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A posteriori error estimation for stochastic static

problems

D. H. Mac1, S. Clénet1

1L2EP, Arts et Métiers ParisTech, 8 bd de Louis XIV, 59000 Lille, France

Abstract—To solve stochastic static field problems, a discretiza-
tion by the Finite Element Method can be used. A system
of equations is obtained with the unknowns (scalar potential
at nodes for example) being random variables. To solve this
stochastic system, the random variables can be approximated
in a finite dimension functional space - a truncated polynomial
chaos expansion. The error between the exact solution and the
approximated one depends not only on the spatial mesh but
also on the discretization along the stochastic dimension. In this
paper, we propose an a posteriori estimation of the error due to
the discretization along the stochastic dimension.

Index Terms—Stochastic problems, Finite Element Method,
Polynomial Chaos Expansion, Magnetostatics, Error estimation.

I. Introduction

Numerical modelling can be used to predict the behavior

of an electromagnetic device. The Maxwell equations can be

solved using the Finite Element Method (FEM). In a linear

static problem, FEM leads to a linear system of equations.

The unknowns could be the value of the scalar potential at the

nodes or the circulation of the vector potential at the edges,

for example.

When the input data (behavior laws of the material, the

geometry of the device, ...) of the numerical model are

uncertain due to several factors like the ageing of the material,

the imperfections of the manufacturing processes, ..., the

Maxwell equations become stochastic. Consequently, system

of equations obtained by FEM becomes also stochastic. The

unknowns are random variables. Sampling methods like the

Monte Carlo Simulation Method (MCSM) can be used to

estimate statistical moments or probability of failures. Another

method consists of approximating the solution of the system

of equations given by FEM along the random dimension. In

engineering, this approach was introduced by Ghanem [1] in

mechanics and widely developed in this area. In computational

electromagnetic, this approach was introduced in [2] and [3].

The Polynomial Chaos Expansion (PCE) [4] is one of the

most popular methods to approximate random variables. The

numerical solution can be obtained then by two discretization

steps, one along the spatial dimension (mesh) and the other

along the random dimension using a truncated PCE. To evalu-

ate the numerical error (i.e. the distance between the numerical

solution and the exact solution), one can distinguish two kinds

of error estimation, a priori and a posteriori error estimations.

In this paper, we are interested in a posteriori error estimation

which is calculated from the numerical solution and so, the

error estimation is evaluated after the numerical solution of

the problem. The a posteriori error estimation of a stochastic

problem has been already addressed in literature [5], [6], [7].

In [5], an error estimation based on the hyper-circle theorem is

proposed. This error requires the solutions of two complemen-

tary formulations. This error estimator takes simultaneously

into account the error due to the discretizations along the

spatial and the random dimensions, giving a so-called “global

estimation”. In [6], an error estimation based on the solution

of an adjoint problem is proposed. The estimator is applied to

some non-linear problems where the adjoint problem becomes

linear and the solution of the adjoint problem needs then less

time than the initial one. The error estimation in [6] is also

global and can be applied only for the numerical solution

obtained by the Spectral Stochastic Finite Element Method

(SSFEM) [2], [3]. In [7], an error estimator enabling us to

evaluate the error due the stochastic discretization (only due

to PCE), the so-called stochastic error, has been proposed.

This estimator is based on the solution of the error equation

where the right hand side is the residual evaluated from the

numerical solution. The error equation has to be solved using

a PCE with higher order than the one used for the numerical

solution of the initial equation. In this method, two stochastic

problems have to be solved.

In this paper, we propose a stochastic error estimator that

is evaluated directly from the residual calculated from the

numerical solution. The proposed error estimation is tested

on an academic example.

II. Magnetostatic problem with uncertainties on the behavior

law

We are interested in a magnetostatic problem defined on a

domain D with an uncertain permeability. The permeability

can be modeled by a random field µ(x, θ) where the parameter

θ refers to an elementary event and x the position. We assume

that the random field µ(x, θ) can be expressed explicitly (or at

least approximated by a Karhunen−Loeve expansion [8]) as

a function of a random vector ξ(θ) = (ξ1(θ), ξ2(θ), ..., ξM(θ))

where ξ1(θ), ξ2(θ), ..., ξM(θ) are real independent random vari-

ables with known probability density functions. We denote

Θ
M ⊂ RM the domain of the random vector ξ(θ). In the

following, to simplify the notations, the dependency on θ of

the random vector ξ will be removed. We assume also that the

permeability is bounded, meaning that:

0 < µmin(x) ≤ µ(x, ξ) ≤ µmax(x) < ∞ ∀ξ ⊂ ΘM . (1)
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The equations of the magnetostatic problem defined on D, can

be written as:


























∇ · B(x, ξ) = 0

∇ ×H(x, ξ) = Js(x)

B(x, ξ) = µ(x, ξ) H(x, ξ)

(2)

with x ∈ D, ξ ∈ ΘM , where H and B are the magnetic field

and the magnetic flux density, respectively. The source term

Js, being divergence free, can be written as Js(x) = ∇×Hs(x).

For the sake of simplicity, homogeneous boundary conditions

are prescribed:

B(x, ξ) · n(x) = 0 ∀x ∈ ΓD,∀ξ ∈ Θ
M . (3)

We should mention that the results proposed in this paper

can be extended also to the case with the mixed boundary

conditions, i.e B(x, ξ)·n(x) = 0 on one part of ΓD and H(x, ξ)×

n(x) = 0 on the complementary part of the boundary ΓD. To

solve the problem described in (2) and (3), the scalar potential

Ω can be introduced such that:

H(x, ξ) = −∇Ω(x, ξ) +Hs(x)

or the vector potential A, such that:

B(x, ξ) = ∇ × A(x, ξ).

In this paper, we will focus on the scalar potential formulation.

The extension to the vector potential formulation case is

straightforward. The scalar potential formulation yields the

following weak form:

∫

D

µ(x, ξ)∇Ω(x, ξ) · ∇λ(x) dx =

∫

D

µ(x, ξ) Hs(x) · ∇λ(x) dx ∀λ ∈ H1(D),∀ξ ∈ ΘM (4)

where H1(D) is a functional space defined by:

H1(D) =

{

v ∈ L2(D)

∣

∣

∣

∣

∣

∫

D

|∇v(x)|2 dx < ∞

}

. (5)

Clearly, the solution of (4) is defined up to an additive

constant. However, one can notice that the magnetic field is

unique and does not depend on the additive constant. In a

general case, the analytical solution of (4) is not reachable.

Thus, we introduce a tetrahedral mesh M of the domain

D with n0 nodes, n1 edges, n2 facets and n3 elements. An

approximation Ωh of the scalar potential Ω is sought in V
i0
h

such that

∫

D

µ(x, ξ)∇Ωh(x, ξ) · ∇w(x) dx =

∫

D

µ(x, ξ) Hs(x) · ∇w(x) dx ∀w ∈ V
i0
h
,∀ξ ∈ ΘM (6)

where the discrete functional space V
i0
h

is defined by:

V
i0
h
= span {w0i | i = 1, 2, ..., i0 − 1, i0 + 1, ...n0 } (7)

with w0i the shape function [9] associated with the node i.

One can notice that the choice of the discrete functional space

V
i0
h

imposes a gauge condition such that the scalar potential is

equal to zero at the node i0. This gauge condition imposes the

uniqueness of the solution of (6). The other gauge conditions

[13] can be implemented but this has no consequence on our

proposed method.

III. Polynomial chaos expansion

The solution of (6) can be written under the form

Ωh(x, ξ) =

n0
∑

i=1,i6=i0

Ω
i
h(ξ) w0i(x) (8)

with Ωi
h
(ξ) the value of the scalar potential at the node i that is

a random variable. To obtain an explicit expression of Ωi
h
(ξ),

the idea is to approximate it in a finite dimension functional

space. A truncated PCE can be an appropriate choice if the

variation of Ωi
h
(ξ) as a function of ξ is quite smooth. The

scalar potential Ωh(ξ) at the node i is then approximated by:

Ω
i
h(ξ) ≈

P
∑

j=0

Ωi jΨ j(ξ) (9)

where Ψ j, j= 0 : P is a set of orthonormal polynomials [4] and

Ωi j are the real coefficients to be determined. The numerical

solution of the problem can be written as:

Ωh,P(x, ξ) =

P
∑

j=0

n0
∑

i=1,i6=i0

Ωi j w0i(x)Ψ j(ξ). (10)

Two categories of methods, non intrusive and intrusive, have

been proposed in the literature to determine Ωi j. In the non-

intrusive methods [10], [11], the deterministic FEM model can

be directly used to obtain the stochastic solution. Indeed, the

coefficients Ωi j are determined by:

Ωi j =

Q
∑

k=1

Ω
i
h(ξk)Ψ j(ξk)ωk. (11)

The evaluation of coefficients Ωi j in (11) requires Q evalua-

tions Ωi
h
(ξk), for k= 1 : Q, where Ωi

h
(ξk) refers to the scalar

potential Ωh at node i at well fitted points ξk. Thus, Q

deterministic problems (6) corresponding to Q realizations of

the permeability µ(x, ξk) have to be solved. Several choices

of the weights ωk and of the points ξk are possible (see [10],

[11]). For a given mesh, the numerical solution (10) depends

on the choice of the set of polynomials Ψ j and on the set of

the evaluation points ξk and on the associated weights ωk.

In the intrusive method (SSFEM method [2], [3]), the coef-

ficients Ωi j are determined by using the Galerkin projection:

E

(∫

D

µ(x, ξ)∇Ωh,P(x, ξ) · ∇w0i(x) dx Ψ j(ξ)

)

=

E

(∫

D

µ(x, ξ) Hs(x) · ∇w0i(x) dx Ψ j(ξ)

)

(12)

with i = 1 : n0\ i0, j = 0 : P and E(X(ξ)) denoting the

expectation of the random variable X(ξ). Equation (12) leads

to a linear matrix system of dimension (n0−1)× (P+1) where

the solution is the vector of the coefficients Ωi j. For a given

mesh, the numerical solution (10) depends on the choice of

2
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the set of polynomials and on the accuracy of the solution of

the linear system given by (12).

IV. Stochastic error estimation

A. Definition of the numerical errors

The stochastic error esto is defined by the following

e2
sto(ξ) =

∫

D

µ(x, ξ)∇
(

Ωh,P(x, ξ) −Ωh(x, ξ)
)

·

∇
(

Ωh,P(X, ξ) −Ωh(x, ξ)
)

dx. (13)

Using the same norm, the spatial error espa and the global error

eglo can also be defined respectively as the distance between

Ωh and Ω and the distance between Ωh,P and Ω. From (4), (6)

and (10) it can be shown that

e2
glo(ξ) = e2

sto(ξ) + e2
spa(ξ). (14)

The global error estimation requires estimations of both the

stochastic error esto and the spatial error espa. In the following,

we will focus only on the estimation of the stochastic error

esto which is directly linked to the discretization of Ωh along

the stochastic dimension.

B. Stochastic error estimator

We propose the following estimator for e2
sto(ξ)

η2
sto(ξ) = Rt(ξ)Λ−1

0 R(ξ) (15)

where R is a stochastic residual vector whose coefficients are

given by:

[R]i (ξ) =

∫

D

µ(x, ξ)∇Ωh,P(x, ξ) · ∇w0i(x) dx −

∫

D

µ(x, ξ)∇Hs(x) · ∇w0i(x) dx (16)

with i = 1 : n0\i0 and Λ0 the expectation of the stiffness matrix

defined by:

[Λ0]i j =

∫

D

E(µ(x, ξ))∇w0i(x) · ∇w0 j(x) dx (17)

with i = 1 : n0\ i0, j = 1 : n0\ i0. It can be shown that ηsto

in (15) is an equivalent measure of the stochastic error esto

meaning that

k1η
2
sto(ξ) ≤ e2

sto(ξ) ≤ k2η
2
sto(ξ) (18)

with k1 and k2 are positive coefficients and independent of Ωh

and of Ωh,P. In particular, we can deduce an explicit expression

of these coefficients:

k1 = minx∈D

(

E(µ(x, ξ))

µmax(x)

)

(19)

k2 = maxx∈D

(

E(µ(x, ξ))

µmin(x)

)

(see the APPENDIX for the proof of (18)). Due to the fact

that η2
sto(ξ) ≥ 0, ∀ξ ⊂ ΘM , and from (18), the expectation

E(η2
sto(ξ)) could be an appropriate indicator to quantify the

stochastic error esto. To evaluate E(η2
sto(ξ)), the residual R is

deduced from (16) as shown:

R(ξ) =

P1
∑

j=0

R jΨ j(ξ) (20)

where R j are real vectors. Due to the fact that Ψ j(ξ) are

orthonormal, we obtain:

E(η2
sto(ξ)) =

P1
∑

j=0

Rt
j Λ
−1
0 R j. (21)

From (19), the ratio between the upper and the lower bounds

of the stochastic error (18) can be evaluated. In practice, this

ratio corresponds to a small number of units. Furthermore, the

estimation (18) is independent of the method used to solve

the stochastic problem (SSFEM, Non intrusive, etc.) and can

be extended to the different stochastic approximation bases

(truncated PCE in this paper or wavelet decomposition [12],

etc.).

V. Numerical example

We are interested in a magnetostatic problem presented in

Fig. 1. The domain is divided into 5 sub-domains with the

Figure 1: Magnetostatic problem defined in the domain D.

relative permeabilities µ0 = 1, µ1 = µ2 = 1000. µ3 and

µ4 are two independent uniform random variables defined on

[600 − 1400]. The current Js is imposed equal to 1A. We apply

the SSFEM method [2] to solve this problem. For a given

numerical solution Ωh,P(x, ξ), the mean value of the stochastic

estimator η2
sto is compared to the mean value of the stochastic

error e2
sto estimated by the MCSM described on the flow chart

in Fig. 2. As mentioned in Section III, with a given mesh, the

Figure 2: Monte-Carlo method.

3



CMP-525

numerical solution (10) depends on the choice of the set of

polynomials and on the accuracy of the solution of the SSFEM

system of equations given by (12). In this example, a mesh

with 2617 nodes and the full tensorised Legendre PCE [4] are

used. The set of the polynomials depends then on the order of

truncation p. The SSFEM linear system of equations is solved

using an iterative method and the accuracy of the solution is

fixed by a stopping criterion ε based on a residual norm.

The evolution of the mean value of the stochastic estimator

and the mean value of stochastic error estimated by MCSM as

a function of the order p of PCE and of the stopping criterion

ε is presented in Fig. 3.

Figure 3: Evolution of the mean value of the estimator and

of the MCSM estimated stochastic error.

According to Fig. 3, we can deduce that : -The estimator

and the stochastic error estimated by the MSCM are very

close. -While the accuracy level of the solution of the SSFEM

matrix system is low (ε is greater than 10−4 in Fig. 3) the

stochastic error is the same with different orders of PCE. -

While the accuracy level is quite high (ε is lower than 10−4

in Fig. 3) a higher order of PCE yields a smaller stochastic

error. -With a given order of PCE, when the accuracy level

increases, the evolution of the stochastic error decreases up

to a given value before being stable (log(ε) = −6 with order

p = 2 and log(ε) = −8 with order p = 4). It is thus wasteful

to increase the accuracy level of the solution of the SSFEM

matrix system beyond these points.

VI. Conclusion

We have presented a stochastic a posteriori error estimator

for a stochastic magetostatic problem. The estimator allows

us to evaluate the error due to the stochastic discretization

(truncated PCE in this paper). The estimator is based on a

residual of the discrete weak formulation. For a given mesh, by

using the estimator, one can compare the accuracy of different

numerical solutions. In this paper, we are interested only in

the stochastic error. In order to obtain a complete analysis,

the error due to the spatial discretization has to be taken into

account.
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APPENDIX

(18) can be proved by using the two following lemmas.

Lemma 1. For Λ(ξ) the stiffness matrix defined by:

[Λ]i j (ξ) =

∫

D

µ(x, ξ)∇w0i(x) · ∇w0 j(x) dx (22)

with i = 1 : n0\i0, j = 1 : n0\i0, we have

e2
sto(ξ) = Rt(ξ)Λ−1(ξ)R(ξ) (23)

�

Lemma 2. For Λ1(ξ) and Λ2(ξ), two matrices of dimension

(n0 − 1) × (n0 − 1) such that:

[Λ1]i j (ξ) =

∫

D

µ1(x, ξ)∇w0i(x) · ∇w0 j(x) dx

[Λ2]i j (ξ) =

∫

D

µ2(x, ξ)∇w0i(x) · ∇w0 j(x) dx

with 0 < µ1(x, ξ) ≤ µ2(x, ξ), ∀x ∈ D,∀ξ ∈ ΘM . We thus obtain:

Rt(ξ)Λ−1
2 (ξ)R(ξ) ≤ Rt(ξ)Λ−1

1 (ξ)R(ξ), ∀ξ ∈ ΘM (24)

�

From lemma 1 and lemma 2, one can deduce (18) due to

the fact that

1

k2

E(µ(x, ξ)) ≤ µ(x, ξ) ≤
1

k1

E(µ(x, ξ))

∀x ∈ D,∀ξ ∈ ΘM .
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