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INTERSECTION THEORY OF WEIGHTED LENS
SPACES

ABDALLAH AL-AMRANI

HISTORY / PREFACE

As far as the author of the present monograph knows, weighted pro-
jective spaces (and implicitly weighted lens spaces ) were , first of all ,
studied in the Ph.D. thesis [TR] (not published) (1) :

The Cohomology Ring of Pseudo-Projective Spaces, by Henry J.
TRAMER. Johns Hopkins University (Baltimore , Maryland ) (1965).

The supervisor was Jun-Ishi IGUSA . He mentioned a part of Tramer’s
work at the I.C.M. in Sweden, 1962 [IG].
Almost ten years after, Tetsuro KAWASAKI published his compu-

tation of “Cohomology of Twisted Projective Spaces and Lens Com-
plexes” [KW] , independently of Tramer’s Ph.D.
It is remarkable that both of Tramer and Kawasaki begin their com-

putations by the case of weighted lens spaces (w.l.s.), from which they
deduce the case of weighted projective spaces (w.p.s.). And so did
Masato KUWATA for intersection homology [KU]. Indeed, w.p.s.’s are
covered , except for a finite number of “origin” points, by w.l.s.’s as
open subsets.
These spaces , well-known now as weighted (projective or lens) spaces

, are also called “anisotropic” [DE, JO1]. In his very early work [MO],
Shigefumi MORI used the qualifier “weak projective space” for the
“good” space where to embed generalized (i.e. weighted) complete in-
tersections . It was shown in [AA1983] , that this is nothing else but
the regular locus of the ambient w.p.s. Ourselves we prefer the adjec-
tive “twisted” because of its geometric meaning (“tordu” in French)
[KW].
Immediately after the publication of Kawasaki’s article, Jean-Pierre

JOUANOLOU asked his student A.A. to achieve a systematic coho-
mological study of these weighted spaces (projective as well as lens ) ,

1In 2013, we asked the Mathematics Library ( Université de Strasbourg ) to do
everything possible to get a copy from Johns Hopkins University. It took some
longtime, and cost 65$ ! Many thanks to our librarian Christine DISDIER.
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2 ABDALLAH AL-AMRANI

in the algebraic sitting (i.e. as algebraic varieties, or , more generally,
as schemes ). Algebraic K-theory was included in the question (2) .
At the same times (around 1974), Christophe DELORME [DE] made

a large study of the “Espaces projectifs anisotropes” as schemes (over
any ground ring ), and Shigefumi Mori (loc.cit.) found where to em-
bed his generalized complete intersections. Delorme was the first to
establish a global reduction of the weights of a w.p.s. We checked that
Delorme’s weights reduction is the best possible [AA1983].
Weighted projective and lens spaces belong to the realm of the so

popular toric varieties. However their essence is not toric : they do
not need any fancy fan to exist , nor to be wonderfully studied. They
are simple and nice examples of non-smooth algebraic varieties, living
in the pleasant sitting of G.I.T. , à la MUMFORD [MU]. Structure of
their cohomological theories has to be computed in terms of their in-
trinsic geometry as quotients of canonical spaces by canonical algebraic
groups (Gm, µq).
A good illustration of this is intersection homology as determined

by Kuwata (loc.cit.) : no cones of any fan are needed . Certainly, for
an arbitrary toric variety , these are necessary (by definition !). See
FULTON & al.[FS]. An other nice example is the early study done by
Igor DOLGACHEV [DO] where BOTT ’s theorem (on cohomology of
differential sheaves) is extended to w.p.s.’s .
Let us make precise that we do not pretend that toric geometry

is of no any help to the study of w.p.s.’s. For example, in his “....
huge Grothendieck group”, Joseph GUBELADZE [GU] showed some
evidence that the algebraic K-group of a w.p.s. (associated to vector
bundles ) may not be finitely generated ! Since the seventies (1970’s),
when the question was asked to the author by Jouanolou, that is still
an open problem (as far as we know, of course !).
Now, about algebraic twisted lens spaces, to the best of our knowl-

edge, no work is known , nothing is mentioned anywhere (3), except for
our own non-published work on the subject . In fact, under Jouanolou’s
supervision, we have carried out cohomological calculations for both
twisted spaces, projective and lens, at the same time and in the two
cases, topological and algebraic (see our Habilitation thesis, Rabat /
Strasbourg , 1985) . We dealt with : étale cohomology, complex K-
theory, CHOW group, coherent K-group, twisted CHERN classes [AA]
(unfinished !) References may be found inside the quoted literature.

2Since we are dealing with some history, let us recall that JOUANOLOU was a
cohomological student of GROTHENDIECK.

3We posted in vain a question in this regard on the MathOverflow wiki site.
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Notice that some KO-theory of particular w.l.s.’s has been considered
by Y. NISHIMURA and Z. YOSIMURA [NY].
Recently, in conjunction with the Manchester Toric Topology school

(Nigel RAY & cie.), some colleagues made relive our topological work
on w.p.s.’s. They answered some of our questionings or rediscovered
certain results [BFR1, BFR2, BFR3]. This motivated and encouraged
us to reconsider our non-published study of the algebraic twisted lens
spaces and to rewrite it in English.
A forthcoming work will deal with twisted lens BUNDLES (inchallah

!) .

The present monograph on algebraic twisted lens spaces contains :

I. Construction, properties.
II. Etale cohomology.
III. Intersection theory.

A. CHOW group;
B. Coherent K-theory;
C. ℓ-adic Homology.

A.A.
Trinidad de CUBA,
April 2014.
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I. Weighted lens spaces as schemes

We are going to construct weighted lens spaces as geometric quotients
in the category of schemes ([MU, GR1]).

A. Construction.

Let k be a fixed field (any characteristic, algebraically closed or not).
Fixed are also integers

q; q0, q1, . . . , qn ∈ Z \ {0}.

1. Denote by

Uq = Uq(k) = {λ ∈ k
∗ | λq = 1}

the subgroup of q-th roots of unity in the multiplicative group k∗ =
k \ {0}. This is a cyclic group the order of which is a divisor of |q|.
In case k is algebraically closed and |q| is prime to the characteristic

exponent of k, Uq has order equal to |q| (char.exp.(k) := 1 if char(k) =
0; := char(k) if not). If char(k) 6= 0 and |q| is a power of char(k), then
Uq = {1}. Put:

d = d(k, q) = |Uq| (order of Uq).

The constant algebraic group (over k), defined by the (abstract) group
Uq, is the group of d-th roots of unity (over k):

µd = µd,k = Spec(k[T ]/(T d − 1))

(since T d − 1 =
∏

λ∈Uq
(T − λ)).

Given a k-scheme S, an action (by automorphisms) of Uq on S, is
equivalent to an action of µd on S.

2. Consider the scheme X = An+1
k \ {0} (Am

k stands for affine space
over k). Let us make Uq act by automorphisms on X . Fix λ ∈ Uq.
This gives a k-algebra automorphism

u = uλ : R = k[T0, . . . , Tn] −→ R
Ts 7−→ λqsTs (0 ≤ s ≤ n),

which induces automorphisms (0 ≤ i, j ≤ n):

ui : Ri = k[T0, . . . , Tn, T
−1
i ] −→ Ri

uij : Rij = k[T0, . . . , Tn, T
−1
i , T−1

j ] −→ Rij .

Now these fill in obvious commutative diagrams:

Ri → Rij
∼
→ Rji ← Rj

ui ↓ ↓uij ↓uji ↓uj

Ri → Rij
∼
→ Rji ← Rj

(canonical mappings).
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The corresponding affine schemes (morphisms included) are denoted:

Xi ← Xij
∼
← Xji → Xj

gi ↑ ↑gij ↑gji ↑gj
Xi ← Xij

∼
← Xji → Xj

Since (Xi)0≤i≤n is an open affine covering of X = An+1
k \ {0}, with

Xi ∩ Xj ≃ Xij, the preceding commutative diagrams define an auto-
morphism gλ of X (which restricts to gi on Xi(0 ≤ i ≤ n)).
Let λ′ ∈ Uq. Then:

(gλλ′)|Xi = (gλ)|Xi ◦ (gλ′)|Xi = (gλ ◦ gλ′)|Xi

(to be checked at level of Ri, k-algebra of Xi!)
Whence: gλλ′ = gλ ◦ gλ′ . So we have a morphism of groups

g = g(q0, . . . , qn) : Uq −→ Autk(X),

that is an action (by automorphisms) of Uq on the scheme X .
3. Construction of a geometric quotient of X by Uq.
First let us recall the general case of a finite abstract group acting

on a scheme by automorphisms [GR1].
a) General case.
Consider a k-scheme Y and a finite abstract group G, acting on Y by

automorphisms. This means we have a group morphism G→ Autk(Y ).
It is equivalent to an action of the constant group scheme Gk on Y
[GR1].
Assume Y affine:

Y = Spec(A) (A k-algebra).

Since Autk(Y ) = Autk(A), the group G operates on A. Its invariants
form a sub-k-algebra AG ⊂ A.
The result we shall apply is [Exp. V, loc. cit.]:
i) The morphism Y → Z = Spec(AG) is a geometric quotient of Y

by G (i.e., by Gk).
ii) If S is a k-scheme where G operates, then a geometric quotient of

S by G exists when, and only when, S is covered by affine open subsets
which are G-invariant.
b) Geometric quotient of X by Uq.
Recall that X = An+1

k \ {0}, Uq = {λ ∈ k∗ | λq = 1}, k being the
fixed (under)ground field, and that µd is the constant scheme group
over k defined by Uq (abstract group). So, a geometric quotient of X
by Uq, or by µd, that is the same thing (by definition!).
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We are going to use a) ii) above. Because of the construction of
the operation g : Uq → Autk(X), a) ii) shows that such a geometric
quotient exists. Let us give an explicit construction.
We have group homomorphisms (0 ≤ i, j ≤ n):

Uq → Autk(Xi) = Autk(Ri) : λ 7→ g(λ)|Xi,
Uq → Autk(Xij) = Autk(Rij) : λ 7→ g(λ)|Xij,

which define operations of Uq on the algebras Ri, Rij. Put:

R
(q)
i = R

(q)
i (q0, . . . , qn) = R

Uq

i (invariants under Uq(
4))

Zi = Zi(q; q0, . . . , qn) = Spec(R
(q)
i ),

and

R
(q)
ij = R

(q)
ij (q0, . . . , qn) = R

Uq

ij

Zij = Zij(q; q0, . . . , qn) = Spec(R
(q)
ij ).

The inclusions R
(q)
i ⊂ Ri, R

(q)
ij ⊂ Rij, give morphisms ρi : Xi → Zi,

ρij : Xij → Zij such that (Zi, ρi) and (Zij , ρij) be geometric quotients
of Xi and Xij by Uq (respectively) (after a)i).).
Now, open immersions ϕij : Xij → Xi and canonical isomorphisms

Xij
∼
→ Xji are Uq-equivariant (see §.1). This induces commutative

diagrams (0 ≤ i, j ≤ n)

Xi
ϕij

← Xij
∼
→ Xji

ϕji

→ Xj

↓ ↓ ↓ ↓

Zi
ϕ̄ij

← Zij
∼
→ Zji

ϕ̄ji

→ Zj

where ϕ̄ij and ϕ̄ji are open immersions (see definition of geometric
quotients as in GIT[MU]). Let Z be the k-scheme obtained by gluing
the Zi’s along the isomorphisms Zij

∼
→ Zji above. The result is a

k-scheme morphism

ρ : X −→ Z

which restricts, for each i, to the geometric quotient ρi : Xi → Zi.
Hence (Z, ρ) is a geometric quotient of X by Uq (This is a local property
on Z by GIT! [MU] (0.§1.)).

4An explicit computation of R
(q)
i := R

Uq

q is given in next n◦. It will justify the
notation.
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Definition.
The k-scheme Z we just constructed is denoted

L̃n
k = Ln

k(q; q0, . . . , qn),

and called lens space over the field k, of type (q; q0, . . . , qn). We shall
see that Ln

k(q; q0, . . . , qn) is closely linked to the weighted projective
space P n+1

k (q0, . . . , qn, q). That is why such a lens space is also named
weighted lens space (or twisted 5 lens space).

c) Invariant subalgebra R
(q)
i = R

Uq

i .
Fix a generator ξ of Uq. For 0 ≤ i ≤ n, an element of the form

aα = T α0

0 · · ·T
αn

n ∈ Ri = k[T0, . . . , Tn, T
−1
i ] (αi ∈ Z, αs ∈ N(s 6= i))

is invariant under the action of Uq, if and only if

ξβaα = aα, where β =
n

∑

0

αsqs,

that is ξβ = 1. In other words β is multiple of |Uq|. So the invariant

subalgebra R
(q)
i = R

Uq

i is generated by the elements aα above with
∑n

0 αsqs multiple of |Uq|.

4. A graduation construction (à la Grothendieck).
We assume the integers qi(0 ≤ i ≤ n) positive. The k-algebra R =

k[T0, . . . , Tn] is N-graded by :

deg(Ti) = qi (0 ≤ i ≤ n), deg(λ) = 0 (λ ∈ k).

Equipped with this graduation the k-algebra R is denoted R =
R(q0, . . . , qn).
A Z-graduation is induced on each Ri = RTi

such that the invari-

ant subalgebra R
(q)
i ⊂ Ri (under Uq) is generated by homogeueous

elements of degree multiple of |Uq| (after 3.c).) This suggests to gener-
alize Grothendieck’s construction for Proj as follows ([GR2], (II, §.2)).
Consider a commutative ring A, with 1, N-graded, and an integer

r ≥ 0. Then one can construct a scheme S(A, r) such that

S(A, 0) = Proj(A),
S(R(q0, . . . , qn), |Uq|) = Ln

k(q; q0, . . . , qn).

So it is natural to define Len(A, r) := S(A, r) where r > 0 (Len stands
for lens (space) as Proj does for projective (space)).

Construction of the scheme S(A, r). Of course we follow the con-
struction of Proj in loc.cit. Let f ∈ A be a homogeneous element in

5We prefer the qualifyer twisted to weighted because of its geometric meaning
[KW].
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A of degree α > 0. Then Af is N-graded, and (Af)
(r) stands for its

subring generated by homogeneous elements of degree multiple of r
(hence (Af )

(0) = A(f) in standard notation for homogeueous elements
of degree 0.) Choose another homogeneous element g ∈ A of degree
β > 0. Let us check that we have a canonical isomorphism:

(Afg)
(r) ∼
→ ((Af )

(r))gα/fβ

(in Af deg(g
α/fβ) = 0).

In case r = 0, this is the first part of Lemma 2.2.2 [GR2] (II§.2). If
r > 0, since

((Afβ)gα/fβ)(r) = (Afβ)(r)gα/fβ

and Afβ = Af , the proof is the same as in the lemma loc.cit.
We deduce a canonical isomorphism

(Af )
(r)gα/fβ ≃ (Ag)

(r)fβ/gα.

Put
Sf = Spec((Af)

(r)) and S(f,g) = Spec((Af )
(r)gα/fβ).

So we get

S(f,g) → Sf , canonical open immersion,

S(f,g)
∼
→ S(g,f), canonical isomorphism.

By definition the scheme S(A, r) is obtained by gluing the affine schemes
Sf (f ∈ A homogeneous of degree > 0) along the isomorphisms S(f,g) ≃
S(g,f) (f, g ∈ A homogeneous of degree > 0).
In particular, 3.c) shows that

Ln
k(q; q0, . . . , qn) = S(R(q0, . . . , qn), |Uq|).

We end this paragraph by a remark on positivity hypothesis on the
weights q0, . . . , qn (made at the beginning of this §.4).

Remark. Recall the group morphism (§.2)

g = g(q0, . . . , qn) : Uq → Aut(X) (q ≥ 1, qi ∈ Z(0 ≤ i ≤ n))

which defines the operation of Uq on X the geometric quotient of which
is Ln

k(q; q0, . . . , qn) (§.3).
For any m ∈ Z such that qi +mq 6= 0 (all i) one has

g(q0 +mq, . . . , qn +mq) = g(q0, . . . , qn)

and, therefore,

Ln
k(q; q0 +mq, . . . , qn +mq) = Ln

k(q; q0, . . . , qn).

Choosing m such that

q′i := qi +mq > 0 (all i)
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we obtain
Ln
k(q; q0, . . . , qn) = Len(A, r)

with A = R(q′0, . . . , q
′
n), r = |Uq|.

B. Some properties of the scheme L̃n
k

We keep the same data and notation as before:

L̃n
k = Ln

k(q; q0, . . . , qn) = (An+1
k \ {0})/Uq.

1. The weighted lens space L̃n
k is integral and of finite type over k.

It is integral since it is a geometric quotient of X = An+1
k \ {0} (by

Uq) and X is integral. It is of finite type over k since it is covered by
open immersions

Zi = Zi(q; q0, . . . , qn) ⊂ L̃n
k(0 ≤ i ≤ n)

(given by its construction in A.3.b)), where the Zi are of finite type
over k:

Zi = Xi/Uq = Spec(R
Uq

i ).

2. Link to weighted projective spaces. If the group Uq has order equal
to q there exists an open immersion

L̃n
k = Ln

k(q; q0, . . . , qn) ⊂ P n+1
k (q0, . . . , qn, q) = P̃ n+1

k

where P̃ n+1
k is the well-known weighted projective space over k of type

(q0, . . . , qn, q) (constructed as geometric quotient and cohomologically
studied in [AA]).
Before going into details, let us roughly say that any weighted pro-

jective space is covered by affine charts which are, except for a point
(the origin, fixed under the Uqi in consideration), weighted lens spaces.
We use [AA], with its notation. Put qn+1 = q. Then (since |Uq| = q)

Yn+1 = Yn+1(q0, . . . , qn+1) ∼= An+1
k /Uq(q0, . . . , qn)

is the (n + 1)-th open affine chart of P̃ n+1
k ([AA] (II.3.c)). Hence it is

enough to check that we have an open immersion

L̃n
k = (An+1

k \ {0})/Uq →֒ Yn+1.

The operation of Uq on X = An+1
k \ {0} defining L̃n

k is the restriction
of that of Uq on An+1

k defining Yn+1 above. So the open immersion
An+1

k \ {0} ⊂ An+1
k gives the one we look for.

Let us be more specific.
The origin 0 ∈ An+1

k is fixed under the action of Uq. We have

L̃n
k = (An+1

k \ {0})/Uq = (An+1
k /Uq) \ {0}

open
−֒→ An+1/Uq

(no hypothesis is needed on |Uq| for that).
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If |Uq| = q, then we have

L̃n
k

∼
→ Yn+1 \ {(0, . . . , 0, 1)}

open
−֒→ P̃ n+1

k

(where (0, . . . , 0, 1) corresponds to 0 ∈ An+1
k /Uq). We always have a

morphism

An+1
k /Uq → Yn+1 = P̃ n+1

k \ P̃ n
k (q0, . . . , qn),

which is an isomorphism if |Uq| = q.
Conclusion. a natural morphism Ln

k(q; q0, . . . , qn)→ P n+1
k (q; q0, . . . , qn)

always exists. It is an open immersion if |Uq| = q.
3. Fix an integer r ≥ 1 such that |Urq| = r|Uq|.
We have a commutative diagram

Ln
k(rq; rq0, . . . , rqn)

∼
→ Ln

k(q; q0, . . . , qn)
↓ ↓

P n+1
k (rq0, . . . , rqn, rq)

∼
→ P n+1

k (q0, . . . , qn, q)

Vertical morphisms are those of 2. above.
The isomorphism down is natural (compatible with the canonical

morphism (quotient by Gm : An+2
k \ {0} → P̃ n+1

k )) (given by

Ri,0(q0, . . . , qn, q) = Ri,0(rq0, . . . , rqn, rq)

: local invariants)6.
The top isomorphism is also compatible with the canonical projection

An+1
k \ {0} → L̃n

k . It is a consequence of the equalities

R
(q)
i (q0, . . . , qn) = R

(rq)
i (rq0, . . . , rqn) (0 ≤ i ≤ n)

(because |Urq| = r|Uq| by hypothesis; see A.3.c).).

4. Another link to weighted projective spaces.
There is a natural morphism

θ : L̃n
k = Ln

k(q; q0, . . . , qn)→ P̃ n
k = P n

k (q0, . . . , qn).

Indeed, we have k-algebras inclusions

R
(0)
i ⊂ R

(q)
i

(invariants for Gm and Uq, respectively.) where Ri := k[T0, . . . , Tn]Ti
is

graded by: deg(Ts) = qs. This induces a morphism of affine schemes

θi : Zi → Yi

such that
θi|Zi ∩ Zj = θj |Zj ∩ Zi

6Ri,0 := R0
i stands for homogeneous elements of degree 0, after localization by

Ti.
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(Zi ∩ Zj = Zij = SpecR
(q)
ij , Yi ∩ Yj = Yij = SpecR

(0)
ij ). So the θi’s glue

together and give an affine morphism

θ : Z = L̃n
k → Y = P̃ n

k .

Next we make precise the geomeric nature of θ modulo a hypothesis
on the type (q; q0, . . . , qn) of the weighted lens space L̃n

k .

Proposition 1. Assume |Uq| = q, qi ≥ 1, (0 ≤ i ≤ n) and q divisible
by each qi. Then there exists an invertible OP̃n

k
- Module L with the

following commutative diagram:

L̃n
k V (L)∗

P̃ n
k

∼

θ can. proj.

where L̃n
k = Ln

k(q; q0, . . . , qn), P̃
n
k = P n

k (q0, . . . , qn) and V (L)∗ is the
complement of the zero-section of the vector bundle V (L) associated to
L.

Proof. First of all we fix (recall) some notations.

Y n
i = Yi(q0, . . . , qn) (0 ≤ i ≤ n)

is the complement of the closed immersion P n−1
k (q0, . . . , q̂i . . . , qn) ⊂

P̃ n
k .

Y n+1
i = Yi(q0, . . . , qn+1)

with qn+1 = q (0 ≤ i ≤ n+1). So P̃ n
k = ∪0≤i≤nY

n
i , P̃

n+1
k = ∪0≤i≤n+1Y

n+1
i ;

put V = ∪0≤i≤nY
n+1
i (open in P̃ n+1

k ). The inclusion of graded algebras
(deg(Tj) = qj(0 ≤ j ≤ n+ 1))

R(q0, . . . , qn) = k[T0, . . . , Tn] ⊂ R(q0, . . . , qn+1) = k[T0, . . . , Tn+1]

defines an affine morphism ω : V → P̃ n which fills in the commutative
diagram

L̃n Y n+1
n+1 \ {(0, . . . , 0, 1)} V

P̃ n

∼

θ ω
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The isomorphism
∼
→ comes from §.2(since |Uq| = q). The diagram

commutativity is easily (locally) checked, looking at k-algebras (of in-
variants · · · ) which define θ, ω.
For instance let us explicit

V ∗ := Y n+1
n+1 ∩ V = Y n+1

n+1 \ {(0, . . . , 0, 1)} = ∪Y
n+1
i,n+1 (0 ≤ i ≤ n);

we have:

Y n+1
i,j = Y n+1

i ∩ Y n+1
j = Spec((Rn+1

i,j )(0))

where Rn+1
i,j = k[T0, . . . , Tn+1, T

−1
i , T−1

j ] (deg(Ts) = qs, qn+1 = q).
The following commutative diagrams are the local (affine) form of

the ones considered.

(Rn+1
i )(0) (Rn+1

i,n+1)
(0) (Rn

i )
(q) (0 ≤ i ≤ n)

(Rn
i )

(0)

∼

The isomorphism is given by

T α0

0 · · ·T
αn+1

n+1 7→ T α0

0 · · ·T
αn

n (where

n+1
∑

0

αsqs = 0)

Now, since ω is affine, one has

V = Spec(ω∗OV ), with OV = OP̃n+1|V.

The weights qi (0 ≤ i ≤ n) are positive; so ([A1](II,2.(d)))

P̃ n = Proj R(q0, . . . , qn)

and ([GR2] (II.2.5.7))

OP̃n(−q)|Y n
i = OP̃n|Y n

i (0 ≤ i ≤ n)

because q is divisible by each qi. Hence the OP̃n-Module OP̃n(−q) is
invertible. So we need only to prove the following.

Lemma 2. Put P = P̃ n
k . If the weights qi devide q, then there exists

an isomorphism of OP -Algebras (quasi-coherent)

ω∗OV = SOP
(OP (−q)) (symmetric Algebra of OP (−q)),

inducing an isomorphism of P -schemes

V ∗ = V (OP (−q))
∗ (complement of zero-section).
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Proof. Let us define an OP -Algebras morphism

ũ : SOP
(OP (−q))→ ω∗OV .

Here P = P̃ n
k = Proj(R(q0, . . . , qn)). We have graded k-algebras

Rn = R(q0, . . . , qn), R
n+1 = R(q0, . . . , qn+1) (qn+1 = q),

and the Rn-graded module Rn[−q] is free, generated by 1 (of degree q).
Whence a graded Rn-modules morphism:

u : Rn[−q] → Rn+1 (= k[T0, . . . , Tn+1])
1 7→ Tn+1

defining an OP -Modules morphism:

OP (−q)→ ω∗OV .

This induces ũ above.

i) We show that ũ is an isomorphism. It is enough to see that, for
each i(0 ≤ i ≤ n), ũi = ũ|Y n

i is an isomorphism. Put Y = Y n
i (i being

fixed). There exist natural isomorphisms

SOP
(OP (−q))|Y = SOP |Y (OP |Y ) = (OP |Y )[T ] (T=indeterminate)

(ω∗OV )|Y = (ω|Y n+1
i )∗(OV |Y

n+1
i ).

Hence ũi is associated to the (Rn
i )

(0)-algebras morphism

ui : (Rn
i )

(0)[T ] → (Rn+1
i )(0) (⊂ k[T0, . . . , Tn+1, T

−1
i ])

T 7→ T αi

i Tn+1, with αi = −q/qi

(qi divides q by hypothesis).
Recall that the canonical isomorphism

OP (−q)|Y = OP |Y

corresponds to the isomorphism [GR2](II.2.5.7)

(Rn
i )

(0) ∼
→ (Rn[−q]Ti

)(0)

defined by multiplication by the invertible element T αi

i . But ui is bi-
jective: it is surjective because (Rn+1

i )(0) is generated by elements of
the form

aα = T α0

0 . . . T
αn+1

n+1

with αs ∈ N (s 6= i), αi ∈ Z, such that
∑n+1

0 αsqs = 0 (recall qn+1 = q);
and then

ui((T
β0

0 · · ·T
βn

n )T β) = aα
where

βs = αs (0 ≤ s ≤ n, s 6= i)
βi = αi +

q
qi
αn+1

β = αn+1
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ii) To check the second assertion in the lemma, consider the isomor-

phism

Spec(ũ) : V
∼
→ V (OP (−q)).

It sends V ∗ on V (OP (−q)
∗): indeed we have a closed immersion P ⊂ V

(induced by the obvious one P̃ n ⊂ P̃ n+1) such that V \P = V ∗. So we
need only to be sure that

V V (OP (−q))

P

Spec(ũ)

0-section

commutes.
But this is induced by the OP -Modules morphisms

OP (−q) ω∗OV

OP

0

which are associated to the Rn-modules graded morphisms (the dia-
gram of which is commutative)

Rn[−q] Rn+1

Rn

u

0 Ts 7→ Ts (0 ≤ s ≤ n), Tn+1 7→ 0

�

The proposition is proven. �

Remarks. Keep hypotheses of the preceding proposition.
α) If we go back to the definition of the morphism ([A1] (II.3))

ψ : P̃ n
k = P n

k (q0, . . . , qn)→ P n
k = P n

k (1, . . . , 1)

we see that

ψ∗(OPn(−m)) = OP̃n(−q), where m = q/lcm(q0, . . . , qn).
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β) From the proof of the proposition we deduce (commutative dia-
gram):

L̃n
k

(

V (ψ∗(OPn(−m)))
)∗

P̃ n
k

∼

θ can. proj.

Proposition 3. We assume |Uq| = q, qi ≥ 1(0 ≤ i ≤ n). The quotient-
scheme (see §.2)

An+1/Uq = (An+1/Uq)(q0, . . . , qn)

is then the affine projecting cone of a projective variety (over k) the

blunt cone of which is L̃n
k = Ln

k(q; q0, . . . , qn).

Proof. One has (A.3.a),c))

An+1/Uq = Spec(B), with B = RUq , R = k[T0, . . . , Tn].

The subalgebra of invariants B is generated by the monomials

aα = T α0

0 · · ·T
αn

n such that
∑

αsqs = 0 (mod q).

For such elements put

deg(aα) := (
∑

αsqs)/q.

This defines an N-graduation on B (with B0 = k), which is equivalent
to an operation of the line Dk = Spec(k[T ]) on An+1/Uq as we know.
So the quotient-scheme An+1/Uq is an affine cone with vertex the point
0. On the other hand, we have a closed immersion

Proj(B) −֒→ Pm
k (B being N-graded)

for some integer m ≥ 1. Indeed, as a subalgebra of invariants by Uq in
R, B is of finite type ([GR1], Exp. V), and, for each integer r ≥ 1, the
set

{T α0

0 · · ·T
αn

n |
∑

αsqs = rq}

is finite. Then from [GR2], II. the required closed immersion follows.
To conclude, see §.2. �
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II. Étale cohomology

Before computing étale cohomology of the schemes L̃n
k , we first com-

pute integral cohomology of the (topological) spaces L̃n
C.

This is done in a way which extends to the case of étale cohomology.
The results are heavily based on the cohomological study done for

weighted projective spaces in [AA].

1. Integral cohomology of L̃n
C.

The space L̃n
C = Ln

C(q; q0, . . . , qn), where q, q0, . . . , qn are positive in-
tegrs, is definied as the topological quotient

L̃n
C = (Cn+1)∗/µq

of the action
λ.(z0, . . . , zn) = (λq0z0, . . . , λ

qnzn),

λ ∈ µq = {z ∈ C | zq = 1} (q-th roots of unity).

Remark. This definition of L̃n
C works for q0, . . . , qn ∈ Z∗. If we

replace the qi’s by qi +mq, the preceding action of µq on (Cn+1)∗ does
not change. That explains why the integers q0, . . . , qn are taken positive
(choose m≫ 0).

To describe the cohomology ring H∗(L̃n
C,Z), we need to define some

integers attached to q0, . . . , qn, q. Fix h ∈ {0, 1, . . . , n} and, for I =
{i0, i1, . . . , ih} ⊂ {0, 1, . . . , n}, put

ℓI = qi0 · · · qih/gcd{qi0, . . . , qih}.

Now, define

ℓh = ℓh(q0, . . . , qn) = lcm{ℓI | I ⊂ {0, . . . , n}, |I| = h+ 1}.

Denote qn+1 = q. Then ℓh(q0, . . . , qn) divides ℓh(q0, . . . , qn+1). So we
have other integers:

mh = mh(q0, . . . , qn+1) = ℓh(q0, . . . , qn+1)/ℓh(q0, . . . , qn)

(where 0 ≤ h ≤ n).
To understand how these integers appear, and to see some of their

properties, look at I.§5[AA].

a) Additive structure.

Proposition 4. For L̃n
C = L̃n

C(q; q0, . . . , qn) we have

H i(L̃n
C,Z) =











Z if i = 0 or 2n+ 1;

Z/mhZ if i = 2h, 1 ≤ h ≤ n;

0 otherwise;

where the integers mh = mh(q0, . . . , qn, q) are defined above.
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Proof. We have: L̃n = (Cn+1)∗/µq = (C
n+1

µq
(q0, . . . , qn)) \ {0} (obvious

notation).
This gives a long cohomological exact sequence (with coefficients in

Z):

· · · → H i
0(C

n+1/µq)→ H i(Cn+1/µq)→ H i(L̃n)→ H i+1
0 (Cn+1/µq)→ · · ·

But Cn+1/µq is contractile; therefore we obtain isomorphisms

H i(L̃n)
∼
→ H i+1

0 (Cn+1/µq) (i ≥ 1).

Then the proposition follows from [AA] (I. §2 (d), §5. Corollary)
(H0(L̃n) = Z since L̃n is connected.). �

b) Multiplicative structure.

Let us recall and fix the notation:

P̃ n = P n
C (q0, . . . , qn), P̃ n+1 = P n+1

C (q0, . . . , qn, q),

L̃n = Ln
C(q; q0, . . . , qn).

We have canonical maps:

L̃n θ
−→ P̃ n ι

−→ P̃ n+1

(a projection and an inclusion).
Let ξi be the generator ofH

2i(P̃ n,Z) and ζj the generator ofH
2j(P̃ n+1,Z)

(1 ≤ i ≤ n, 1 ≤ j ≤ n + 1), defined by I. §5. Theorem, in [AA]. Then
one has:

ι∗(ζj) = mjξj (1 ≤ j ≤ n)

where mj = mj(q0, . . . , qn, q) (integer defined above). This is explicit
in the proof of the theorem we just refered to (and in its Corollary.).
The multiplicative structure of the ring H∗(L̃n,Z) is described in a

corollary of the following theorem.

Theorem 5. The graded rings homomorphism

θ∗ : H2∗(P̃ n
C ,Z)→ H2∗(L̃n

C,Z) (H2∗ =
⊕

i≥0

H2i)

is onto, and its kernel is generated (as an ideal) by the elementsmiξi (1 ≤
i ≤ n).

Before the proof, let us make precise the multiplicative structure we
are interested in.
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Corollary 6. In the polynomial ring Z[T1, . . . , Tn+1] consider the ideal
B generated by the elements:

miTi(1 ≤ i ≤ n), TiTj − eijTi+j(1 ≤ i, j ≤ n, i+ j ≤ n)

and TjTj(1 ≤ i, j ≤ n, i+ j ≥ n+ 1).
The integers eij are defined by

eij = eij(q0, . . . , qn) := ℓiℓj/ℓi+j,

where ℓh = ℓh(q0, . . . , qn) as introduced at the beginning of this para-
graph. Then we have a ring isomorphism

H∗(L̃n
C,Z) = Z[T1, . . . , Tn+1]/B.

This follows from the additive structure of H∗(L̃n,Z) and from the

multiplicative structure of H∗(P̃ n,Z) (computed in I.§6. [AA]).

Proof of Theorem. It is enough to shwo that the following sequences of
cohomology groups (with coefficients in Z) are exact.

0 → H2i(P̃ n+1)
ι∗
−→ H2i(P̃ n)

θ∗i−→ H2i(L̃n) → 0 (1 ≤ i ≤ n)
‖ ‖ ‖

Z
·mi−→ Z −→ Z/miZ

(θ∗i is induced by θ). Thus we have only surjectivity of the θ∗i ’s to prove.
First, this is done in particular case:

Lemma 7. If q is multiple of each qj(1 ≤ j ≤ n), then θ∗i is surjective.

This comes from the following. Since the lcm{q0, . . . , qn} divides

q, there exists a vector bundle (of rank 1 over C) E, over P̃ n =
PC(q0, . . . , qn), such that:

L̃n = Ln
C(q; q0, . . . , qn) E∗

P̃ n

∼

θ

(E∗ complement of 0-section).
This has been done in the algebraic case (in details) in I. B.4. Here

(analytical case), E can be briefly defined by: E = ψ∗(Lq/m), where ψ :

P̃ n → P n, ψ(y0, . . . , yn) = (y
m/q0
0 , . . . , y

m/qn
n ), withm = lcm{q0, . . . , qn},

L = canonical line bundle over P n. See also [AA](I, §1).
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Then the surjectivity of θ∗i follows from the GYSIN exact sequence

· · · H2i−2(P̃ n) H2i(P̃ n) H2i(E∗) H2i−1(P̃ n) · · ·

H2i(L̃n) 0
θ∗i

∼

Lemma 8. Let q′ be an integer > 0 multiple of q. Put

′L̃ = Ln
C(q

′; q0, . . . , qn).

The natural map γ : L̃n → ′L̃ induces epimorphisms (coefficients in Z)

γ∗j : H2j(′L̃
n
)→ H2j(L̃n) (1 ≤ j ≤ n).

First we check the implication:

Lemma 7 and Lemma 8 =⇒ θ∗i surjective

(for any q > 0, any weights q0, . . . , qn).
Take q′ = qq0 · · · qn. Then, with obvious notation, the following

triangle commutes

L̃n ′L̃
n

P̃ n

γ

θ θ′

and, in cohomology, gives θ∗i = γ∗i ◦ (θ
′)∗i (1 ≤ i ≤ n). Hence we are

done.

Proof of Lemma 8. The map γ : L̃n → ′L̃
n
is induced, since µq ⊂ µq′,

by the canonical one Cn+1/µq → Cn+1/µq′ we denote also by γ. Recall
that, by definition:

L̃n = Ln
C(q; q0, . . . , qn) = (Cn+1)∗/µq = (

Cn+1

µq

(q0, . . . , qn)) \ {0}.

Since γ : Cn+1/µq → Cn+1/µq′ is proper, one has homomorphisms
(with coefficients in Z as always):

(∗) γ∗ : H2j+1
c (Cn+1/µq′)→ H2j+1

c (Cn+1/µq) (1 ≤ j ≤ n)

Now consider the commutative diagrams

H2j(′L̃
m
)

∼
→ H2j+1

0 (Cn+1/µq′)
∼
→ H2j+1

c (Cn+1/µq′)
↓γ∗ ↓γ∗ ↓γ∗

H2j(L̃n)
∼
→ H2j+1

0 (Cn+1/µq)
∼
→ H2j+1

c (Cn+1/µq)
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(For the isomorphisms, see proof of Proposition above and I.§2.(d) in
[AA].)
Therefore, it is enough to see that the homomorphisms (∗) are onto.

Take P̃ n+1 = P n+1
C (q0, . . . , qn, q), and

′P̃
n+1

= P n+1
C (q0, . . . , qn, q

′). The

natural closed inclusion P̃ n ⊂ P̃ n+1(xn+1 = 0) has Cn+1/µq as open
complement (see [AA] I.§1.(a)). So we have commutative squares:

Cn+1/µq

open
−֒→ P̃ n+1 closed

←−֓ P̃ n

↓ ↓ ↓=

Cn+1/µq′ −֒→
′P̃

n+1
←−֓ P̃ n

the vertical arrow in the middle being (x0, . . . , xn+1) 7→ (x0, . . . , xn, x
d
n+1)

with d = q′/q. This gives a morphism of exact sequences

H2j(P̃ n+1) → H2j(P̃ n) → H2j+1
c (Cn+1/µq) → 0

↑ ↑= ↑γ∗

H2j(′P̃
n+1

) → H2j(P̃ n) → H2j+1
c (Cn+1/µq′) → 0

The desired surjectivity follows. �

�

c) Remark.
The preceding proof of the Theorem in b) shows the existence of:

L̃n ′L̃
n
(ℓ; q0, . . . , qn) ≃ ′E∗ ⊂ ′E

P̃ n

can.

commutative diagram with ℓ = lcm{q, q0, . . . , qn},
′E = line bundle over

P̃ n (arbitrary q, q0, . . . , qn).

2. Étale cohomology of L̃n
k .

In this section a ground field k is fixed. We assume k is algebraically
closed, and the (positive) integers q, q0, . . . , qn prime to its characteristic
exponent.
Consider an integer a ≥ 1, and a prime number ℓ, both prime to the

characteristic exponent of k and fixed in the sequel.
Schemes, morphisms of schemes will always mean k-schemes, mor-

phisms of k-shcemes.
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For a scheme S, we put

H i(S,Z/aZ) = H i(S, (Z/aZ)S),

H i(S,Zℓ) = lim
←−
s≥1

H i(S,Z/ℓsZ),

where H i(S, (Z/aZ)S) is the i-th étale cohomology group of S with
values in the constant sheaf defined by Z/aZ, and Zℓ is the ring of
ℓ-adic integers.
Here L̃n stands for the k-scheme constructed as a geometric quotient

in I.A.3.b).:

L̃n = Ln
k(q; q0, . . . , qn).

a). The additive structure of the étale cohomology L̃n is given by:

Theorem 9. For 0 ≤ j ≤ n,mj = mj(q0, . . . , qn, q) is the integer
defined at the beginning of §.1. Let αj ≥ 0 be maximal such that ℓαj

divide mj (i.e., αj = vℓ(mj)). Then we have (with (s, t) := gcd{s, t}):

(u) H i(L̃n,Z/aZ) =











Z/aZ if i = 0 or 2n+ 1,

Z/(a,mj)Z if i = 2j − 1 or 2j (1 ≤ j ≤ n),

0 if i ≥ 2n+ 2.

(v) H i(L̃n,Zℓ) =











Zℓ if i = 0 or 2n + 1,

Z/ℓαjZ if i = 2j (1 ≤ j ≤ n),

0 if i is odd 6= 2n+ 1 or i > 2n+ 1.

Proof of (u). The last Proposition in I.B.4. says the quotient-scheme
An+1/Uq (7) is the affine projecting cone of a projective variety the

blunt cone of whih is L̃n. Thus the cohomology of a cone ([AA] II.§5,
[DL]) implies:

Proposition 10. Let F be a torsion abelian group, prime to the char-
acteristic exponent of the ground field k. Then one has

α) H i(An+1/Uq, F ) =

{

F for i = 0,

0 for i 6= 0.

β) H i
0(A

n+1/Uq, F )
∼
−→ H i

c(A
n+1/Uq, F ) (i ≥ 0).

Now, from the computations of the étale cohomology groups of the
twisted projective space P̃ n

k ([AA]II.6(c)), we obtain:

7Recall that An+1/Uq = (An+1/Uq)(q0, . . . , qn) (I.A.3).
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Proposition 11. The quotient-scheme An+1/Uq has its cohomology
with compact supports as follows (same assumptions as above).

H i
c(A

n+1/Uq,Z/aZ) =











Z/aZ if i = 2(n+ 1),

Z/(a,mj)Z if i = 2j or 2j + 1 (0 ≤ j ≤ n),

0 if not.

With these two propositions one sees that the proof of part (u) in the
Theorem is quite similar to that one in the analytical case (§.1.a).). �

Proof of (v). Consider the closed immersion

P̃ n ⊂ P̃ n+1 = P n+1
k (q0, . . . , qn, q)

the complement of which is An+1/Uq (see II.3.(c) in [AA]). What fol-
lows is given by Proposition 11. (and its proof!). There is a morphism
of exact sequences (induced by the projection Z/ℓα+1Z→ Z/ℓαZ (α ≥
1)):

0 → H2j
c (An+1/Uq , G) → H2j(P̃n+1, G) → H2j(P̃n, G) → H2j+1

c (An+1/Uq, G) → 0
↓ ↓ ↓ ↓

0 → H2j
c (An+1/Uq , F ) → H2j(P̃n+1, F ) → H2j(P̃n, F ) → H2j+1

c (An+1/Uq , F ) → 0

where G and F stand for Z/ℓα+1Z and Z/ℓαZ. Fix j (0 ≤ j ≤ n) and
α ≥ αj (αj = vℓ(mj)). Then the preceding diagram identifies to:

1 7→ ℓα+1−αj

0 → Z/ℓαjZ → Z/ℓα+1Z
·mj

−→ Z/ℓα+1Z → Z/ℓαjZ→ 0
↓ ↓proj. ↓proj. ↓=

0 → Z/ℓαjZ → Z/ℓαZ
·mj

−→ Z/ℓαZ → Z/ℓαjZ→ 0
1 7→ ℓα−αj

(since (ℓα, mj) = ℓαj = (ℓα+1, mj)). Hence, by diagram commutativity,
the left vertical morphism is multiplication by ℓ. On the other hand
we have (i ≥ 1)

H i(L̃n,Z/aZ)
∼
−→ H i+1

0 (An+1/Uq,Z/aZ)
∼
−→ H i+1

c (An+1/Uq,Z/aZ)

(Proposition 10. allows to see this similarly to the analytical case
(§.1.a)). So, for 1 ≤ j ≤ n, it comes:

H2j(L̃n,Zℓ) = Z/ℓαjZ,

and H2j−1(L̃n,Zℓ) is the limit of the projective system (Mα, uα)α≥αj
:

Mα+1
uα−→ Mα

‖ ‖

Z/ℓαjZ
·ℓ
−→ Z/ℓαjZ
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Whence H2j−1(L̃n,Zℓ) = 0 (1 ≤ j ≤ n). What remains follows from
the assertion (u). �

b). The multiplicative structure of H∗(L̃n
k ,Zℓ) is computed in a sim-

ilar way to the analytical case §1.b).

Let ηi be the generator of H2i(P̃ n,Z/aZ) (0 ≤ i ≤ n) such that

H2i(P̃ n,Z/aZ)
ϕ∗

−→ H2i(P n,Z/aZ)
‖ ‖

Z/aZ
·ℓi−→ Z/aZ

(li = li(q0, . . . , qn), beginning of §.1).
The morphism ϕ : P n = P n

k (1, . . . , 1)→ P̃ n = P n
k (q0, . . . , qn) is well

defined and well studied in [AA] II.§3.,4.,6.
We have also a natural morphism, induced by the group inclusion

µq ⊂ Gm,

θ : L̃n → P̃ n.

Now we can state the analogous of Theorem in §.1.b)

Theorem 12. The ring homomorphism

θ∗ : H2∗(P̃ n,Z/aZ)→ H2∗(L̃n,Z/aZ)

is surjective. As an ideal, Ker(θ∗) is generated by the elements miηi
(1 ≤ i ≤ n).

Proof. By [JO2]1.5 we have a GYSIN exact sequence in the étale case
at our disposal (associatd to the complement of the zero-section of a
vector bundle). Therefore the proof is the same as in the analytical
case (§1.b)) because of the first Proposition in I.B.4. �

Corollary 13. 1) Same statement as in Theorem above with Zℓ instead
of Z/aZ , and ζi (Zℓ-generator of H

2i(P̃ n,Zℓ)) instead of ηi (1 ≤ i ≤ n)
(see first preceding Theorem.).
2) Let B be the ideal generated by the same elements as in Corollary
§1.b) but in Zℓ[T1, . . . , Tn+1]. Then we have a Zℓ-algebra isomorphism

H∗(L̃n,Zℓ) = Zℓ[T1, . . . , Tn+1]/B.

Proof. The assertion 2) follows from the additive structure ofH∗(L̃n,Zℓ)
(first Theorem above) and the multiplicative structure of H∗(P̃ n,Zℓ)
([AA]II.§6). �
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III. Intersection theory

We compute intersection theory (à la FULTON [FU]) for the twisted

lens spaces L̃n
k . Because of their intimate links to twisted projective

spaces P̃m
k (I.B., II.1.c)), this is done using results we obtained for P̃m

k

in [A1]. Computations are origanized as follows:

A. CHOW group;
B. Coherent K-theory;
C. ℓ-adic Homology.

We always assume the ground field k algebraically closed, and the
positive integers q, q0, . . . , qn prime to the characteristic exponent of k.

A. CHOW group of L̃n
k .

Let us recall that, for an integral scheme X , of finite type (here over
k), the Chow group is

A∗(X) =
⊕

Ai(X) (0 ≤ i ≤ dimX),

where Ai(X) is the free abelian group generatd by the integral closed
subschemes of X of dimension i, modulo rational equivalence.
A∗ is a covariant functor with respect to proper morphisms. If α :

U ⊂ X is an open immersion with complement β : Y ⊂ X , then we
have an exact sequence of groups

Ai(Y )
β∗

−→ Ai(X)
α∗

−→ Ai(U) −→ 0 (0 ≤ i ≤ dimX).

For this, and for other properties used in the sequel, the reader may
refer to [FU].
We consider the weighted lens space

L̃n
k = Ln

k(q; q0, . . . , qn)

as an open subscheme of the weighted projective space

P̃ n+1
k = P n+1

k (q0, . . . , qn+1), where qn+1 = q.

(cf. I.B.2.) More precisely consider the standard open affine subscheme

U = D+(Xn+1) = Spec(k[X0, . . . , Xn+1](Xn+1))

where deg(Xi) = qi (0 ≤ i ≤ n + 1) (notations of [GR2] (II.)) The
sub-k-algebra

(k[X0, . . . , Xn])
(q) ⊂ k[X0, . . . , Xn]

is generated by the monomials

Xα0

0 · · ·X
αn

n , with
n

∑

0

αiqi ≡ 0 (mod q).
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Thus we have

U = Spec(k[X0, . . . , Xn]
(q))

and, by definition of L̃n
k (I.A.3.4),

L̃n
k = U \ {point} = U \ V (Xq

0 , . . . , X
q
n)

(V (Xq
0 , . . . , X

q
n) is the origin defined by the equations “Xq

i = 0 ”). So
consider the canonical immersions (over the field k)

σ : P̃ n = P n(q0, . . . , qn) ⊂ P̃ n+1 (closed),

τ : L̃n = Ln(q; q0, . . . , qn) ⊂ P̃ n+1 (open).

Proposition 14. a) For each integer i, we have an exact sequence

0 −→ Ai(P̃
n)

σ∗−→ Ai(P̃
n+1)

τ∗
−→ Ai(L̃

n) −→ 0.

b) If i ∈ {0, . . . , n} and if

ci ∈ Ai(P̃
n) ≃ Z, c′i ∈ Ai(P̃

n+1) ≃ Z,

are the canonical generators defined in [A1] 2.1.(ii), then

σ∗(ci) = mic
′
i,

where mi = li(q0, . . . , qn+1)/li(q0, . . . , qn) (II. beginning of §.1).

The Chow group A∗L̃
n
k follows:

Corollary 15. We have

Ai(L̃
n
k) = Z/miZ (0 ≤ i ≤ n),

An+1(L̃
n
k) = Z

(the other groups Aj(L̃
n
k) are zero.).

The epimorphism τ ∗ in the proposition above gives generators of
A∗(L̃

n
k) from those (canonical) of A∗(P̃

n+1
k ).

Proof of Propositon. a) comes from the closed immersion σ : P̃ n ⊂
P̃ n+1 the complement of which is U , so that L̃n = U \ {closed point}.
One uses then the exact sequence associated to a closed subscheme and
the theorem [A1]2.1. (A0(U) = 0 since (σ∗)0 is an isomorphism; see b)
below.).
b) Notation and results are those of §.2.1 in [A1].
Let I = {s0, . . . , si}, 0 ≤ s0 < . . . < si ≤ n,

mI = li(q0, . . . , qn)/li(qs0 , . . . , qsi),

m′
I = li(q0, . . . , qn+1)/li(qs0 , . . . , qsi).
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Consider the canonical closed immersions

P̃I ⊂ P̃ n ⊂ P̃ n+1 (P̃I = P i
k(qs0, . . . , qsi)).

By definition of the generators ci and c
′
i, one has

[P̃I ] = mIci in Ai(P̃
n),

[P̃I ] = m′
Ic

′
i in Ai(P̃

n+1).

Whence

σ∗(ci) = (m′
I/mI)c

′
i = mic

′
i, as required.

�

Remark. [A1]2.1. Each generator ci of Ai(P̃
n) ≃ Z is such that

ci =
∑

tI [PI ] for any tI ∈ Z with
∑

I tImI = 1.

B. Coherent K-group of L̃n.

1. Let us recall some useful definitions and properties ([GR3, MA]).
For a noetherian scheme X , the Grothendieck group K·(X) is defined
by coherent sheaves over X . It is covariant functorial with respect to
proper morphisms. Support dimension of a sheaf provides the group
K·(X) with an increasing filtration (FiK·(X))i, sometimes denoted
(Fi(X))i for simplicity, which is functorial (for proper morphisms). The
associated graded group is

Gr K·(X) =
⊕

i

FiK·(X)/Fi−1K·(X).

There is a graded epimorphism

A∗(X)→ Gr K·(X)→ 0

where to [Y ] corresponds [OY ] (Y ⊂ X integral closed subscheme).
Another link between the two groups K·(X) and A∗(X) is of type

Riemann-Roch theorem when, for example, X is algebraic ([FU] Chap-
ter 18). That is a homomorphism

τX : K·(X)→ A∗(X)
⊗

Z

Q,

covariant in X (for proper morphisms), and such that

τX [OY ] = [Y ] + terms of degree < dimY

(Y ⊂ X integral closed subscheme). It induces an isomorphism

K·(X)
⊗

Z

Q
∼
−→ A∗(X)

⊗

Z

Q.
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Last, as for Chow group, if i : U ⊂ X is an open immersion with
complement j : Y ⊂ X , then we have at our disposal an exact sequence

K·(Y )
j∗
−→ K·(X)

i∗
−→ K·(U) −→ 0

(“Homotopy exact sequence” [GR3].)
2. Now we begin the study of the group K·(L̃

n). Notation is the
same as in §.A. The following exact sequence is fundamental for the
calculation of K·(L̃

n).

Proposition 16. We have an exact sequence (§.A)

0 −→ K·(P̃
n)

σ∗−→ K·(P̃
n+1)

τ∗
−→ K·(L̃

n) −→ 0

Proof. The sequence

K·(P̃
n)

σ∗−→ K·(P̃
n+1)

τ∗
−→ K·(L̃

n) −→ 0

is exact in the same way as for Chow groups in §.A. The injectivity
of σ∗ is given by the following lemma. The homomorphism σ∗ has a
factorization

K·(P̃
n) FnK·(P̃

n+1) K·(P̃
n+1)

Zn+1 Zn+1 ([A1]3.1.Theorem.)
u

∼ ∼

�

Lemma 17. The Z-linear map u has a triangular matrix (with respect
to the canonical basis) the diagonal of which is equal to (m0, m1, . . . , mn),
where mi = mi(q0, . . . , qn+1) (II.§.1).

Proof. There are commutative squares

Ah(P̃
n) Ah(P̃

n+1)

GrhK·(P̃
n) GrhK·(P̃

n+1) (0 ≤ h ≤ n),

can. ∼ can. ∼

where GrhK·(X) = FhK·(X)/Fh−1(X) (see 1. above). The vertical
isomorphisms are given by [A1]3.1Corollary. Now Proposition in §.A.

above and the Z-bases of K·(P̃
n) ≃ Zn+1 and K·(P̃

n+1) ≃ Zn+2, as
constructed in [A1]3.1., allow to conclude. To be more explicit, recall

that K·(P̃
n) has a basis (bi) of the form (loc. cit.)

bi =
∑

I

tI [OP̃I
] for some tI ∈ Z with

∑

I

tImI = 1
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(see b) in Proof of Proposition §.A. for notation.). Remark at the end
of §.A. ends the proof. �

Corollary 18. We have K·(L̃
n) = Z

⊕

FnK·(L̃
n), where the subgroup

FnK·(L̃
n) is finite of order

∏n
1 mi.

This is a consequence of the preceding Proposition and Lemma by
Bourbaki [BO] (Alg. VII, §.4., n◦7, Corollaire 3.) (m0 is equal to 1).

This corollary shows that, for studying the group structure ofK·(L̃
n),

we have only to do with its finite summand FnK·(L̃
n), which we shall

denote in all what follows by

Fn(L̃
n) = FnK·(L̃

n), where L̃n = Lk(q; q0, . . . , qn) (I.A.b.).

First we are going to decompose Fn(L̃
n) into a direct sum of p-groups

of the “same nature” in a similar way we did in the analytical case
([A2] §.3) (see next Theorem).

3. Factorization of Fn(L̃
n).

Consider the primary factorization of the integer q

q =
∏

pαi

i , 1 ≤ i ≤ s.

For each i = 1, . . . , s, put

αij = vpi(qj), 1 ≤ j ≤ n (p-adic valuation).

The main result of this section is the following theorem.

Theorem 19. There exists an isomorphism of groups:

Fn(L(q; q0, . . . , qn)) ≃
⊕

1≤i≤s

Fn(L(p
αi

i ; pαi0

i , . . . , pαin

i )).

Notice that the finite groups Fn(L(p
αi

i ; pαi0

i , . . . , pαin

i )) are pi-groups
after the Corollary in 2., and since the integer

mi(p
αi0

i , pαi1

i , . . . , pαin

i , pαi

i )

is a power of pi (see beginning of II.§.1.). On the other hand, by

definition of L̃n
k = Lk(q; q0, . . . , qn) as a geometric quotient by the roots

of unity group µq, we have (for any s ≥ 1, si ≥ 0)

L(ps; ps0, ps1, . . . psn) = L(ps; pr0, pr1, . . . prn)

where 0 ≤ ri < s (0 ≤ i ≤ n) are obtained by eucleadian division of
the si’s by s.
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Proof of the Theorem. In its principle, that is quite similar to the case
of complex topological K-theory of the analytical twisted lens space
L̃n
C = L(q; q0, . . . , qn) (cf. [A2] §.3).
To prove the theorem we proceed by lemmas.
Mainly we use the fact that the order of the involved groups is known

(2.,Corollary) and, on the other hand, that we dispose of the exact
sequence (2. Proposition):

0 −→ Fn(P̃
n) = K·(P̃

n)
σ∗−→ Fn(P̃

n+1)
τ∗
−→ Fn(L̃

n) −→ 0

where Fi(X) = Fi(K·(X)) (see 1. above).

Lemma 20. Let p be a prime number and β an integer ≥ 0. Put
βi = vp(qi) (0 ≤ i ≤ n). Then we have an isomorphism of groups:

Fn(L(p
β, q0, . . . , qn)) ≃ Fn(L(p

β ; pβ0, . . . , pβn)).

Proof. By Corollary in 2. and definition of the integersmi(q0, q1, . . . , qn, q)
(II.§.1), it is clear that the two groups are p-groups of the same order.
Because of the preceding exact sequence, the proof reduces to weighted

projective spaces as follows:

P̃ n(p) := Pk(p
β0, . . . , pβn),

P̃ n+1(p) := Pk(p
β0, . . . , pβn, pβ),

P̃ n := Pk(q0, . . . , qn),

P̃ n+1
0 := Pk(q0, . . . , qn, p

β),

with the canonical closed immersions

σ(p) : P̃ n(p) ⊂ P̃ n+1(p), σ0 : P̃
n ⊂ P̃ n+1

0 .

Therefore, it is enough to construct an isomorphism between the two
quotient-groups:

G(p) := Fn(P̃
n+1(p))/σ(p)∗Fn(P̃

n(p)),

G0 := Fn((P̃
n+1
0 ))/(σ0)∗Fn(P̃

n).

We need to define morphisms

f : P̃ n+1(p)→ P̃ n+1
0 , h : P̃ n(p)→ P̃ n.

This is a particular case of the following more general statement.

Lemma 21. If Pk(s0, . . . , sn) and Pk(t0, . . . , tn) are two twisted projec-
tive spaces such that the weights satisfy

si = multiple of ti (0 ≤ i ≤ n),
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then there exists a natural finite (hence proper) morphism of schemes:

Pk(t0, . . . , tn)→ Pk(s0, . . . , sn)

(Consider the corresponding graded polynomial algebras

S(s0, . . . , sn) = k[X0, . . . , Xn] (deg(Xi) = si),

S(t0, . . . , tn) = k[Y0, . . . , Yn] (deg(Yi) = ti).

The graded homomorphism defined by Xi 7→ Y ri
i (ri = si/ti) gives the

result.).
Hence we get a commutative diagram

P̃ n+1(p) P̃ n+1
0

P̃ n(p) P̃ n

f

h

σ(p) σ0

so that Fn(f) : Fn(P̃
n+1(p))→ Fn(P̃

n+1
0 ) induces a morphism

f̄ : G(p)→ G0.

From 2. Corollary one sees easily that the p-groups (finite) G(p) and
G0 have same order (the corresponding integers mi’s have their ℓ-adic
valuations equal (trivial if ℓ 6= p in the two cases), after their very
definition (II.§.1)). Therefore Lemma 20 will be established if we see
that f̄ is injective. This follows from the next lemma.

Lemma 22. We have a monomorphism

K·(f) : K·(P̃
n+1(p))→ K·(P̃

n+1
0 ).

Proof of Lemma 22. The two involved groups are free of same rank
n+2 ([A1] 3.1.,Théorème). So we have only to show that K·(f)

⊗

Z Q

is bijective. Consider the commutative triangle

P̃ n+1(p) P̃ n+1
0

P n+1

f

ϕ(p) ϕ0

with

ϕ(p) := ϕ(pβ0, . . . , pβn, pβ),

ϕ0 := ϕ(q0, . . . , qn, p
β).
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Here the morphism of schemes (over the ground field k)

ϕ = ϕ(s0, . . . , sn) : P
m
k → P̃m

k = Pk(s0, . . . , sm)

is given by the graded algebra homomorphism

k[X0, . . . , Xn] → k[Y0, . . . , Yn]

Xi 7→ Y si
i (deg(Xi) = si, deg(Yi) = 1).

(ϕ is finite, hence proper.)
All what we have to do is to be sure that K·(ϕ)

⊗

Z
Q is an isomor-

phism (for all integers si ≥ 1). But, after [A1] 3.5.c) (commutative
diagram (∗)) this is the case. Applying the result to ϕ(p) and ϕ0, we
are done. �

�

Lemma 23. There is a group isomorphism

Fn(L̃
n) ≃

⊕

1≤i≤s

Fn(L̃
n
i ),

where :

L̃n = Lk(q; q0, . . . , qn), L̃n
i = Lk(p

αi

i ; q0, . . . , qn).

This Lemma 23 and Lemma 20 will prove the Theorem.

Proof of Lemma 23. We have canonical inclusions

σ : P̃ n ⊂ P̃ n+1, σi : P̃
n ⊂ P̃ n+1

i

with:

P̃ n = Pk(q0, . . . , qn),

P̃ n+1 = Pk(q0, . . . , qn+1),

P̃ n+1
i = Pk(q0, . . . , qn, p

αi

i ) (1 ≤ i ≤ s).

The exact sequence given by §.2. (Proposition) shows that it is enough
to display an isomorphism

⊕

1≤i≤s

Fn(P̃
n+1)/(σi)∗Fn(P̃

n)
∼
−→ Fn(P̃

n+1)/σ∗Fn(P̃
n).

Consider the (finite, hence proper) morphisms:

gi : P̃
n+1
i → P̃ n+1,

defined in homogeneous coordinates by

“gi(x0, . . . , xn+1) = (x0, . . . , xn, x
r
n+1)”, with r = qn+1/p

αi

i .
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Recall that qn+1 = q =
∏

p
αj

j (1 ≤ j ≤ s). Similarly to Lemma 22, one
shows that K·(gi) is injective. Since the diagram

P̃ n+1
i P̃ n+1

P̃ n

gi

σi σ

commutes, K·(gi) induces a monomorphism:

Gi := Fn(P̃
n+1)/(σi)∗Fn(P̃

n)→ H := Fn(P̃
n+1)/σ∗Fn(P̃

n).

But Gi is a pi-group and
⊕

1≤i≤sGi and H are finite with same order
(Corollary in 2. and [A1] §.1 (1.3.2). More details are given in [A2]
§.3.8). The primes pi’s are distinct so that we obtain an isomorphism

⊕

1≤i≤s

Gi → H, as desired.

The Theorem is proven. �

�

4. The groups Fn(L̃
n(p)).

a). To study the group K·(L̃
n) it is enough to do so for the groups

Fn(L̃
n(p)), where L̃n(p) = Ln

k(p
β; pβ0, . . . , pβn) (p prime)

(after the factorization Theorem §.3).
One may assume

0 ≤ β0 ≤ β1 ≤ · · · ≤ βn ≤ β

(see comment after the so-called Theorem). In particular the weights
satisfy in such a case a divisibility property

(dw) : qn+1|qn| · · · |q1|q0 (modulo a permutation).

This is a hypothesis in the next theorem a corollary of which gives a
computation of Fn(L̃

n(p)) by generators and relations.
We have an exact sequence (see §.3 before)

0 Fn(P̃
n(p)) Fn(P̃

n+1(p)) Fn(L̃
n(p)) 0

Zn+1 Zn+1 ([A1]3.1)

σ(p)∗ τ (p)∗

∼ ∼
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which shows that the question reduces to the computation of the image
of the morphism σ(p)∗.
More generally let us consider the canonical closed immersion (de-

fined by “X0 = 0”):

σ : P̃ n = P (q1, . . . , qn+1) ⊂ P̃ n+1(q0, . . . , qn+1)

where the weights satisfy (dw) above. In this case, the free groups
Fn(P̃

n) and Fn(P̃
n+1) are endowed with canonical bases ([A1] Remar-

que 3.2). This allows us to achieve explicit calculations.
Comment. Recently in [HH] Tara Holm, Nigel Ray, . . ., quali-

fied weighted projective spaces with property (dw) as divisive! (this is
unfortunate!; the correct adjective should be divisible ?) They identi-
fied their equivariant K-theory and cobordism to functional rings at-
tached to the corresponding fan. Our feeling is that weighted projective
and lens spaces do not need any fan to exist (to shine wonderfully!).
Their toricity(8) is really secondary. Their (co)homological theories
must be looked for in terms of their intrinsic topology/geometry as in
[TR, KW, MO, KU, A2, DO].

b) As in [A2]3.5., and under the assumption (dw), we consider, keep-
ing the same notation (for our convenience): (1 ≤ h ≤ n + 1)

∆′
h = {α = (α1, . . . , αh) ∈ Nh | 0 ≤ αi < q0/qi,

h
∑

1

αiqi ≡ 0(q0)}

with ∆′
0 = {0}.

In the ring Z[X ], we have the following polynomials (9) (degree of
which is ≤ i) Ri, Tih (0 ≤ i ≤ n, 0 ≤ h ≤ i):

Ri :=
∑

α∈∆′

i+1

(1−X)di+1 , where di+1 = (α1q1 + · · ·+ αi+1qi+1)/q0;

Tih := X i−h
∑

α∈∆′

h

(1−X)dh .

Here is the main result of this §.4.

Theorem 24. Under the divisibility hypothesis (dw),
i) there exist unique integers

rij = rij(q0, . . . , qn+1), 0 ≤ i ≤ n, 0 ≤ j ≤ i,

defined by the identities in Z[X ]:

Ri = riiTii + ri,i−1Ti,i−1 + · · ·+ risTis;

8w.r.t. toric geometry.
9see also beginning of 5. further.
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ii) the Z-linear map induced by the closed immersion σ

Fn(P̃
n)

σ∗−→ Fn(P̃
n+1)

has the matrix

(rij) =









r00 r10 · · · rn0
r11 · · · rn1

. . .
...
rnn









,

in the canonical bases (mentioned above).

Hence we have the corollary:

Corollary 25. With the notations and assumptions of the beginning
(see a).), we have the following exact sequence

0 −→ Zn+1 (rij)
−→ Zn+1 −→ Fn(L̃

n(p)) −→ 0

where

rij = rij(p
β, pβn, pβn−1, . . . , pβ0) if 0 ≤ j ≤ i ≤ n,

rij = 0 if 0 ≤ i < j ≤ n.

Remark. Later we shall give a method of computing the integers rij,
and illustrate it by many examples (see §.5).
Now we prove the theorem.

c). Proof of the Theorem. Since the weights qi satisfy the condition
(dw) [A1] 3.2. shows that the free groups Fn(P̃

n) = K·(P̃
n) and

Fn(P̃
n+1) have Z-basis (bi) and (b′i) (0 ≤ i ≤ n), defined by

bi = [OP̃I
], with I = {1, . . . , i+ 1},

b′i = [OP̃J
], with J = {0, 1, . . . , i} (P̃J = P (q0, . . . , qi)).

Therefore, for each i = 0, . . . , n, there exist integers rij (0 ≤ j ≤ i),
unique such that

(1) σ∗(bi) = riib
′
i + ri,i−1b

′
i−1 + · · ·+ ri0b

′
0

(Recall σ : P (q1, . . . , qn+1) ⊂ P (q0, . . . , qn+1) is the canonical closed
immersion.). This is equivalent to

ψ′
∗σ∗(bi) = riiψ

′
∗(b

′
i) + · · ·+ ri0ψ

′
∗(b

′
0)

since ψ′
∗ is injective ([A1]3.5.c), where

ψ′ = ψ(q0, . . . , qn+1) : P̃
n+1 → P n+1

is defined coordinately by “Xi 7→ X
m/qi
i ” (m = lcm(q0, . . . , qn+1)).
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Take J = {j0, . . . , ji}, 0 ≤ j0 < · · · < ji ≤ n+ 1. Let us compute

ψ′
∗[OP̃J

] ∈ K·(P
n+1) = Z[X ]/(Xn+2),

where the class X̄ corresponds to 1− [OPn+1(−1)]. Applying [A1]3.5.3
to ψ′ we obtain

ψ′
∗[OP̃J

] = (
∑

α∈∆J

[OPn+1(−(α0qj0 + · · ·+ αiqji)/q0)])[OPJ
],

with

∆J = {α = (α0, . . . , αi) | 0 ≤ αh < q0/qj , α0qj0 + · · ·+ αiqji ≡ 0(q0)}.

So
ψ′
∗[OP̃J

] = (
∑

α∈∆J

(1− X̄)(α0qj0+···+αiqji)/q0)X̄n+1−i,

in Z[X ]/(Xn+2).
Now, in Z[X ], put (0 ≤ i ≤ n)

R′
i = Xn+1−i

∑

α∈∆′

i+1

(1−X)di+1 ,

Ti = Xn+1−i
∑

α∈∆′

i

(1−X)di ,

where dh = (α1q1 + · · · + αhqh)/q0, and ∆′
h is defined in b) above.

Whence we obtain, in Z[X ]/(Xn+2),

ψ′
∗[OP̃J

] =

{

R̄′
i for J = {1, . . . , i+ 1},

T̄i for J = {0, . . . , i}.

This shows that the equality (1) is the same as the following congruence

R′
i ≡ riiTi + ri,i−1Ti−1 + · · ·+ ri0T0 (Xn+2).

Since R′
i = Xn+1−iRi and Th = Xn+1−iTih (0 ≤ h ≤ i), this is equiv-

alent to

Ri ≡ riiTii + ri,i−1Ti,i−1 + · · ·+ ri0Ti0 (X i+1).

The Theorem is proven since the polyomials Ri and Tih have degree
≤ i. �

d) Determinant of the matrix (rij)
(cf Theorem and Corollary above).
We have det(rij) =

∏n
0 rii. There are two ways of computing the

integers rii. We keep the preceding notations and hypotheses.
i) The commutative diagram (0 ≤ i ≤ n)
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Ai(P̃
n) Ai(P̃

n+1)

GriK·(P̃
n) GriK·(P̃

n+1)

σ∗

can. can.

and Proposition in §.A, Theorem above (b).), [A1] 2.5-3.2 show that

rii = rii(q0, . . . , qn+1) = li(q0, . . . , qn+1)/li(q1, . . . , qn+1).

The divisibility hypothesis (dw) implies ([A1] 1.3.2)

rii = q0q1 · · · qi−1/q1q2 · · · qi = q0/qi.

ii) Now we use the polynomial identity in the preceding Theorem
(b).) to compute the integers rii. By definition of the polynomials
Ri, Tih we have

rii = Ri(0)/Tii(0),

and

Ri(0) = card∆′
i+1, Tii(0) = card∆′

i.

But card∆′
h is calculated in [A1] 3.5.e):

card∆′
h = qh−1

0 /q1 · · · qh−1.

One concludes rii = q0/qi and

det(rij) = qn0 /q1 · · · qn.

5. Computations.
Notations, assumptions are the same as in the preceding §.4. First,

we establish that the integers defined in the Theorem §.4.b) are the
solutions of Z-linear systems of equations we shall explicit. Then many
computation examples will be given.
We have (Theorem §.4.b))

rij = rij(q0, . . . , qn+1) (0 ≤ j ≤ i ≤ n), with qh+1|qh (0 ≤ h ≤ n).

In a similar way as in [A1](3.5.d)) (with same notation), the polyno-
mials Ri and Tih (0 ≤ h ≤ i ≤ n) (see 4.b)) satisfy the following (in
the ring Z[X ]):

Ri =
∑

j≥0

µi+1,j(1−X)j ,

Tih = X i−h
∑

j≥0

µhj(1−X)j ,
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where

µhj = coefficient of T jq0 in
h
∏

s=1

1− T q0

1− T qs
.

Let us fix i ∈ {0, . . . , n} and denote

us = coefficient of Xs in Ri (0 ≤ s ≤ i),

uh,s = coefficiient of Xs in Tih (i− h ≤ s ≤ i)

Then the formula (1−X)j =
∑

s≥0(−1)
s
(

j
s

)

Xs implies

us = (−1)s
∑

j≥0

µi+1,j

(

j

s

)

(0 ≤ s ≤ i)

uhs = (−1)s−i+h
∑

j≥0

µhj

(

j

s− i+ h

)

(i− h ≤ s ≤ i) (10)

If we put rih = rh (for simplification), Theorem §.4.b) shows that
(r0, . . . , ri) is the solution of the Z-linear system









u0i u1i · · · uii
u1,i−1 · · · ui,i−1

. . .
...
ui0

















r0
r1
...
ri









=









ui
ui−1
...
u0









(Note that deg(Tih) < i for h 6= 0 so that u1i = · · · = uii = 0.)
Similarly to [A1] 3.5.e), we have

u0i = 1,

uh,i−h = µh,0 + · · ·+ µh,h−1 = card (∆′
h) (1 ≤ h ≤ n),

and hence
uh,i−h = qh−1

0 /q1 · · · qh−1.

Therefore the matrix of the Z-linear system above has determinant
equal to

qt0/q
i−1
1 qi−2

2 · · · q1i−1 with t = i(i− 1)/2.

Examples
We compute the polynomials Ri and Tih, the degree of which is ≤ i,

then we deduce the integers rih from the linear system above.

i) n = 2, q0 = 2, q1 = q2 = q3 = 1.
Let us compute µhj (0 ≤ h ≤ 3);
In the general case, we have

µ00 = 1, µ0j = 0 (j ≥ 1),

10Note that uhs and βl
j in [A1] 3.5.5 are such that uhs = βh

n+s−i.
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µh0 = 1, µhj = 0 (j ≥ h), for h ≥ 1.

Now

(1− T 2)2

(1− T )2
= 1 + 2T + T 2,

(1− T 2)3

(1− T )3
= 1 + 3T + 3T 2 + T 3.

Since µhj is the coefficient of T jq0 in
∏h

s=1
(1−T q0 )
(1−T qs )

, we get

µ21 = 1, µ31 = 3, µ32 = 0.

Whence

R0 = 1

R1 = 1 + (1−X) = 2−X

R2 = 1 + 3(1−X) = 4− 3X

T00 = 1, T10 = X, T11 = X

T20 = X2, T21 = X

T22 = 1 + (1−X) = 2−X.

The integers rih (0 ≤ h ≤ i ≤ 2) are then given by:

r00 = 1,
(

1 0
0 1

)(

r10
r11

)

=

(

−1
2

)

, i.e.,r10 = −1, r11 = 2,





1 0 0
0 1 −1
0 0 2









r20
r21
r22



 =





0
−3
4



 ,

i.e., r20 = 0, r21 = −1, r22 = 2.

ii) n = 2, q0 = 4, q1 = 2, q2 = q3 = 1.
We have:

(1− T 4)2

(1− T 2)(1− T )
= (1 + T )(1 + 2T 2 + T 4) = 1 + T 4 + · · ·

(1− T 4)3

(1− T 2)(1− T )2
= (1 + 2T + T 2)(1 + 3T 2 + 3T 4 + T 6)

= 1 + 6T 4 + T 8 + · · ·

So

µ21 = 1, µ31 = 6, µ32 = 1.
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This gives

R2 = 1 + 6(1−X) + (1−X)2 = 8− 8X +X2.

The other polynomials Ri and Tih are the same as in the preceding
example and, in a similar way, one obtains

r00 = 1,
r10 = −1, r11 = 2,
r20 = 1, r21 = −4, r22 = 4.

iii) n = 3, q0 = 6, q1 = q2 = 3, q3 = q4 = 1.
Here we consider

(1− T 6)2

(1− T 3)2
= 1 + 2T 3 + T 6,

(1− T 6)3

(1− T 3)2(1− T )
= (1 + 2T 3 + T 6)(1 + T + T 2 + T 3 + T 4 + T 5)

= 1 + 3T 6 + · · · ,

(1− T 6)4

(1− T 3)2(1− T )2
= (1 + 2T 3 + T 6)(1 + T + T 2 + T 3 + T 4 + T 5)2

= 1 + 14T 6 + 9T 12 + · · · .

It follows
µ21 = 1,
µ31 = 3, µ32 = 0,
µ41 = 14, µ42 = 9, µ43 = 0

In particular the polynomials Ri (i = 0, 1, 2), Tih (0 ≤ h ≤ i ≤ 2) are
the same as in the example i). The others are:

R3 = 1 + 14(1−X) + 9(1−X)2 = 24− 32X + 9X2,

T30 = X3, T31 = X2 (always true, see i)).

T32 = X(1 + (1−X)) = 2X −X2,

T33 = 1 + 3(1−X) = 4− 3X.

So the integers rih (0 ≤ h ≤ i ≤ 2) are equal to those in i), and the r3h
(0 ≤ h ≤ 3) are given by the linear system:









1 0 0 0
0 1 −1 0
0 0 2 −3
0 0 0 4

















r30
r31
r32
r33









=









0
9
−32
24









Therefore: r30 = 0, r31 = 2, r32 = −7, r33 = 6.
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Remark. After Theorem §.4.b) and its Corollary, the group struc-

ture of K·(L̃
n), in case of examples i) and ii), is completedly computed.

In order to make it precise in case of example iii), we need to deal with
the two following situations (see Factorization Theorem §.3).

iv) n = 3, q0 = q1 = q2 = 3, q3 = q4 = 1.
Consider

(1− T 3)2

(1− T 3)2
= 1

(1− T 3)3

(1− T 3)2(1− T )
= (1 + T + T 2)2 = 1 + 2T 3 + · · ·

Whence

µ21 = 0,

µ31 = µ32 = 0,

µ41 = 2, µ42 = µ43 = 0.

Therefore

R0 = R1 = R2 = 1,

R3 = 1 + 2(1−X) = 3− 2X ;

T22 = 1,

T32 = X, T33 = 1.

The other polynomials are always equal to:

T00 = 1, T10 = X, T11 = 1,
T20 = X2, T21 = X,
T30 = X3, T31 = X2.

Here the matrix (uh,i−j)h,j is the identity for all i = 0, 1, 2, 3. Hence

r00 = 1 r10 = 0 r20 = 0 r30 = 0
r11 = 1 r21 = 0 r31 = 0

r22 = 1 r32 = −2
r33 = 3

v) n = 3, q0 = 2, q1 = q2 = q3 = q4 = 1.
Example i) shows that

µ21 = 1, µ31 = 3, µ32 = 0.

To compute the integers µ4h let us consider

(1− T 2)4

(1− T )4
= (1 + T )4 = 1 + 4T + 6T 2 + 4T 3 + T 4.
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This gives

µ41 = 6, µ42 = 1, µ43 = 0.

It follows

R3 = 1 + 6(1−X) + (1−X)2 = 8− 8X +X2.

The integers µjh (j = 2, 3) above show that the polynomials T3h (0 ≤
h ≤ 3) are the same as in example iii), and that the polynomials Ri

and Tih (0 ≤ h ≤ i ≤ 2) are as in example i). Hence the integers rih
(0 ≤ h ≤ i ≤ 2) have same value as in i), and the r3h’s are given by









1 0 0 0
0 1 −1 0
0 0 2 −3
0 0 0 4

















r30
r31
r32
r33









=









0
1
−8
8









that is r30 = r31 = 0, r32 = −1, r33 = 2.
Let us make precise the group structure (given by generators and

relations) of K·(L̃
n) corresponding to the computations we have just

acheived.

6. Groups K·(L̃
n).

From the Factorization Theorem (§.3) and Theorem §.4.b) with its
Corollary, we deduce the following:
i) K·(L

2(2; 1, 1, 1)) = Z⊕ Z3/(rij)Z
3,

where

(rij) =





1 −1 0
0 2 −1
0 0 2



 .

ii) K·(L
2(4; 2, 1, 1)) = Z⊕ Z3/(rij)Z

3,
where

(rij) =





1 −1 1
0 2 −4
0 0 4



 .

iii) K·(L
3(6; 3, 3, 1, 1)) = Z⊕F3(L

3(2; 1, 1, 1, 1))⊕F3(L
3(3; 3, 3, 1, 1))

where

F3(L
3(2; 1, 1, 1, 1)) = Z4/(rij)Z

4,

with (5.v))

(rij) =









1 −1 0 0
0 2 −1 0
0 0 2 −1
0 0 0 2









;
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and
F3(L

3(3; 3, 3, 1, 1)) = Z4/(rij)Z
4

with (5. iv))

(rij) =









1 0 0 0
0 1 0 0
0 0 1 −2
0 0 0 3









.

Conclusion.
§.5 shows that computations are handly feasible thanks to the algo-

rithm given before Examples (without any computer help!). About the
use of computers in education, sciences and culture, nowdays, reading
V.I.Arnold (11) would be of great benefit.

7.Comparison with Chow group.
No particular hypothesis is made here on the integers q, q0, . . . , qn.

Proposition 26. The canonical surjection (§.1)

A∗(L̃
n) −→ GrK·(L̃

n) −→ 0

is an isomorphism (L̃n = Lk(q; q0, . . . , qn)).

Proof. The Propositions in A. and B.2 show that we have a morphism
of exact sequences:

0 −→ A∗(P̃
n)

σ∗−→ A∗(P̃
n+1)

τ∗
−→ A∗(L̃

n) −→ 0
can.↓ ↓can. ↓can.

0 −→ GrK·(P̃
n)

Gr(σ∗)
−→ GrK·(P̃

n+1)
Gr(τ∗)
−→ GrK·(L̃

n) −→ 0

By Corollary [A1] 3.1 we know that the two first vertical maps (from
the left) are isomorphisms. Hence the third one is too. �

C. ℓ-adic Homology of L̃n.
Let ℓ be a prime number different from the characteristic of the

ground field k. For definition and properties of ℓ-adic homologyH∗(X,Z)
(X being a k-scheme of finite type), we refer to [LA].
1. Without any hypothesis on the integers q, q0, . . . , qn, let

L̃n = Lk(q; q0, . . . , qn).

Proposition 27. We have

Hi(L̃
n,Zℓ) =











Zℓ if i = 1 or 2(n+ 1),

Z/ℓαjZ if i = 2j, 0 ≤ j ≤ n,

0 if not.

11Yesterday and Long Ago (Springer / Phasis 2007)
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where

αj = vℓ(mj), mj = mj(q0, . . . , qn, q)

(see beginning of II.§.1).

Proof. By definition of L̃n, one has

L̃n = U \ {point}, U = open complement of P̃ n ⊂σ P̃
n+1

(P̃ n = P n
k (q0, . . . , qn), P̃

n+1 = P n+1
i (q0, . . . , qn, q)). The homology ex-

act sequence related to the closed immersion σ (with coefficients in
Zℓ)

· · · −→ Hi+1(U) −→ Hi(P̃
n) −→ Hi(P̃

n+1) −→ Hi(U) −→ · · ·

and [A1]1.(1.1), where H∗(P̃ ) is computed, imply (exact sequences)

α) Zℓ = H2(n+1)(P̃
n+1)

∼
−→ H2(n+1)(U),

β) 0 → H2i(P̃
n) −→ H2i(P̃

n+1) −→ H2i(U) → 0
‖ ‖

Zℓ
·mi−→ Zℓ (0 ≤ i ≤ n)

(see proof of 2.3.(ii) in [A1])

γ) 0→ Hi(U)−→Hi−1(P̃
n)

inj.
−→Hi−1(P̃

n+1) (i odd).
So the ℓ-adic homology of U is

Hi(U,Zℓ) =











Zℓ if i = 2(n+ 1),

Z/ℓαjZ if i = 2j, 0 ≤ j ≤ n,

0 otherways,

with αj = vℓ(mj). Now the exact sequence related to a closed point in
U , and the fact that Hj(U,Zℓ) = 0(j = 0, 1), give the isomorphisms

δ)

Hi(U,Zℓ)
∼
−→ Hi(L̃

n,Zℓ) (i 6= 1),

H1(L̃
n,Zℓ)

∼
−→ H0({pt},Zℓ) = Zℓ.

This proves the Proposition. �

2. Comparison with Chow group.

Proposition 28. The homomorphism fundamental class induces an
isomorphism

A∗(L̃
n)

⊗

Z

Zℓ
∼
−→

⊕

i

H2i(L̃
n,Zℓ(−i)).
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Proof. The fundamental class defines a morphism of exact sequences

0 → Ai(P̃
n)

⊗

Z Zℓ → Ai(P̃
n+1)

⊗

Z Zℓ → Ai(L̃
n)

⊗

Z Zℓ → 0
↓ ↓ ↓

0 → H2i(P̃
n,Zℓ(−i)) → H2i(P̃

n+1,Zℓ(−i)) → H2i(L̃
n,Zℓ(−i))→ 0

where the first sequence comes from Proposition III.A. (since Zℓ is Z-
flat), and the second is given by β) and δ) in the proof of the preceding
Proposition. So the result follows from its analogue for the weighted
projective spaces P̃ n and P̃ n+1 ([A1] 2.9.).

�

3. Transcendental case.

Here the ground field k is the field C of complex numbers.
i) We denote by L̃n(C) the analytical space, associated to the scheme

L̃n = LC(q; q0, . . . , qn). That is nothing else but the quotient-space of
(Cn+1)∗ = Cn+1\{0} by the following action of the group µq (q-th roots
of unity):

µq × (Cn+1)∗ → (Cn+1)∗

(λ, x0, . . . , xn) 7→ (λq0x0, . . . , λ
qnxn)

ii) The same argument as in the proof in §.1 above, shows that
the homology with compact supports of L̃n(C) is as follows (one uses

transcendental case of P̃ , [A1] 2.10).

Hc
i (L̃

n(C),Z) =











Z if i = 1 or 2(n + 1),

Z/mjZ if i = 2j − 1, 1 ≤ j ≤ n,

0 otherways,

with mj = mj(q0, . . . , qn, q) = lj(q0, . . . , qn, q)/lj(q0, . . . , qn) (II.1.).

Remark.
By restriction to the sphere S2n+1 ⊂ (Cn+1)∗, the µq-operation con-

sidered above allows to define a compact twisted lens space [TR, KW]

S2n+1/µq = (S2n+1/µq)(q0, . . . , qn),

having the same homotopy type as L̃n(C).
Thanks to the universal coefficients formula, one deduces its homol-

ogy from its cohomology (loc. cit.)

Hi(S
2n+1/µq,Z) =











Z if i = 0 or 2(n+ 1),

Z/mjZ if i = 2j − 1, 1 ≤ j ≤ n,

0 if not.
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On the other hand, L̃n(C) is a trivial fibre bundle of the form

L̃n(C) ≃ S2n+1/µq × R∗
+.

The THOM-GYSIN isomorphism

Hc
i+1(L̃

n(C),Z) ≃ Hi(S
2n+1/µq,Z)

confirms then the computation done in ii).
iii) The homomorphism fundamental class

A∗(L̃
n)→

⊕

i

Hc
2i(L̃

n(C),Z)

is bijective.

Proof. This is similar to that of Proposition §.2, because of [A1] 2.10.iii)
(case of P̃ n). �
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