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Abstract—Channel State Information at the Transmitter
(CSIT), which is crucial in multi-user systems, is always imperfect
in practice. In this paper we focus on the optimization of
beamformers for the expected weighted sum rate (EWSR) in the
MIMO Broadcast Channel (BC) (multi-user MIMO downlink).
We first review some beamformer (BF) designs for the perfect
CSIT case, such as Weighted Sum MSE (WSMSE) and we
introduce the Weighted Sum SINR (WSSINR) point of view, an
optimal form of the Signal to Leakage plus Noise Ratio (SLNR)
or Signal to Jamming plus Noise Ratio (SJNR) approaches. The
discussion then turns to mean and covariance Gaussian CSIT. We
review an exact Monte Carlo based approach and a variety of
approximate techniques and bounds that all reduce to problems
of the (deterministic) form of perfect CSIT. Other simplified exact
solutions can be obtained through massive MIMO asymptotics,
or the more precise large MIMO asymptotics. Whereas in the
perfect CSI case, all reviewed approaches are equivalent, they
differ in the partial CSIT case. In particular the expected
WSSINR approach is significantly better than expected WSMSE,
with large MIMO asymptotics introducing some further tweaking
weights that yield a deterministic approach that becomes exact
when the number of antennas increases. The complexity and
relative performance of the in the end many possible approaches
and approximations are then compared.

I. INTRODUCTION

Interference is the main limiting factor in wireless trans-

mission, due to its open nature. In cellular systems, one can

distinguish between the cell interior where a single cell design

is appropriate and the cell edge where a multi-cell approach

is mandatory. Even if interference would be treated as noise

in a simplified approach for both cases, in the single cell

design it is only the receiver that handles the interference noise

whereas in the multicell approach, transmitter coordination is

required (as in Interference Alignment (IA) for the Interference

Channel (IC) formulation). Since Channel State Information at

the Transmitter (Tx) (CSIT) is more difficult to obtain than the

CSIR at the Receiver (Rx) (except perhaps in the TDD case),

we focus here on the single cell downlink which in the multi

user (MU) case becomes the Broadcast Channel (BC).

Partial CSIT formulations can typically be categorized as

either bounded error / worst case (relevant for quantization

error in digital feedback) or Gaussian error (relevant for analog

feedback, prediction error, second-order statistics information).

The Gaussian CSIT formulation with mean and covariance

information was first introduced for SDMA (a Direction of

Arrival (DoA) based historical precedent of MU MIMO), in

which the channel outer product was typically replaced by

the transmit side channel correlation matrix, and worked out

in more detail for single user (SU) MIMO, e.g. [1], [2]. The

use of covariance CSIT has recently reappeared in the context

of Massive MIMO, [3], [4] where a not so rich propagation

environment leads to subspaces (slow CSIT) for the channel

vectors so that the fast CSIT can be reduced to the smaller

dimension of the subspace, which is especially crucial for

Massive MIMO.

With partial CSIT, outage is possible. Hence both Sum Rate

(SR) and outage probability Pout have been considered as

optimization criteria. As a result, there is some utility for

adding space-time coding. This can be added independently of

the beamformer design [1]. Also, in wireless Tx there is always

fading, although with full CSIT outage can be avoided. In any

case, we shall consider the ergodic sum rate as optimization

criterion.

The contributions here are significantly better partial CSIT

approaches compared to the EWSMSE approach in [5], and

present deterministic alternatives to the stochastic approxima-

tion solution of [6]. We first treat the general Gaussian CSIT

case. Then we focus on a location aided CSIT case with zero

mean and identity plus rank one Tx side covariance matrix

and no Rx side correlations. The goal here is to introduce

a meaningful beamforming design at finite SNR and finite

Ricean factor when not much more than the (location based)

LoS information is available at the Tx. In this paper, Tx may

denote transmit/transmitter/transmission and Rx may denote

receive/receiver/reception.

II. MAX WSR TECHNIQUES WITH PERFECT CSI

We shall focus on MU MIMO designs in which each user

gets one stream since some user selection can make this

typically preferable over multiple streams/user. The Nk × 1
received signal at user k is

yk = Hk gk xk +

K∑

i=1, 6=k

Hk gi xi + vk (1)

where xi is the signal intended for user i, channel Hk has size

Nk ×M , and vk is additive noise. We shall assume that the

K ≤M signal streams xi have unit variance and that the noise

is white with vk ∼ CN (0, σ2
v,kINk

) (for Nk Rx antennas). We

shall assume that the received signal in (1) is rescaled1 so that

1For the case of spatially correlated noise (interference) at the receiver, one
may need to equivalently consider Rx side channel correlation Cr,k after
noise whitening.



the noise variance becomes σ2
v,k = 1. The spatial Tx filter or

beamformer (BF) is gk. Consider as a starting point for the

optimization the weighted sum rate (WSR)

WSR = WSR(g) =

K∑

k=1

uk ln
1

ek
(2)

where g represents the collection of BFs gk, the uk are rate

weights, the ek = ek(g) are the Minimum Mean Squared

Errors (MMSEs)

1

ek
= 1 + gH

k HH
k R−1

k
Hkgk = (1− gH

k HH
k R−1

k Hkgk)
−1

Rk = Rk +Hkgkg
H
k HH

k

Rk =
∑

i 6=k Hkgig
H
i HH

k + INk
,

(3)

Rk, Rk are the total and interference plus noise Rx covariance

matrices resp. and ek is the MMSE obtained at the output

x̂k = fHk yk of the optimal (MMSE) linear Rx fk,

fk = R−1
k Hkgk . (4)

A. Minimum Weighted Sum MSE (WSMSE)

For a general Rx filter fk we have the MSE

ek(fk,g) = (1− fHk Hkgk)(1− gH
k HH

k fk)

+
∑

i 6=k f
H
k Hkgig

H
i HH

k fk + ||fk||2 =

1−fHk Hkgk−gH
k HH

k fk+
∑

i f
H
k Hkgig

H
i HH

k fk+||fk||2.
(5)

The WSR(g) is a non-convex and complicated function of g.

Inspired by [7], we introduced in [8], [9] an augmented cost

function, the Weighted Sum MSE, WSMSE(g, f , w)

=

K∑

k=1

uk(wk ek(fk,g)− lnwk) + λ(

K∑

k=1

||gk||2 − P ) (6)

where λ is a Lagrange multiplier and P is the Tx power

constraint. After optimizing over the aggregate auxiliary Rx

filters f and weights w, we get the WSR back:

min
f ,w

WSMSE(g, f , w) = −WSR(g) +

K∑

k=1

uk (7)

where we shall typically ignore the last constant term. The

advantage of the augmented cost function is however that

alternating optimization for one of the three sets of quantities,

g, f , w, keeping the other two fixed, leads to solving simple

quadratic or convex functions

min
wk

WSMSE ⇒ wk = 1/ek

min
fk

WSMSE ⇒ fk=(
∑

i

Hkgig
H
i HH

k +INk
)−1Hkgk

min
gk

WSMSE ⇒
gk=(

∑
i uiwiH

H
i fif

H
i Hi+λIM )−1HH

k fkukwk

(8)

Indeed, after substituting (5) into (6), one can notice the

UL/DL duality, leading to a duality between Tx and Rx filters

and the optimal Tx filter gk in (8) is indeed of the form of a

MMSE linear Rx for the dual UL in which λ plays the role of

Rx noise variance and ukwk plays the role of stream variance.

B. SINRs

The WSR can be rewritten as

WSR = WSR(g) =

K∑

k=1

uk ln(1 + SINRk) (9)

where 1 + SINRk = 1/ek or for general fk :

SINRk =
|fkHkgk|2∑K

i=1, 6=k |fkHkgi|2 + ||fk||2
. (10)

From (9), one can obtain the WSR variation as

∂WSR =

K∑

k=1

uk

1 + SINRk
∂SINRk (11)

which can be interpreted as the variation of a weighted

sum SINR (WSSINR) criterion. The BFs obtained from this

criterion interpretation are of course the same as those of the

WSR or WSMSE criteria, but this interpretation shows that the

WSR approach is an optimal approach to the SLNR or SJNR

heuristics. The details of this WSSINR approach correspond

to the Kim-Giannakis discussion below.

C. Optimal Lagrange Multiplier

The optimal λ for the update of gk in (8) can be found

using a (bisection) line search on
∑K

k=1 ||gk||2 − P = 0 as

in [10]. Alternatively, it can be updated analytically as in [8],

[9] by exploiting
∑

k g
H
k

∂WSMSE
∂g∗

k

= 0. This leads to the

same result as in [11] where the problem of introducing and

finding a Lagrange multiplier was avoided by reparameterizing

the stream powers to satisfy the power constraint. If we

reparameterize using normalized BF vectors g
′

k (||g′

k|| = 1)

and stream powers pk: gk =
√
pk g

′

k , then the power

constraint becomes
∑K

k=1 pk − P = 0. The reparameterized

powers become pk = p
′

k/
∑K

i=1 p
′

i in which the new power

parameters p
′

k are now unconstrained and lead to

SINRk =
|fkHkg

′

k|2p
′

k∑K
i=1, 6=k |fkHkg

′

i|2p
′

i + ||fk||2
∑K

m=1 p
′

m

. (12)

This leads to the same Lagrange multiplier expression obtained

in [7] on the basis of a heuristic that was introduced in [12]

as was pointed out in [13].

D. Kim-Giannakis [14]

Let Qk = gkg
H
k be the transmit covariance for stream k.

The WSR can be rewritten as

WSR =

K∑

k=1

uk[ln det(Rk)− ln det(Rk)] (13)

where Rk = Hk(
∑

i Qi)H
H
k + INk

, and

Rk = Hk(
∑

i 6=k Qi)H
H
k + INk

. Kim and Giannakis propose

to keep the concave signal terms and to replace the convex

interference terms by the linear (and hence concave) tangent



approximation. More specifically, consider the dependence of

WSR on Qk alone. Then

WSR = uk ln det(R
−1

k
Rk) +WSRk ,

WSRk =
∑K

i=1, 6=k ui ln det(R
−1

i
Ri)

(14)

where ln det(R−1

k
Rk) is concave in Qk and WSRk is convex

in Qk. Since a linear function is simultaneously convex and

concave, consider the first order Taylor series expansion in Qk

around Q̂ (i.e. all Q̂i) with e.g. R̂i = Ri(Q̂), then

WSRk(Qk, Q̂) ≈WSRk(Q̂k, Q̂)− tr{(Qk − Q̂k)Âk}

Âk = − ∂WSRk(Qk, Q̂)

∂Qk

∣∣∣∣∣
Q̂k,Q̂

=

K∑

i=1, 6=k

uiH
H
i (R̂−1

i
−R̂−1

i )Hi

(15)

Note that the linearized (tangent) expression for WSRk

constitutes a lower bound for it. Now, dropping constant

terms, reparameterizing the Qk = gkg
H
k and performing this

linearization for all users, we get

WSR(g, ĝ) = λP+
K∑

k=1

uk ln(1 + gH
k HH

k R̂−1

k
Hkgk)− gH

k (Âk + λI)gk .
(16)

The gradient of this concave WSR lower bound is actually

still the same as that of the original WSR or of the WSMSE

criteria! And it allows an interpretation as a generalized

eigenvector condition

HH
k R̂−1

k
Hkgk =

1 + gH
k HH

k R̂−1

k
Hkgk

uk
(Âk + λI)gk (17)

or hence g
′

k = Vmax(H
H
k R̂−1

k
Hk, Âk + λI) is the ”max”

generalized eigenvector of the two indicated matrices and is

proportional to the ”LMMSE” gk in (8), with max eigenvalue

σk = σmax(H
H
k R̂−1

k
Hk, Âk+λI). This can be viewed as an

optimally weighted version of the SLNR solution [15] which

takes as Tx filter g
′

k = Vmax(H
H
k Hk,

∑
i 6=k H

H
i Hi + I).

Let σ
(1)
k = g

′H
k HH

k R̂−1

k
Hkg

′

k and σ
(2)
k = g

′H
k Âkg

′

k. The

advantage of formulation (16) is that it allows straightforward

power adaptation: substituting gk =
√
pk g

′

k in (16) yields

WSR = λP +

K∑

k=1

{uk ln(1 + pkσ
(1)
k )− pk(σ

(2)
k + λ)} (18)

which leads to the following interference leakage aware water

filling

pk =

(
uk

σ
(2)
k + λ

− 1

σ
(1)
k

)+

. (19)

For a given λ, g needs to be iterated till convergence. And λ
can be found by duality (line search):

min
λ≥0

max
g

λP+
∑

k

{uk ln det(R
−1

k
Rk)−λpk} = min

λ≥0
WSR(λ).

(20)

E. High/Low SNR Behavior

At high SNR, the max WSR BF converge to the ZF

solutions with uniform power distribution. For ZF BF, the BS

shall use for user k a spatial filter gk such that

gH
k = fkHkP

⊥
(fH)H

k

/||fkHkP
⊥
(fH)H

k

|| (21)

where P⊥
X = I − PX and PX = X(XHX)−1XH are

projection matrices (onto the column space of X or its

orthogonal complement, so here the row space of (fH)k)

and (fH)k denotes the (up-down) stacking of fiHi for users

i = 1, . . . ,K, i 6= k.

At low SNR, we get the matched filter (MF) solution for

the user with largest ||Hk||2 (max singular value).

F. Number of Local Optima

In the MIMO case, more Rx antennas does not help to

increase the total number of streams. However, they may lead

to different distributions of ZF (high SNR) between Tx and Rx,

yielding different ZF channel gains (fkHkgk)! If the Rx ZF’s n
streams, then the Tx only has to ZF M−1−n streams! So, the

number of possible solutions (for one stream/user) becomes

[16]:
K∏

k=1

(

Nk−1∑

n=0

(M − 1)!

n!(M − 1− n)!
) (22)

i.e., for each user, the Rx can ZF n between 0 and N − 1
streams, to choose among M−1. These different ZF solutions

are the possible local optima for max WSR at infinite SNR.

By homotopy [9] this remains the number of max WSR local

optima as the SNR decreases from infinity. Of course, as the

SNR decreases further, a stream for some user may get turned

off until only a single stream remains at low SNR. Hence, the

number of local optima (ZF possibilities) reduces as streams

disappear at finite SNR .

As a corollary, in the MISO case, the max WSR optimum

is unique, since there is only one way to perform ZF BF.

G. Finding the Global MU-MIMO Optimum: Deterministic

Annealing

At low SNR, the BF solution can be written down an-

alytically. The usual water filling at low SNR leads to a

Matched Filter (MF) solution for the user with the largest

||Hk||2 (max singular value). Deterministic annealing can be

used as in [9] to track this global optimum from SNR = 0
to the desired SNR. Along this SNR trajectory, a homotopy

method is used to track the evolution of the BF filters:

as the SNR gets incremented, one iteration of the iterative

methods above is sufficient to update the gk to the higher

SNR. In deterministic annealing, the homotopy evolution gets

complemented by phase transitions which correspond to a

stream for one more user getting switched on. As this stream

then barely gets switched on (the SNR for this stream is near

zero), its optimal BF initialization corresponds to a colored

noise (existing streams) MF, whereas the existing streams get

barely affected.



III. MEAN AND COVARIANCE GAUSSIAN CSIT

In this section we drop the user index k for simplicity.

Mean information about the channel can come from channel

feedback or reciprocity, and prediction, or it may correspond

to the non fading (e.g. LoS) part of the channel (note that

an unknown phase factor ejφ in the overall channel mean

does not affect the BF design). Covariance information may

correspond to channel estimation (feedback, prediction) errors

and/or to information about spatial correlations. The separable

(or Kronecker) correlation model (for the channel itself, as

opposed to its estimation error or knowledge) below is ac-

ceptable when the number of propagation paths Np becomes

large (Np ≫ MN ) as possibly in indoor propagation. Given

only mean and covariance information, the fitting maximum

entropy distribution is Gaussian. Hence consider

vec(H) ∼ CN (vec
(
H
)
,CT

t ⊗Cr) (23)

which can be rewritten as

H = H+C1/2
r H̃C

1/2
t (24)

where C
1/2
r , C

1/2
t are Hermitian square-roots of the Rx and

Tx side covariance matrices

E(H−H)(H−H)H = tr{Ct} Cr

E(H−H)H(H−H) = tr{Cr} Ct
(25)

and the elements of H̃ are i.i.d. ∼ CN (0, 1). Obviously, a

scale factor needs to be fixed in the product tr{Cr}tr{Ct} for

unicity. In what follows, it will also be of interest to consider

the total Tx side correlation matrix

Rt = EHHH = H
H
H+ tr{Cr}Ct . (26)

Note that the Gaussian CSIT model could be consid-

ered an instance of Ricean fading in which the ratio

tr{HH
H}/(tr{Cr}tr{Ct}) could be considered the Ricean

factor.

IV. EXPECTED WSR (EWSR)

Now, so far we have assumed that the channel H is known.

The scenario of interest however is that of perfect CSIR

but partial (LoS) CSIT. Once the CSIT is imperfect, various

optimization criteria could be considered, such as outage

capacity. Here we shall consider the expected weighted sum

rate EHWSR(g,H) =

EWSR(g) = EH

∑

k

uk ln(1 + gH
k HH

k R−1

k
Hkgk) (27)

where we now underlign the dependence of various quantities

on H. The EWSR in (27) corresponds to perfect CSIR

since the optimal Rx filters fk as a function of the ag-

gregate H have been substituted, namely WSR(g,H) =
maxf

∑
k uk(− ln(ek(fk,g))). At high SNR we get:

Theorem 1: Sufficiency of Incomplete CSIT for Full DoF

in MIMO BC In the MIMO BC with perfect CSIR, it is

sufficient that for each of the K users rank (Rt,k) ≤ Nk and

that the BS knows any vector hk ∈ Range (Rt,k) (as long

as the resulting vectors hk are linearly independent) in order

for ZF BF to produce min(M,K) interference free streams

(degrees of freedom (DoF)).

V. MAX EWSR BY STOCHASTIC APPROXIMATION

In [6] a stochastic approximation approach for maximizing

the EWSR was introduced. In this approach the statistical

average gets replaced by a sample average (samples of H

get generated according to its Gaussian CSIT distribution in a

Monte Carlo fashion), and one iteration of the min WSMSE

approach gets executed per term added in the sample average.

Some issues with this approach are that in this case the

number of iterations may get dictated by a sufficient size for

the sample average rather than by a convergence requirement

for the iterative approach. Another issue is that this approach

converges to a local maximum of the EWSR. It is not im-

mediately clear how to combine this stochastic approximation

approach with deterministic annealing.

In the rest of this paper we discuss various deterministic

approximations and bounds for the EWSR, which can then be

optimized as in the full CSI case.

VI. EXPECTED WSR (EWSR) BOUNDS

1) EWSR Lower Bound: EWSMSE: EWSR(g) is first

of all difficult to compute and also again difficult to max-

imize directly. As observed in [5], it appears much more

attractive to consider EHek(fk,g,H) since ek(fk,g,H) is

quadratic in H. Hence in [5], the cost function optimized

is EHWSMSE(g, f , w,H) where WSMSE(g, f , w,H) ap-

pears in (6). However,

minf ,w EHWSMSE(g, f , w,H)
≥ EH minf ,w WSMSE(g, f , w,H) = −EWSR(g)

(28)

or hence EWSR(g) ≥ −minf ,w EHWSMSE(g, f , w,H) .
So now only a lower bound to the EWSR gets maximized,

which corresponds in fact to the CSIR being equally partial

as the CSIT. The EWSR gap can be reduced by following the

optimization over the Tx filters gk with an optimization over

the Rx filters fk for full CSIR, namely by taking the fk as in

(4).

From (5), we get

EHek = 1−2ℜ{fHk Hkgk}+
∑K

i=1 f
H
k Hkgig

H
i H

H

k fk

+fHk Rr,kfk
∑K

i=1 g
H
i Rt,kgi+||fk||2.

(29)

From the first line we see that the signal term disappears if

Hk = 0! Hence the EWSMSE lower bound is (very) loose

unless the Rice factor is high, and is useless in the absence of

mean CSIT.

2) EWSR Upper Bound: Using the concavity of ln(.), we

get

EWSR(g) ≤
K∑

k=1

uk ln(1 + EHk
SINRk(g,Hk)) . (30)



VII. MAX ES-EI-NR APPROACH

Consider the approximation

EH ln(1 + SINRk) ≈ ln(1 +
ES

EI +N
) . (31)

This can be solved as easily as min (E)WSMSE. However,

here the H̃k part in the signal gets also counted in the signal

power, unlike in the EWSMSE criterion where it gets ignored.

The approximation (31) becomes exact in Massive MIMO, as

M →∞. The WSR can still be rewritten as

WSR =

K∑

k=1

uk[ln det(R̃k)− ln det(R̃k)] (32)

where R̃k = (
∑

i Qi)H
H
k Hk + IM , and

R̃k = (
∑

i 6=k Qi)H
H
k Hk + IM . We now apply the algorithm

in section II.D, replacing R̃k, R̃k by E R̃k, E R̃k, and hence

HH
k Hk by Rt,k and expressions of the form HH

k R−1Hk by

Rt,kR
−1.

A. Large MIMO Asymptotics Refinement

The SU MIMO asymptotics from [17], [18] (in which

both M,N → ∞, which tends to give more precise ap-

proximations when M is not so large) for a term of the

form ln det(QHHH+ I) (as in (32)) correspond to replacing

HH
k Hk in the R̃k and R̃k in (32) with a kind of Rt,k with

a different weighting of the H
H

k Hk and Ct,k portions, of the

form R
′

t,k = akCt,k + H
H

k BkHk for some scalar ak and

matrix Bk that depends on Cr,k.

For the general case of Gaussian CSIT with separable

(Kronecker) covariance structure, [17], [18] lead to asymptotic

expressions of the form

EH ln det(I +HQHH)

= maxz,w

{
ln det

[
I + wCr H

−QH
H

I + zQCt

]
− zw

}
.

(33)

For the simpler case of zero channel means Hk = 0 and

no Rx side correlations Cr = I , and with per user Tx side

correlations Ct ← Ck, the EWSR can be rewritten with large

MIMO asymptotics as

EWSR =
K∑

k=1

{
uk max

zk,wk

[
ln det(I+zkGGHCk)+Nk ln(1+wk)−zkwk

]

−uk max
z
k
,w

k

[
ln det(I+zkGkG

H
k
Ck)+Nk ln(1+wk)−zkwk

]}

(34)

where G = [g1 · · ·gK ] and Gk is the same as G except

for column gk. The expression in (34) can be maximized by

alternating optimization.

B. Other possible WSR Approximations

1) Absorbing the Mean in the Covariance:: Replacing Hk

by 0 and Ct,k by Rt,k as suggested in [1] for SU MIMO leads

to one simplification. Other simplifications can be obtained by

either absorbing the noise term in the ”Rayleigh” channel part

of the interference or vice versa.

2) Improvements upon ESEINR: One simple such improve-

ment can be obtained by acknowledging the quadratic explicit

appearance of the channels in the gradient of the WSR w.r.t.

the Tx filters, and then compute the corresponding second-

order moments, similar to EWSMSE. Of course, the actual

dependence of the gradient of the WSR on the channels is

highly nonlinear but we replace terms like the MSE ek and

Rk by their mean. This approach acknowledges that the Rx

contains the channel matched filter as factor and applies the

second order statistics to the resulting quadratic appearances

of the channel.

3) Higher-Order Taylor Series Expansions: One possibility

is to go to the next (second) order term in the Taylor series

expansion of the log as in (15) in [19].

VIII. PROPAGATION CHANNEL MODEL

Fig. 1. MIMO transmission with M transmit and N receive antennas.

A. Specular Wireless MIMO Channel Model

Consider a MIMO transmission configuration as depicted in

Fig. 1. We get for the matrix impulse response of the time-

varying channel h(t, τ) [20]

h(t, τ) =

Np∑

i=1

Ai(t) e
j2π fi t hr(φi)h

H
t (θi) p(τ − τi) . (35)

The channel impulse response h has per path a rank 1

contribution in 4 dimensions (Tx and Rx spatial multi-antenna

dimensions, delay spread and Doppler spread); there are Np

pathwise contributions where

• Ai: complex attenuation

• fi: Doppler shift

• θi: angle of departure (AoD)

• φi: direction of arrival (DoA)

• τi: path delay (ToA)

• h∗
t (.)/hr(.): M/N × 1 Tx/Rx antenna array response

• p(.): pulse shape (Tx filter)

The fast variation of the phase in ej2π fi t and possibly the

variation of the Ai (when the nominal path represents in fact

a superposition of paths with similar parameters) correspond to

the fast fading. All the other parameters (including the Doppler

frequency) vary on a slower time scale and correspond to slow



fading. We shall assume here OFDM transmission, as is typical

for 4G systems, with the Doppler variation over the OFDM

symbol duration being negligible. We then get for the channel

transfer matrix at any particular subcarrier of a given OFDM

symbol

H =

Np∑

i=1

Ai hr(φi)h
H
t (θi) (36)

where with some abuse of notation we use the same complex

amplitude Ai in which we ignored the dependence on time

(particular OFDM symbol), through at least the Doppler

shift, and on frequency (subcarrier), through the Tx (and Rx)

filter(s).

B. Narrow AoD Aperture (NADA) case

The idea here is to focus on the category of mobiles for

which the angular spread seen from the BS is limited [21].

This is a small generalization of the LoS case. In the NADA

case, the MIMO channel H is of the form

H =
∑

i

Ai hr(φi)h
H
t (θi) ≈ B AH , A =

[
ht(θ) ḣt(θ)

]
.

(37)

In the case of narrow AoD spread, we have

θi = θ +∆θi (38)

where θ is the nominal (LoS) AoD and ∆θi is small. Hence

ht(θi) ≈ ht(θ) + ∆θi ḣt(θ) . (39)

This leads to the second equality in (37). Hence H is of

rank 2 (regardless of the DoA spread). The LOS case is a

limiting case in which the power of the ḣt(θ) term becomes

negligible and the channel rank becomes 1. The factor A in

H depends straightforwardly on position (which translates into

LOS AoD), only B (which depends on the Ai hr(φi) and the

∆θi) remains random.

C. Location Aided Partial CSIT LoS Channel Model

Assuming the Tx disposes of not much more than the

LoS component information, we shall consider the following

MIMO channel model

H = hr h
H
t (θ) + H̃

′

(40)

where θ is the LoS AoD and the Tx side array response is

normalized: ||ht(θ)||2 = 1. Since the orientation of the MT

is random, and the LoS case can be considered as a limiting

NADA case in which a multitude of DoAs could appear, we

shall model the Rx side LoS array response hr as a vector of

i.i.d. complex Gaussian variables

hr i.i.d. ∼ CN (0, µ
µ+1 ) and

H̃
′

i.i.d. ∼ CN (0, 1
µ+1

1
M ) , independent of hr,

(41)

where the matrix H̃ represents the aggregate NLoS compo-

nents. Note that

E||H||2F = E tr{HHH} =
||ht(θ)||2 E||hr||2 + E||H̃′ ||2F = µN

µ+1 + N
µ+1 = N ,

(42)

reflecting that Rx power augments proportionally with N , and

(E||hr h
T
t (θ)||2F )/(E||H̃′ ||2F ) = µ which can be considered

as a Rice factor. In fact the only parameter additional to the

LoS AoD θ assumed in (40) is µ.

So, this is a case of zero mean CSIT and Tx side covariance

CSIT

Rt = EHHH =
µN

µ+ 1
ht(θ)h

H
t (θ) +

N

µ+ 1

1

M
IM . (43)

IX. THE LOCATION AIDED CASE

A. LoS ZF BF

For ZF BF, the BS shall use for user k a spatial filter gk =√
pk g

′

k such that g
′

k = g”
k/||g”

k||

g”
k = P⊥

h
t,k
ht,k (44)

where ht,k = [ht,1 · · ·ht,k−1 ht,k+1 · · ·ht,K ]. And uniform

power distribution pk = P/K, k = 1, . . . ,K. The g”
k can

also be computed from

g” = [g”
1 · · ·g”

K ] = ht(h
H
t ht)

−1 , ht = [ht,1 · · ·ht,K ] .
(45)

B. Beyond ZF

In the previous subsection we considered the attainable

DoF with LoS CSIT, attained by ZF Tx BF design on the

LoS components. Note in passing that in practical multipath

scenarios, even if only the interference passing through the

LoS paths would be handled, this would already lead to a

substantial SINR increase. Here we shall explore how to go

beyond the asymptotics of high SNR and high Ricean factor:

even if the Tx ignores the multipath and the Rx can handle it,

it would be better to have a multipath aware Tx design. To this

end, various intermediate forms of CSIT could be considered

beyond the LoS knowledge only. Here we shall consider

the perhaps simplest model, the partial CSIT LoS model of

(40). Note that the Ricean factor µ satisfies uplink/downlink

(UL/DL) reciprocity, even in a FDD system, and hence can

easily be estimated.

C. Ricean Model Specific Approximations

1) Absorbing the Rayleigh Component in the Noise: Con-

sider again the received signal model

yk = Hk

∑K
i=1 gi xi + vk

= hr,k h
H
t,k

∑K
i=1 gi xi + H̃

′

k

∑K
i=1 gi xi + vk .

(46)

Going to this MIMO model to an equivalent SIMO model with

the same SINR (or ESINR), we get

yk =

√
µk

µk + 1
hH
t,k

K∑

i=1

gi xi+
1√

(µk + 1)M
h̃H
k

K∑

i=1

gi xi+v
′

k .

(47)

Considering that h̃k is a vector of i.i.d. variables, the last two

terms in (47) represent a spatially white noise with variance



σ2
v,k+

P

(µk + 1)M
= σ2

v,k(1+
SNRk

(µk + 1)M
). Hence (47) leads

to an equivalent MISO model

yk = hH
t,k

K∑

i=1

gi xi + vk (48)

with effective SNR

SNReff,k =
µkSNRk

µk + 1 + SNRk/M
(49)

which is now a deterministic MISO BC model.
2) Absorbing the Noise in the Rayleigh Component: Al-

ternatively, the previous trick of assimilating the Rayleigh

component with the noise can be used to associate the noise

with the Rayleigh component and leads to a modified Ct,k

(reduced Rice factor). The absence of noise and hence of the

I+ term in the argument of ln det(.) allows us to have a

ln det(.) of a product of factors. Assuming for a moment that

all factors would be square allows us to put the i.i.d. random

factors of the channel in a separate term, thus effectively

replacing HH
k Hk by Ct,k, again resulting in a determinstic

WSR scenario.

X. SOME FIRST SIMULATIONS

A simulation result is presented in Fig. 2 where the optimal

stochastic approximation result for the EWSR is compared

to naive ZF BF on the LoS component only and to an

optimized deterministic BF design in which the Rayleigh

channel component is simply associated with the noise. This

very simple approximation turns out to be as good as optimal

in this scenario for an SNR up to 30dB.

 

Fig. 2. EWSR vs SNR for K = M = Nk = 4 with Rice factor µ = 10.
The black curve corresponds to stochastic approximation, the green curve to
ZF on the LoS component, and the red curve to an optimized deterministic
BF design when the Rayleigh part is absorbed in the noise.
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