quantitatively isolated after 16 h (Scheme 2).

Scheme 2. Reaction between 5a and PhNCO.

This reaction can also be performed with the analogue of 5a possessing a tmphen (5b) ligand instead of phen to give the corresponding palladacycle 4b in good yields.

This new palladacycle was characterized by high resolution mass spectrometry (HRMS), infrared and 1 H NMR. In contrast, this reaction is not observed from other Pd(II) precursors such as Pd(o-phen)Cl 2 , Pd(OAc) 2 or from an equimolar Pd(acac) 2 /ophen mixture, pointing at the need to have a carboxylate anion and a diimine ligand simultaneously present in the medium for this reaction to proceed. Notably, we have checked that this reaction takes place with similar yield from a carefully dried complex 5a in anhydrous toluene, suggesting that traces of water are not involved in its mechanism. [START_REF]We have stated that Pd(II) complexes 5a-c often give rise to quite stable solvates with water molecules. A water-free sample of 5a could however be obtained after reacting this complex with acetic anhydride in nitrobenzene (12 h, 80 °C) followed by recrystallization with Et 2 O from nitrobenzene[END_REF] We then turned our attention toward the Pd(II) precursor 5c, presenting the more bulky dmphen ligand in place of o-phen, [14] and with this sterically crowded Pd(II) complex, the reaction takes also place and a nearly complete conversion of 5c into 4c is observed in dichloromethane at ambient temperature after 2 days (Scheme 3). The new palladacycle 4c is the 2,9-dimethylated analogue of 4a. This complex was fully characterized, allowing notably for the observation of the two strong carbonyl  CO stretching modes near 1645 and 1625 cm -1 diagnostic of the three carbonyl groups of this metallacycle. [9] Attempts to perform this reaction at 80 °C in toluene or other aromatic solvents were, however, not successful with partial decomposition of 5c taking place.

Scheme 3. Reaction between 5c and PhNCO.

The steric pressure exerted by the two methyl groups is revealed by the X-ray structure presently obtained for 5cOEt 2 OH 2 (Figure 1). [START_REF]This solvated complex presents nearly identical crystallographic parameters than two different solvates of 5c previously reported[END_REF] It results in a bending of ca. 30° of the phenanthroline core with the mean plane defined by the square planar coordination sphere around the Pd(II) atom. These crystallographic data are in line with those previously obtained for this and the related complex 5a and clearly indicate that 5a-c are mononuclear species. [14,[START_REF] Halligudi | [END_REF] This reaction presents some analogy with the trimerization reaction of PhNCO catalyzed by "(N-N)Pd 0 " species previously studied by some of us. [11] However, the isocyanurate cyclotrimer 1 was never isolated as side-product during any reaction of 5a with PhNCO, suggesting that "(o-phen)Pd 0 " is presently not transiently formed in the medium. Furthermore, the catalytic trimerization of PhNCO was previously shown not to take place with the sterically crowded 2,9-dimethylphenanthroline ligand. When this ligand was used, decomposition of the catalyst into metallic palladium was observed. [11] In contrast, the formation of palladacycle 4c takes readily place at ambient temperatures with the complex 5c. Thus, it is quite likely that the mechanistic pathway for the formation of 4a-c does not involve an elusive "(N-N)Pd 0 " intermediate. ). These steps would be in line with the well established insertion chemistry for this kind of cationic species. [18] It is indeed well known that on such complexes the carboxylate ligands are labile and can be exchanged for other ligands. [9,14] Alternatively, this reaction sequence might be seen as a [Pd(N-N)(OAc)] + -assisted anionic oligomerization of PhNCO by the acetate ion, the latter acting as the nucleophile. This makes sense given the fact that simple acetate salts such as KOAc, in a manner similar to many other inorganic salts, [19] are known to catalyze the cyclotrimerization of arylisocyanates. [20] Moreover, their activity as catalysts in this reaction has been shown to be strongly influenced by the nature of the associated cation. [21] However, this anionicoligomerization process would not ultimately lead to the cyclotrimer 1, but to the palladacycle 4a due to the presence of the second acetate ligand on the nearby Pd(II) center. Indeed, the final steps would involve an intramolecular rearrangement taking place by elimination of acetic anhydride and carbon dioxide to form the metallacyclic core by ring closure. Such an acetate-based intramolecular rearrangement resemble that which was proposed by Moiseev to rationalize the reduction of Pd(II) acetate clusters in presence of CO, [22] except that the "CO" molecule is presently replaced by PhNCO.

Then, depending on the number of inserted isocyanate molecules after ring closure, either 3a-c (n = 1) or 4a-c (n = 2) would be generated in the medium. Since we have previously clearly established that strained palladacycles such as 3a react readily with arylisocyanate to form 4a, [9] this mechanism rationalizes the selective formation of the 6-membered palladacycles 4a-c in presence of excess PhNCO.

[23] Also, based on literature reports, [14,25] the acetate ligand should be more labile in 5c than in 5a. If the first insertion of isocyanate in the Pd-OAc bond in the former complex is rate determining, the reaction might take place as fast with 5c than with 5a, in line with our preliminary observations.

Conclusions

In conclusion we report here a novel and efficient reaction toward the six-membered palladacycles 4a-c from air-stable phenanthroline Pd(II) acetate complexes and phenylisocyanate. While revealing that the particular complexes 5a-c are reactive toward arylisocyanates, this contribution clearly shows that other synthetic routes than these previously evidenced from [(N-N)Pd 0 ] intermediates are possible to obtain palladacycles such as 2-4. Thus, such species might also be directly formed from Pd(II) catalyst precursors when carboxylate ligands are present in the medium. This observation is particularly important in the context of Pd-catalyzed reductive carbonylations of nitroaromatics, because (Pd(II)/diimine/carboxylic acid) catalytic systems are among the most active ones[10] and because the formation of 2-4 and related palladacycles [26] has been proposed to be at the origin of the rapid deactivation of these catalytic systems, [8,9] especially when these reactions are performed in absence of alcohol or amine able to trap the isocyanate formed. [27] The scope and reaction mechanism of this new reaction is currently under investigation.

Experimental

General

The solvents were dried and distilled prior to use and the reaction were performed under inert (Ar) atmospheres in deaerated solvents. Unless otherwise specified, all reagents were purchased from commercial suppliers and used without further purification. Infrared spectra were recorded on a Bruker IFS28 spectrometer (400-4000 cm -1 ). 

Reactions of Pd(N-N)(OAc) 2 and PhNCO

Pd(phen){N(C 6 H 5 )C(O)N(C 6 H 5 C(O)N(C 6 H5)} (4a).

To 100 mg of Pd(phen)(OAc) 2 (0.24 mmol) were added 600 mg phenyl isocyanate (20 eq.) dissolved in 15 mL toluene.

The pale-yellow suspension was subsequently heated at 80 °C under stirring. After 16 h, an abundant orange-yellow suspension has formed in the reaction medium. The medium was cooled and 10 mL of ethanol were added to neutralize the excess isocyanate. The suspension is then decanted and washed with several fractions of diethylether yielding 140 mg of yellow-orange solid after subsequent vacuum-drying.

This solid is identified as palladacycle 4a by comparison with authentic samples (95%).

Pd(tmphen){N(C 6 H 5 )C(O)N(C 6 H 5 C(O)N(C 6 H 5 )} (4b).

To 50 mg of Pd(tmphen)(OAc) 2 (0.11 mmol) were added 630 mg phenyl isocyanate (50 eq.) dissolved in 15 mL toluene. The pale-yellow suspension was subsequently heated at 80 °C under stirring. After 16 h, the dark red reaction medium was cooled and 1 mL of EtOH followed by excess diethylether were added. The suspension is then decanted and washed with several fractions of diethylether yielding 39 mg of brown-orange solid after vacuum-drying. This solid is identified as palladacycle 4b (54% 

Pd(dmphen){N(C 6 H 5 )C(O)N(C 6 H 5 C(O)N(C 6 H 5 )} (4c).

To 100 mg of Pd(dmphen)(OAc) 2 (0.23 mmol) dissolved in 15 mL of CH 2 Cl 2 were added 550 mg of phenylisocyanate (ca. 20 eq.). The orange solution was stirred 2 days at ambient temperature. The solution is filtrated and diethylether is added to precipitate the title complex as an orange solid. X-Ray Crystallography. Diffraction data frames for 5c were collected on a CCD Saphire 3 Xcalibur apparatus using the graphite monochromatized MoK radiation ( = 0.71073 Å). The cell parameters are obtained with Denzo and Scalepack, [START_REF] Otwinowski | Processing of X-ray diffraction data collected in oscillation mode[END_REF] with 10 frames (psi rotation : 1° per frame). The data collection leads to 4235 independent reflections from which 3338 with I > 2.0(I). [START_REF] Nonius | [END_REF] The structures were solved by direct methods using the SIR97 program, [START_REF] Altomare | [END_REF] and then refined with full-matrix least-square methods based on F 2 (SHELX-97). [START_REF] Sheldrick | SHELX97-2. Program for the refinement of crystal structures[END_REF] The contribution of the disordered solvents (i. 

Figure 1 .

 1 Figure 1. ORTEP plot of the palladacycle of 5cOEt 2 OH 2 . Thermal ellipsoids are at the 50% probability level (see Supporting Information for details). Selected bond lengths (Å) and angles (deg): Pd1-O1 1.998(3), Pd1-O2 3.015, Pd1-O3 2.008(3), Pd1-O4 2.963, Pd1-N1 2.021(4), Pd1-N2 2.033(4), C15-O1 1.280(8), C15-O2 1.259(9), C17-O3 1.290(7), C17-O4 1.219(7), N1-Pd1-N2 81.64[START_REF]This solvated complex presents nearly identical crystallographic parameters than two different solvates of 5c previously reported[END_REF], O1-Pd1-O3 85.74[START_REF]This solvated complex presents nearly identical crystallographic parameters than two different solvates of 5c previously reported[END_REF], O1-Pd1-N1 94.58[START_REF]This solvated complex presents nearly identical crystallographic parameters than two different solvates of 5c previously reported[END_REF], O3-Pd1-N2 96.89[START_REF]This solvated complex presents nearly identical crystallographic parameters than two different solvates of 5c previously reported[END_REF].

  Scheme 4. Reaction mechanism proposed for the formation of 4a-c.

CaptionsScheme 1 .Scheme 4 .

 14 Scheme 1. Cyclotrimer and palladacycles formed from diimine-Pd(0) complexes.
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 1 Figure 1. ORTEP plot of the palladacycle of 5cOEt 2 OH 2 . Thermal ellipsoids are at the 50% probability level (see Supporting Information for details). Selected bond lengths (Å) and angles (deg): Pd1-O1 1.998(3), Pd1-O2 3.015, Pd1-O3 2.008(3), Pd1-O4 2.963, Pd1-N1 2.021(4), Pd1-N2 2.033(4), C15-O1 1.280(8), C15-O2 1.259(9), C17-O3 1.290(7), C17-O4 1.219(7), N1-Pd1-N2 81.64[START_REF]This solvated complex presents nearly identical crystallographic parameters than two different solvates of 5c previously reported[END_REF], O1-Pd1-O3 85.74(16), O1-Pd1-N1 94.58[START_REF]This solvated complex presents nearly identical crystallographic parameters than two different solvates of 5c previously reported[END_REF], O3-Pd1-N2 96.89[START_REF]This solvated complex presents nearly identical crystallographic parameters than two different solvates of 5c previously reported[END_REF].

  Schemes

  

  NMR (200 MHz, CDCl 3 , , ppm) 8.53 (d, 3 J HH = 8 Hz, 4H, H Ph ), 8.05 (s, 24H, H phen ),

	7.88 (s, 2H, H phen ), 7.53 (t, 3 J HH = 8 Hz, 4H, H Ph ), 7.36 -6.98 (m, 7H, H Ph ), 2.68 (s, 6H,
	CH 3/phen ), 2.20 (s, 6H, CH 3/phen ).

). Color: Brownorange. HRMS (positive ESI, CH 2 Cl 2 /MeOH, m/Z) z 672.1578 [M+H] + , m/z calc'd for [C 36 H 32 N 5 O 2 Pd] 672.1591. FT-IR (KBr, , cm -1 ) 1642 (s, C=O), 1623 (s, C=O). 1 H

  It is collected, washed with several fractions of diethylether and dried in vacuo, yielding 130 mg of the title palladacycle (88 %). Color: HH = 8 Hz, 2H, H phen ), 8.01(d, 3 J HH = 7 Hz, 4H, H Ph ), 7.90 (s, 2H, H phen ), 7.69 (d, 3 J HH = 8 Hz, 2H, H phen ), 7.49 (t, 3 J HH = 8 Hz, 2H, H Ph ), 7.37 (t, 3 J HH = 8 Hz, 4H, H Ph ), 7.26(d, 3 J HH = 8 Hz, 2H, H Ph ), 6.89 (t, 3 J HH = 7 Hz, 4H, H Ph ), 6.69 (t, 3 J HH = 7 Hz, 1 H, H Ph ),

	Orange. Dec. Pt: 180 ± 10 °C. HRMS (positive ESI, CH 2 Cl 2 , m/Z) 644.1291 [M+H] + ,
	m/z calc'd for [C 34 H 28 N 5 O 2 Pd] 644.1278. Anal. Calc'd. for C 34 H 27 N 5 O 2 Pd•H 2 O: C,
	61.68; H, 4.42; N, 10.58; Found: C, 61.67; H, 4.48; N, 10.52. FT-IR (KBr/Nujol, ,
	cm -1 ) 1645 (s, C=O), 1625 (s, C=O). 1 H NMR (200 MHz, CD 2 Cl 2 , , ppm) 8.26 (d,
	2.72 (s, 6H, CH 3/phen ).

3 J

Table of crystallographic parameters for Pd(dmphen)(OAc) 2Table S1 .

 S1 10%). HRMS (positive ESI, CH 2 Cl 2 , m/Z) z 432.0301 [M] + , m/z calc'd for [C 16 H 15 N 2 O 2 Pd] 373.0173. FT-IR (KBr/Nujol, , cm -1 ) 1620 (vs, OAc). 1 H NMR (200 MHz, CD 2 Cl 2 , , ppm) 8.37 (d, 3 J HH = 8 Hz, 2H, H 4 +H 7 ); 7.85 (s, 2H, H 5 +H 6 ), 7.50 (d, 3 J HH = 8 Hz, 2H, H 3 +H 8 ), 2.88 (s, 6H, CH 3/Phen ), 1.93 (s, 6H, OC(O)CH 3 ). Crystal Data, Data Collection, and Refinement Parameters for 5cOEt 2 OH 2 without the solvate(s).

			S5
	Figures for C 18 H 18 N 2 O 4 Pd•H 2 O: C 47.96, H 4.44, N 6.21; Fnd: C 47.51, 4.25, N 6.07. MS number total refl. 4235
	(positive ESI, CH 2 Cl 2 , m/Z) 432 (M + , 3%), 373 (M-OAc, 3%); 286 (M-2OAc, < 1%); number unique refl. 4235
	number obs. refl. [I > 2(I)] R(int) restraints / parameters  = 1/[ 2 (Fo) 2 +(aP) 2 +bP] 209 (dmphen+1, Cpnd formula (where P = [Fo 2 +Fc 2 ]/3) fw final R temp (K) R w	3338 0.000 0/228 a = 0.1 b = 0.0 C 36 H 36 N 4 O 8 Pd 2 0.0583 865.49 120(2) 0.1714	5c
	cryst. syst. R indices (all data)	monoclinic 0.0736	
	space group R w (all data) a (Å) Goodness of fit/F 2 (S w )	0.1935 C2/c 18.3528(5) 1.539	
	b (Å)  max (e Å -3 ) c (Å)  min (e Å -3 )	18.1223(6) 2.396 Figure 1 13.4071(4) -2.324	
	(deg)	90.0	
	 (deg)	119.4590(10)	
	 (deg)	90.0	
	V(Å 3 )	3882.6(2)	
	Z	4	
	D (calcd) ( g cm -3 )	1.481 (1.796 with solvates)
	crystal size (mm)	0.220.120.08	
	F(000)	1744	
	abs. coefmm -1 )	0.978	
	 range	2.85-27.00	
	h k l range	0/23	
		0/23	
		-17/14	

S4

2.
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Synthesis of Pd(N-N)(OAc) 2 complexes 5a-c

The diimine (N-N) in 10 mL of solvent is added to 250 mg palladium acetate ( 

Pd(dmphen)(OAc) 2 (5c).

THF was used as solvent with 6.0 equiv. of 2,9dimethylphenanthroline. Yield: 95 %. Dec. Pt: 143 ± 5 °C. Elemental analysis, Calc'd