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On the rationality of the singularity locus

of a Gough-Stewart platform – biplanar case

Michel Coste ∗ Seydou Moussa †

July 3, 2014

Abstract

We propose to study the singularity locus of a Gough-Stewart platform

as a surface defined over the field of rational functions on the the group

of rotations. From the geometric properties of this surface we deduce,

in the generic biplanar case, a rational parametrization and a family of

parallel planes cutting the surface in the conics of a linear pencil, which

are uniform for all generic orientations.

Keywords: Gough-Stewart platform, parallel singularities, cubic surface

1 Introduction

The aim of this paper is to contribute to the study of the singularity locus
of a Gough-Stewart platform, which is a hypersurface Sing ⊂ SE(3) in the 6-
dimensional group of motions in 3-space. This is a subject which has been
addressed in many papers such as [1, 2, 3, 4, 5, 6, 7, 8, 9]. We consider in
this paper the biplanar case, when the base and the platform are general planar
hexagons. In particular, we address the problem of the rational parametrization
of Sing.

It is mentioned in the review [1] that

A complete description and characterization of the singularities
would be to parametrize the entire singularity hypersurface(s) in the
task-space (6D in the case of the Gough-Stewart platform). . . . Such
a description is extremely difficult for the Gough-Stewart platform
and, to the best of the authors’ knowledge, no such work has been
reported till now.

We do not know whether such a parametrization will actually prove to be useful.
However, the mathematical study with tools of classical algebraic geometry that
we use gives new insights on the geometry of the singularity locus Sing.

It is well known (see for instance [9]) that, if the orientation R ∈ SO(3) of
the platform is fixed so that only translational part of the motion is left, then
the singularity surface SingR in R

3 is a cubic surface. When we let R vary
in SO(3), we obtain a family of cubic surfaces (SingR)R∈SO(3) parametrized by
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SO(3), whose total space is Sing. From the algebro-geometric point of view,
this gives a cubic surface Σ defined over the field R(SO(3)) of rational functions
on SO(3) (this is the field generated over R by the coefficients Ri,j of rotation
matrices). The coefficients Ri,j are not, of course, independant variables, but
the field R(SO(3)) is isomorphic to the field of rational function in three variables
R(u, v, w) (this can be seen using Cayley parametrization for rotations). The
main part of this article is devoted to the study of the surface Σ. The reason
for studying Σ is that a property satisfied by Σ is also satisfied by the surfaces
SingR for generic orientation R, i.e. for all orientations R outside a proper
algebraic subset of SO(3).

In Section 2 we fix the notations and establish the equation of the singularity
locus Sing in SE(3) for a general Gough-Stewart platform. The material in this
section is already well known for the most part (see for instance [9]). However,
the fact that the equation has degree 3 in the coefficients of the rotation matrix
seems to be new.

From Section 3 onwards, we deal only with biplanar Gough-Stewart plat-
forms. Section 3 is devoted to the study of the points at infinity of Σ. These
points correspond to no actual pose of the platform, but they are responsible
for remarkable geometric properties of the singularity surface. We prove that
the part at infinity of Σ is the union of three lines, two of which are the lines at
infinity of the base plane and the mobile platform plane. We prove also that,
for a generic architecture, the intersection of the latter two lines is the unique
singular point of Σ (more exactly, of its projective closure). We illustrate these
facts with an example.

In Section 4 we use the singular point at infinity of Σ to obtain a rational
parametrization of Σ with two parameters and coefficients in R(SO(3)). This
in turn gives a rational parametrization of the singularity hypersurface Sing in
SE(3) with five parameters and real coefficients. We also show that there is a
family of parallel planes cutting Σ in the conics of a linear pencil (this is different
from the result in [8] where the conic sections do not belong to a linear pencil).
We continue the example to illustrate these properties.

2 Notations, and equation for the singularity lo-

cus

We consider in this section a Gough-Stewart platform with an arbitrary archi-
tecture. For i = 1, . . . , 6, we denote by Ai the anchor point of the i-th leg on
the base and by Bi the anchor point on the mobile platform in the initial pose.
We assume A1 = B1 = (0, 0, 0)T.

2.1 Equation of the singularity locus in SE(3)

We recall the derivation of the equation of the singularity hypersurface, mainly
in order to fix notation. The computaton is very similar to the one in [9].

The group SE(3) of rigid motion in 3-space acts on the mobile platform
by the transformation X 7→ RX + P where R is the rotation matrix and P =
(x, y, z)T is the translation vector. So the coordinates of anchor points on the
mobile platform are, after motion, RBi + P for i = 1 . . . 6.
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The Plücker coordinates of the legs are 6-dimensional vectors whose first
three coordinates are RBi + P − Ai and last three coordinates (the moment
with respect to the origin)

Ai × (RBi + P −Ai) = Ai ×RBi +Ai × P . (1)

Since A1 = B1 = 0, the Plücker coordinates of the first leg are given by P and
(0, 0, 0)T. For i = 2, . . . , 6 we set Ei = RBi −Ai and Fi = Ai ×RBi.

It is well known and explained in [10] that the Gough-Stewart platform is in
a singular configuration if and only if the Plücker coordinates of the six legs are
linearly dependant. This is expressed by the vanishing of the 6× 6 determinant
of the matrix whose columns are the Plücker coordinates of the legs. This
determinant is

J = det

(
P E2 + P . . . E6 + P
0 F2 +A2 × P . . . F6 +A6 × P

)
(2)

By subtracting the first column from the following ones, we obtain

J = det

(
P E2 . . . E6

0 F2 +A2 × P . . . F6 +A6 × P

)
(3)

2.2 Degree of the equation

Theorem 1 The singularity locus Sing in SE(3) has an equation which is of
degree 3 with respect to P and also of degree 3 with respect to R. Moreover, the
homogeneous part of degree 3 with respect to P of the equation is of degree 2
with respect to R.

Proof: First, we proceed to show that the degree of J w.r.t. P is 3. In order to

do that, we write the i-th column (for i ≥ 2) as the sum

(
Ei

Fi

)
+

(
0

Ai × P

)
and

develop the determinant J using multilinearity. Notice that any three vectors(
0

Ai × P

)
,

(
0

Aj × P

)
and

(
0

Ak × P

)
are linearly dependant since they are all

orthogonal to P (or all 0 if P is 0). So we obtain actually

J = det(L) +

6∑

i=2

det(Mi) +
∑

2≤i<j≤6

det(Ni,j) , (4)

where

• L =

(
P E2 . . . E6

0 F2 . . . F6

)
,

• Mi (for 2 ≤ i ≤ 6) is the matrix whose first column is

(
P
0

)
, i-th column

is

(
0

Ai × P

)
and all other columns are

(
Ek

Fk

)

• Ni,j (for 2 ≤ i < j ≤ 6) is the matrix whose first column is

(
P
0

)
, i-th

and j-th columns are

(
0

Ai × P

)
and

(
0

Aj × P

)
and all other columns are

(
Ek

Fk

)
.
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We remark that det(L) is a homogeneous polynomial of degree 1 in P , every
det(Mi) is a homogeneous polynomial of degree 2 in P and every det(Ni,j) is
homogeneous of degree 3 in P . Hence altogether J is a polynomial of degree at
most 3 in P (this is rather well known and can be found for instance in [9]).

Now we determine the degree of J w.r.t. R. We develop the expression of J

in equation (3) by writing each colum

(
Ei

Fi +Ai × P

)
as

(
Ei

0

)
+

(
0

Fi +Ai × P

)

and using multilinearity. We express the result using mixed products [U, V,W ] =
(U × V ) ·W . We have

J =
∑

2≤i<j≤6

(
(−1)i+j−1 [P,RBi −Ai, RBj −Aj ]

[A
îj

1

×RB
îj

1

+G
îj

1

, A
îj

2

×RB
îj

2

+G
îj

2

, A
îj

3

×RB
îj

3

+G
îj

3

]
)
, (5)

where îj1 < îj2 < îj3 are the indices between 2 and 6 except i and j and
Gk = Ak × P . When we develop the mixed product [P,RBi − Ai, RBj − Aj ]
using multilinearity, we always get expressions of degre ≤ 1 w.r.t. R. The only
non-obvious case is dealt with

[P,RBi, RBj ] = [R−1 P,Bi, Bj ] = [RT P,Bi, Bj ] ,

using the fact that rotation matrices preserve the mixed product. Similarly,
when we develop [Ak × RBk + Gk, Aℓ × RBℓ + Gℓ, Am × RBm + Gm] using
multilinearity, we always get expressions of degree ≤ 2 w.r.t. R. The non-trivial
case is dealt with

[Ak ×RBk, Aℓ ×RBℓ, Am ×RBm]

=
(
(Ak ×RBk)× (Aℓ ×RBℓ)

)
· (Am ×RBm)

= [Ak, RBk, RBℓ] [Am, RBm, Aℓ]− [Ak, RBk, Aℓ] [Am, RBm, RBℓ]

= [RT Ak, Bk, Bℓ] [Am, RBm, Aℓ]− [Ak, RBk, Aℓ] [R
T Am, Bm, Bℓ] . (6)

So we have shown that the degree of J with respect to R is at most 3; it is
actually 3.

We now deal with the homogeneous part Jinf =
∑

2≤i<j≤6 Ni,j of J of degree
3 with respect to P (the reason for the notation Jinf will be clear in the next
section). We develop Jinf in the same way as we did for Equation (5) and so Jinf
is the sum of products [P,RBk1

−Ak1
, RBk2

−Ak2
] [Ai×P,Aj ×P,Ak3

×RBk3
]

(with signs). We have already seen that the first mixed product is of degree
at most 1 with respect to R, and the second mixed product is homogeneous
of degree 1 with respect to R. It follows that Jinf has degree at most 2 with
respect to R. �

2.3 Cayley parametrization for rotation matrices

Let A =




0 −w v
w 0 −u
−v u 0


 be a skew-symmetric matrix. Since 1 is not an

eigenvalue of A, I − A is invertible. The matrix R = (I + A)(I − A)−1 is a
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rotation matrix

R(u, v, w) =
1

∆



1 + u2 − v2 − w2 2(u v − w) 2(uw + v)

2(u v + w) 1− u2 + v2 − w2 2(v w − u)
2(uw − v) 2(v w + u) 1− u2 − v2 + w2


 ,

(7)
where ∆ = 1 + u2 + v2 + w2. If the vector (u, v, w)T is not the zero vector, it
spans the axis of the rotation R. The tangent of the half-angle of the rotation
is

√
∆− 1. The Cayley parametrization is a rational parametrization of all

rotation matrices, except the half-turns. These half-turns are obtained as limits
when u2+ v2+w2 tends to infinity; alternatively, one can use the homogeneous
Euler-Rodrigues parametrization (that is, parametrization with quaternions)
with one more variable.

Note that we can recover rationally u, v, w from the rotation matrixR(u, v, w).
Indeed

u =
R3,2 −R2,3

1 + tr(R)
, v =

R1,3 −R3,1

1 + tr(R)
, w =

R2,1 −R1,2

1 + tr(R)
, (8)

where tr(R) = R1,1 +R2,2 +R3,3. This shows:

Proposition 2 The Cayley parametrization induces an isomorphism between
the field R(SO(3)) of rational functions on SO(3) and the field R(u, v, w) of
rational function in three independant variables.

The preceding result says, in algebro-geometric terms, that the variety SO(3) is
a rational variety over R.

We shall need a technical result about Cayley parametrization:

Proposition 3 If a polynomial S in u, v, w is of degree ≤ 2k, then
S

∆k
can be

expressed as a polynomial of degree ≤ k in Ri,j .

Proof: It suffices to check the property for monomials of degree ≤ 2 in u, v, w.
We have

1

∆
=

1

4
(1 + tr(R))

u

∆
=

1

4
(R3,2 −R2,3)

u2

∆
=

1

4
(1 +R1,1 −R2,2 −R3,3)

uv

∆
=

1

4
(R1,2 +R2,1)

(9)

and, by circular permutation, similar formulas for the other momomials of degree
≤ 2. �

If we substitute the Cayley parametrization R(u, v, w) for R in J , we obtain
a rational function of (u, v, w). Multiplication by ∆3 chases the denominators,
and we obtain now a polynomial equation in x, y, z, u, v, w for the singularity
locus, of degree 3 w.r.t. the translation variables x, y, z and of degree 6 with
respect to the Cayley parameters u, v, w.

2.4 The cubic surface Σ

We can view the equation J = 0 as an equation in the three variables x, y, z with
coefficients in the field R(SO(3)) (or the field R(u, v, w), according to Proposition
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2). As such, this is the equation of a cubic surface Σ defined over R(SO(3)).
This surface Σ will be the main object of study in the rest of this article. In the
language of algebraic geometry, Σ is the generic fiber of the family of surfaces
SingR parametrized by SO(3). The idea is that the properties of Σ will hold
uniformly for all SingR, except over a proper algebraic subset of SO(3). We
shall illustrate this in what follows.

3 The case of a biplanar platform: points at in-

finity

For the rest of the paper, we consider a Gough-Stewart platform such that the
anchor points on the base are in a same plane ΠA and the anchor points on the
mobile platform are in a same plane ΠB (depending on the motion in SE(3), of
course). We call it a biplanar Gough-Stewart platform, which we abbreviate as
BGSP. We assume that the base plane and the mobile platform plane coincide in
the initial pose. We have an orthonormal frame with origin A0 attached to the
base (independant of the orientation R). We denote by (x, y, z) the coordinates
with respect to this frame, and we choose it so that the plane ΠA has equation
z = 0. Let us call this frame the “canonical frame”.

We investigate the singularity surface Σ defined over the field R(SO(3)).
The key to a better understanding of the geometry of this singularity surface
is somewhat hidden: it lies in the consideration of its points at infinity. We
denote by Σh the projective closure of Σ. It is a cubic surface in the projective
3-space over R(SO(3)). Its homogeneous equation, in the homogeneous variables
x, y, z, t, is given by the homogeneization of J :

Jh(x, y, z, t) = t3 J
(x
t
,
y

t
,
z

t

)
. (10)

The plane at infinity is the plane t = 0, and the points at infinity of Σh are
the points with homogeneous coordinates (x, y, z, 0) such that Jh(x, y, z, 0) = 0,
Note that Jinf(x, y, z) = Jh(x, y, z, 0) is the homogeneous part of degree 3 of
J(x, y, z).

3.1 Points at infinity of the singularity surface Σ

The remarkable properties of the points at infinity of Σh are described by the
following theorems.

Theorem 4 The intersection of the projective singularity surface Σh with the
plane at infinity is the union of three lines, which are:

• the line at infinity of the base plane ΠA, with equations

t = 0, z = 0 ;

• the line at infinity of the mobile platform plane ΠB, with equations

t = 0, R1,3x+R2,3y +R3,3z = 0 ;
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• another line at infinity with equations

t = 0, C1(R)x+ C2(R) y + C3(R) z = 0 ,

where C1, C2, C3 are polynomials of degree at most 1 in the coefficients of
the rotation matrix R.

These three lines are defined over R(SO(3)).

Proof: We homogenize the equation (4) of the singularity surface Σ with the
homogeneization variable t in order to obtain the equation of the projective
closure Σh:

Jh = t2 det(L) + t

6∑

i=2

det(Mi) +
∑

2≤i<j≤6

det(Ni,j) . (11)

The plane at infinity is the plane t = 0, hence the intersection of Σh with the
plane at infinity is given by

Jinf =
∑

2≤i<j≤6

det(Ni,j) = 0 (12)

We have already seen that Jinf is the sum (with signs) of products of mixed
products [P,Ek1

, Ek2
] [Ai×P,Aj×P, Fk3

]. If z = 0, the third coordinates of Ai,
Aj and P are all zero and it follows that Ai×P and Aj×P are collinear. Hence
the mixed product [Ai × P,Aj × P, Fk3

] vanishes and Jinf = 0. This proves
that z divides Jinf . Recall that z = 0 is the equation of the plane of the base.
Since the base and the mobile platform have symmetric roles in the analysis of
singularities, we conclude that Jinf is also divisible by R1,3x + R2,3y + R3,3z
which is the equation of the direction of the plane of the mobile platform. So
we have found two linear factors of the cubic form Jinf over R(SO(3)). Hence
Jinf factors as

Jinf(x, y, z) = z (R1,3 x+R2,3 y +R3,3 z) (C1(R)x+C2(R) y +C3(R) z) , (13)

where the Ci(R) belong to R(SO(3)). Since the Ri,j are not independant
variables we must take care in the discussion of the degree and use the in-
dependant variables u, v, w. We have seen that Jinf has degree at most 2 with
respect to R i.e ∆2Jinf has degree at most 4 with respect to u, v, w. Since
R1,3 x+ R2,3 y + R3,3 z multiplied by ∆ has degree 2 in u, v, w, we obtain that
∆Ci(R) has degree at most 2 in u, v, w. By Proposition 3, Ci of degree at most
1 in Ri,j . The theorem is proved. �

Theorem 5 The point P0, which is the point at infinity intersection of the line
at infinity of the base plane ΠA with the line at infinity of the mobile plat-
form plane ΠB, is a singular point of the projective singularity surface Σh.
This singular point is defined over R(SO(3)) and has homogeneous coordinates
(R2,3,−R1,3, 0, 0). It is the only singular point of Σh for a generic BGSP.

Proof: We prove the theorem by brute force, computing J in a direct orthonor-
mal frame different from the canonical frame, with the aid of a computer algebra
software. This frame has origin A0 and basis (~i,~j,~k) such that the first vector ~i
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gives the common direction of ΠA and ΠB and the first two vectors~i,~j generate
the direction of the base plane ΠA. Specifically, the normal to the base plane is
directed by ~k = (0, 0, 1)T and the normal to the mobile platform plane is directed
by the third column of the rotation matrix R, say ~nB(R) = (R1,3, R2,3, R3,3)

T.
So we can take

~i =
1

‖~nB × ~k‖
~nB × ~k =

1√
N

(R2,3,−R1,3, 0)
T , (14)

~j =
1√
N

(R1,3, R2,3, 0)
T , (15)

where N = (R2
1,3 + R2

2,3) is a non-zero element of the field R(SO(3)). So this
orthonormal frame is actually not defined over the field R(SO(3)), but on its
extension R(SO(3))[

√
N ] by the square root of N . Note that the direction of the

plane ΠB is generated by~i and ~nB ×~i = R3,3
~j−

√
N ~k. We have R2

3,3+N = 1,

and we set c = R3,3, s = −
√
N for short.

In this chosen frame, the points Ai have coordinates (λi, µi, 0)
T and the

points RBi have coordinates (νi, c ρi, s ρi)
T for i = 2, . . . , 6 (all λi, µi, νi, ρi are

actually elements of the field R(SO(3))[
√
N ] which we do not make explicit).

We denote by (x′, y′, z) the coordinates of P in this frame. We compute J
according to formula (3), keeping λi, µi, νi, ρi, c, s variable, and homogenize the
result with respect to x′, y′, z to Jh with homogeneization variable t.

The point P0 has homogeneous coordinates (x′, y′, z, t) = (1, 0, 0, 0) with
respect to the chosen frame. The computation shows that the four partial
derivatives (with respect to x′, y′, z, t) of Jh all evaluate to 0 at this point. This
implies that P0 is a singular point of the projective cubic surface Σh. Since the
lines at infinity of ΠA and ΠB are defined over R(SO(3)), this is also the case
for their intersection point P0; we can take (R2,3,−R1,3, 0, 0) as homogeneous
system of coordinates for P0 in the canonical frame.

In order to prove that P0 is the only singular point of Σh for generic BGSP,
it is sufficient to prove this in an example, for the projective closure SinghR
of the singularity surface SingR for a chosen orientation R. Indeed the set of
R ∈ SO(3) for which SinghR has more singular points (real or complex) than just
P0(R) is an algebraic subset of SO(3). It suffices to show that this algebraic
subset is a proper subset in order to conclude that generically SinghR has no
other singular point than P0(R), which means that Σh has no other singular
point than P0. We shall check this fact in the example of the next subsection.
�

We have proved that Σh is, for a generic BGSP, a cubic surface with a unique
singular point. Actually it corresponds to the second of the twenty three cases
of cubic surfaces in the classification contained in the memoir of A. Cayley [11].
Indeed it can be checked that the unique singular point has a nondegenerate
tangent cone.

3.2 An example

We compute an example with A1 = (0, 0, 0), A2 = (1,−1, 0), A3 = (2, 0, 0),
A4 = (2, 1, 0), A5 = (1, 1, 0), A6 = (0, 1, 0), B1 = (0, 0, 0), B2 = (1,−1, 0),
B3 = (2,−1, 0), B4 = (3, 0, 0), B5 = (2, 1, 0), B6 = (1, 1, 0) (see Figure 1, left).
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Figure 1: The BGSP and its singularity surface for the orientation of the exam-
ple

We perform the computation using a rotation matrix with coefficients Ri,j with
1 ≤ i, j ≤ 3.

The computation of the equation J of the surface of singularities as explained
in subsection 2.2 gives us a polynomial of degree 3 in the position variables x, y, z
and also of degree 3 in the orientation coefficients Ri,j . The homogeneous part
Jinf of degree 3 with respect to x, y, z of J factors as the product of three linear
forms, as proved in Theorem 4:

Jinf = z ×
(
R1,3x+R2,3y +R3,3z

)
×

(
(R3,2 − 2R3,1)x+ 2(R3,2 +R3,1)y + (2R1,1 − 2R2,1 − 2R2,2 −R1,2)z

)
(16)

The first two factors correspond to the direction of the base plane ΠA and of
the mobile platform plane ΠB . The remaining part of J is a polynomial of
degree 2 with respect to x, y, z, without constant term, whose coefficients are
polynomials of degree 3 in the Ri,j . If we evaluate at the following rotation
matrix, corresponding to Cayley parameters u = 1, v = 1, w = −3/2 (and to
the orientation of Figure 1, left):

R =
1

21




−5 20 −4
−4 −5 −20
−20 −4 5


 , (17)

we get the following equation for the singularity surface, clearing denominators:

21 z (4x+ 20 y − 5 z) (−3x+ 4 y + z) + 352x2 + 1968x y + 1040 y2

+ 1312x z − 236 y z − 2736 z2 − 608x+ 160 y − 216 z = 0 (18)

The surface is represented in Figure 1, right. We look for singular points of
the projective closure of this cubic surface, using a computer algebra software.
We find that the only singular point is the point with homogeneous coordinates
(−5, 1, 0, 0), that is the point P0 of Theorem 5. The fact that there is no other
singular point finishes the proof of Theorem 5.

9



4 Rational parametrization and pencil of conics

4.1 Rational parametrization in the biplanar case

Theorem 4 establishes that the homogeneous part of degree 3 of J(x, y, z) factors
into the product of three linear forms L1 = z, L2 = R1,3x+ R2,3y + R3,3z and
L3 = C1(R)x+C2(R)y+C3(R)z where the coefficients Ci(R) are polynomials of
degree 1 in the coefficients of the rotation matrix R. We perform a linear change
of variables, defined over the field R(SO(3)), from the variables (x, y, z) to new
position variables (p, q, r) by choosing a (non-orthonormal) basis (~e1, ~e2, ~e3) such
that (L1, L2, L3) is the dual basis of (~e1, ~e2, ~e3), i.e. the Li are the coordinate
forms in the new basis (~e1, ~e2, ~e3). Concretely we have



x
y
z


 = Λ−1



p
q
r


 , where Λ =




0 0 1
R1,3 R2,3 R3,3

C1(R) C2(R) C3(R)


 . (19)

The i-th line of the matrix Λ is made of the coefficients of the linear form Li.
This matrix Λ is invertible over the field R(SO(3)) for a generic BGSP. Indeed,
det(Λ) = R1,3C1(R)−R2,3C2(R) is a non zero element of R(SO(3)) for a generic
BGSP. Substituting x, y, z for their expressions in terms of p, q, r in the equation
J(x, y, z) of Σ, we obtain an equation J̃(p, q, r) of degree 3 in the variables p, q, r,
whose coefficients are elements of R(SO(3)), i.e. rational functions in the Ri,j .

According to the choice of the new variables p, q, r, the homogeneous part
of degree three of the equation J̃(p, q, r) is simply the product pqr. It can be
written as

J̃(p, q, r) = pqr +Q(p, q, r) + S(p, q, r) (20)

where Q is a quadratic form and S a linear form both with coefficients in
R(SO(3)) (there is no constant term since the origin belongs to Σ). The follow-
ing theorem gives a rational parametrization of Σ in a simple form.

Theorem 6 The equation J̃(p, q, r) of the singularity surface Σ can be written
as

J̃(p, q, r) = r Γ1(p, q) + Γ0(p, q)

where Γ1(p, q) and Γ0(p, q) are polynomial of degree 2 with coefficients in R(SO(3))
(i.e. rational functions of the Ri,j). Moreover, the quadratic part of Γ1 is pq.

Hence, the surface Σ has the rational parametrization r = −Γ0(p, q)/Γ1(p, q)
over R(SO(3)).

Proof: Considering the expression of J̃ written in (20), it suffices to prove that
the coefficient Q3,3 of r2 in the quadratic form Q(p, q, r) is zero. This will turn
out to be a consequence of the existence of a singular point at infinity of the
projective surface Σh. The homogeneous equation of this projective surface, in
the homogeneous coordinates (p, q, r, t), is written as

J̃h(p, q, r, t) = pqr +Q(p, q, r) t+ S(p, q, r) t2 .

The singular point described in Theorem 5 has homogeneous coordinates (0, 0, 1, 0)
in the new system of coordinates (according to the choice of p, q, r). Hence, all
partial derivatives of J̃h(p, q, r, t) must vanish at (0, 0, 1, 0). The value of ∂J̃h/∂t
at (0, 0, 1, 0) is precisely the coefficient Q3,3 of r2 in Q. Hence Q3,3 = 0, which
proves the theorem. �
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Corollary 7 Sing ⊂ SE(3) has a rational parametrization with five parameters
p, q, u, v, w and coefficients in R.

Proof: The coefficient of R ∈ SO(3) are rational functions of the Cayley pa-
rameters u, v, w. Replacing the Ri,j with these rational functions of u, v, w in
r = −Γ0(p, q)/Γ1(p, q), we obtain r as a rational function of p, q, u, v, w with

real coefficients. Using



x
y
z


 = Λ−1



p
q
r


 and replacing the Ri,j in Λ−1 with

rational expression in function of u, v, w, we obtain x, y, z as rational function
of p, q, u, v, w with real coefficients. �

Remark that this parametrization is uniformly well defined for all orienta-
tions R ∈ SO(3), except those for which det(Λ) = R1,3C1(R) − R2,3C2(R) = 0
which form a proper algebraic subset of SO(3) for a generic BGSP . Among
these orientations are those for which the plane of the mobile platform is parallel
to the base plane (in this case the singularity surface for a generic BGSP is a
triple plane), but there are more: those for which the three lines at infinity are
distinct and concurrent. In these latter cases, the cubic surface SingR has still
only one singular point at infinity and the tangent cone at this point degenerates
in two planes; this is the third case in Cayley’s classification [11].

4.2 Conics on the singularity surface

If a line ℓ is contained in a cubic surface, any plane containing ℓ cuts the cubic
surface in the union of ℓ with a conic. Since we have three lines at infinity in the
singularity surface Σh, this gives three families of parallel planes cutting conics
on Σ ; indeed, the planes containing a line at infinity form a family of parallel
planes having in common this line at infinity.

The first family is the family of planes parallel to the base plane ΠA, which
have equations z = constant (in the x, y, z system of coordinates) or p =
constant (in the p, q, r system of coordinates). Since the singular point of Σh,
with homogeneous coordinates (0, 0, 1, 0) in the p, q, r, t homogeneous coordinate
system, is a point at infinity of all these planes, the conic cut on Σ by any of
these planes has this point as point at infinity; this means that all these conics
are hyperbolas with an asymptote parallel to the r-axis of the p, q, r coordinate
system. This phenomenon was observed in [8], without a complete theoretical
justification. It follows also from the general theory of cubic surfaces (see for
instance [11]) that there are five planes through the line at infinity z = t = 0
(or p = t = 0) for which the intersection with Σh is a union of 3 lines ; since
the plane at infinity of the projective space is one of them, there are four planes
z = constant cutting the singularity surface Σ in two lines, with one of these
lines parallel to the r-axis. This confirms the observation made in [8]. For a
general choice of the orientation R, two of four (not zero) of these planes may
be real.

The second family is the family of planes parallel to the platform plane ΠB ,
which have equations R1,3x+R2,3y+R3,3z = constant (in the x, y, z system of
coordinates) or q = constant (in the p, q, r system of coordinates). Due to the
symmetry between the base plane and the mobile platform plane, the analysis
is exactly the same as for the first family.
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The most interesting is the third family, that is the family of planes with
equations C1(R)x + C2(R) y + C3(R) z = constant (in the x, y, z system of
coordinates) or r = constant (in the p, q, r system of coordinates). According
to Theorem 6 and the form of the equation of Σ in the p, q, r coordinates, the
sections of Σ by these planes are the conics of the linear pencil of conics in
the plane (p, q) generated by the two conics Γ0(p, q) = 0 and Γ1(p, q) = 0. All
conics in this linear pencils are obtained as sections, except the conic Γ1(p, q) = 0
corresponding to r = ∞ ; note that this conic is a hyperbola since the quadratic
part of its equation is pq. There are three planes r = constant for which the
conic degenerates in the union of two lines (the plane at infinity count here
with multiplicity 2, so that altogether we have the five planes from the general
theory). For a general choice of orientation R, one or three of these planes may
be real.

4.3 Example continued

We continue with the example of subsection 3.2. The formula 19 specializes as

x =
[(
R2,3(−2R2,2 −R1,2 − 2R2,1 + 2R1,1)−R3,3(2R3,1 − 2R3,2)

)
p

+ (2R3,1 + 2R3,2) q −R2,3 r
]
/δ ,

y =
[(
R1,3(2R2,2 +R1,2 + 2R2,1 − 2R1,1)−R3,3(2R3,1 +R3,2)

)
p

+ (2R3,1 −R3,2) q +R1,3 r
]
/δ ,

z = p ,

where δ = R1,3(2R3,1 + 2R3,2) +R2,3(2R3,1 −R3,2) .

(21)

Then the rational parametrization of Theorem 6 is:

r =
β2,0 p

2 + β1,1 pq + β0,2 q
2 + β1,0 p+ β0,1 q

pq + α1,0 p+ α0,1 q + α0,0
, (22)

where the αk,ℓ and βk,ℓ are rational functions of the Ri,j with denominator δ.
For instance

α0,1 = (−3R1,3R3,2R3,1 − 3R2,3R3,1R3,2 − 2R2
3,1R2,3 + 4R2

3,2R1,3

−R2
3,2R2,3 + 2R2

3,1R1,3)/δ ,
(23)

but this is one of the simplest coefficients. Using Cayley parameters u, v, w and
chasing denominators, we obtain a parametrization of the same form as (22),
but with coefficients of degree 8 with respect to u, v, w ; this shows, according
to Proposition 3, that the αk,ℓ and βk,ℓ have expressions of degree at most 4
with respect to Ri,j .

Now we fix an orientation corresponding to Cayley parameters u = 1, v =
1, w = −3/2, as in subsection 3.2. The formula (21) for the change of variables
gives

x =
10

19
p− 21

19
q +

35

76
r, y =

11

76
p− 63

76
q − 7

76
r, z = p (24)

and the parametrization (22) specializes as

r =
12 (1638 p2 + 2793 pq − 2667 q2 + 464 p− 488 q)

8379 pq + 8736 p− 8148 q − 3200
. (25)
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Figure 2: Singularity surface in p, q, r coordinates and hyperbolas cut by planes
p = const

The figure 2 represents the singularity surface in the p, q, r coordinates and
its sections by planes p = constant, which are all hyperbolas except for four
sections which degenerate in two lines, one of them (in red) parallel to the r
axis, in direction of the singular point at infinity. The figure 3 represents the
sections by planes r = const. These sections are the conics of a linear pencil
whose base points are the intersections with the red lines already encountered,
which is clear on the view at the right. The pencil contains three degenerate
conics represented in black on the left view.

Figure 3: Conics cut by planes r = const form a linear pencil

5 Conclusion

Many papers have already studied the locus of singularities of a Gough-Stewart
platform. In this paper we proposed
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• to work as much as possible over the field R(SO(3)) in order to obtain
results which are uniform for all orientations except a proper algebraic
subset of the the group of rotations,

• to use some tools of algebraic geometry such as the consideration of points
at infinity or the classical results of the theory of projective cubic surfaces.

As a result of this approach we obtained a uniform rational parametrization of
the singularity locus, valid for generic orientations. We also exhibited a uniform
family of parallel planes cutting the singularity surface in the conics of a linear
pencil.

We plan to use the information obtained on the geometry of the locus of
singularities to address other problems such as the number of aspects for a
generic biplanar Gough-Stewart platform. We shall also study the geometry of
the singularity locus when the Gough-Stewart platform is not assumed biplanar;
in this general case, the famous configuration of the 27 lines (see [11]) on the
surface Σ plays a crucial role.
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