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Abstract

We present a new globally optimal algorithm for self-

calibrating a moving camera with constant parameters.

Our method aims at estimating the Dual Absolute Quadric

(DAQ) under the rank-3 and, optionally, camera centers

chirality constraints. We employ the Branch-and-Prune

paradigm and explore the space of only 5 parameters.

Pruning in our method relies on solving Linear Matrix

Inequality (LMI) feasibility and Generalized Eigenvalue

(GEV) problems that solely depend upon the entries of the

DAQ. These LMI and GEV problems are used to rule out

branches in the search tree in which a quadric not satisfy-

ing the rank and chirality conditions on camera centers is

guaranteed not to exist. The chirality LMI conditions are

obtained by relying on the mild assumption that the camera

undergoes a rotation of no more than 90◦ between consec-

utive views. Furthermore, our method does not rely on cal-

culating bounds on any particular cost function and hence

can virtually optimize any objective while achieving global

optimality in a very competitive running-time.

1. Introduction

Self-calibration (retrieving camera’s intrinsic parameters

from image correspondences) of a moving camera is a non-

linear and challenging problem that has been the subject

of extensive research and exciting developments during the

past two decades. Most approaches rely on the ubiquitous

nature of the so-called Absolute Conic (AC): a special conic

lying on the plane at infinity. Early methods [11] exploited

the epipolar relationship between the duals of the images of

the AC (DIACs) which encode the parameters of the imag-

ing cameras. Relying on a set of camera matrices that are

consistent with the same projective scene structure allows

to cope with the artificial degeneracies arising when using

epipolar geometry. Given such cameras/scene set, chiral-

ity inequalities [9] have been used to define bounds on the

location of the plane at infinity allowing for an exhaustive

search alternating location hypotheses and parameter esti-

mation. A similar approach, iterating however on the space

of intrinsic parameters, has also been proposed in [6]. When

the camera parameters are constant though, stratified cam-

era self-calibration can be employed to retrieve the plane

at infinity by first solving the modulus constraints [13] be-

fore linearly retrieving the DIAC. Stratified methods con-

trast with the direct ones that aim at simultaneously locat-

ing the plane at infinity and the camera parameters. Direct

methods rely on the omnipresence of a special virtual plane

quadric, the Dual Absolute Quadric (DAQ) [15, 10], encod-

ing the camera parameters and the plane at infinity.

Recent works on camera self-calibration [5, 3, 4, 1] have

focused on devising deterministic globally convergent al-

gorithms that only require bounds on some initial search

space and that converge to a global minimum with an op-

timality certificate. Such methods are rather appealing as

they sidestep the convergence issues that arise when us-

ing local optimization. Fusiello and Benedetti proposed

in [5] a method based on Interval Analysis and employing

the Branch-and-Bound (B&B) algorithmic paradigm. Their

method was developed to solve the Huang-Faugeras con-

straints on the essential matrix. However, with the degen-

eracies arising from the use of epipolar geometry, possibly

increasing the number of branches, and the complexity of

the considered constraints, the method has proved compu-

tationally quite expensive and applicable only to rather short

image sequences. A B&B-based approach, this time in con-

junction with convex relaxations, was also used by Chan-

draker et al. [3] for stratified camera-self-calibration via the

modulus and chirality constraints. The main drawback of

this method lies in the fact that it employs two independent

algorithms: one for locating the plane at infinity and another

for estimating the DIAC. However, the modulus constraint

is only a necessary condition on the location of the plane

at infinity and likely to admit, in particular for short im-

age sequences, more than one global minimizer. Hence, the

global solution obtained from locating the plane at infinity,



although guaranteed to be global, is not guaranteed to sup-

port a conic that identically project on all views. This may

mainly occur because the search for the plane at infinity

is tackled independently from finding the DIAC. Hence, a

globally optimal algorithm for the self-calibration problem

should simultaneously act on both locating the plane at in-

finity and the DIAC by typically solving the DAQ formula-

tion of the problem. While the latter can be linearized under

some camera parameters assumptions [14], it was shown

in [7] that, by failing to enforce the DAQ’s positiveness and

rank-3 constraints, the linearized equations may yield ar-

tificial critical camera motions. In this regard, Gordjos et

al. [7] proposed to relax the rank constraint and reintroduc-

ing it a posteriori while Bocquillon et al. [1] devised a glob-

ally optimal method for estimating the focal length of the

camera. Another method, in which global optimality was

sought, is the one presented by Chandraker et al. in [4] for

solving the DAQ formulation of the self-calibration prob-

lem. This method not only carries the advantage of estimat-

ing the DAQ while enforcing its rank-degeneracy and posi-

tive semi-definiteness but also allows to enforce the chirality

constraints as well during optimization. In particular, satis-

fying the chirality conditions on the camera centers insures,

at each optimization iteration, that the candidate plane at in-

finity does not cut through the convex hull of cameras which

may otherwise be detrimental to the viability of many cost

functions used for camera self-calibration [12]. The con-

strained DAQ estimation in [4] is stated as a polynomial op-

timization problem subject to polynomial inequalities. The

polynomial optimization method adopted therein initially

requires to transform all constraints, should they be linear,

into nonlinear polynomials (of a degree of at most 4) only

to be linearized or re-linearized using lifting variables and

constraints. The problem is handled by solving a hierarchy

of nested Linear Matrix Inequality (LMI) relaxations of in-

creasing order by gradually introducing lifting variables and

constraints as to linearize monomials up to a given degree.

Although the solutions of the LMI relaxations are guaran-

teed in theory to converge to the global optimum, the or-

der of relaxation allowing for global convergence cannot be

known in advance. Furthermore, with the rapidly increas-

ing number of lifting variables and constraints, the problem

may not even be numerically tractable when, or way before,

the order of relaxation allowing for convergence is reached.

In this paper we present a new globally optimal method

for the rank-constrained estimation of the DAQ possibly,

under some mild camera motion conditions, in conjunction

with chirality conditions on camera centers. Unlike [4], our

method is applicable only in the case of a moving camera

with constant intrinsic parameters. However, we show that,

under such conditions and by exploiting the structure of the

DAQ equations, a rather simple Branch-and-Prune (B&P)

algorithm involving LMIs with no more than 9 variables can

be employed to achieve global optimality in a very compet-

itive running-time in comparison with existing global meth-

ods. Given some bounds on the intrinsic parameters, our

method proceeds by recursively branching and exploring

the DIAC’s parameters space (5 parameters) only to rule out

branches in which a quadric projecting on the same DIAC

on all views and exhibiting the desired rank - and possibly

chirality properties - is guaranteed not to exist. The likely

existence of such quadric within prescribed bounds is ex-

pressed via a set of LMI feasibility problems and LMI gen-

eralized eigenvalue (GEV) problems. All LMI and GEV

problems are expressed in terms of at most 9 variables: the

entries of the DAQ. This includes the rank-3 condition on

the DAQ. We also show that the chirality of camera cen-

ters can be expressed by a set of LMIs in the entries of

the DAQ under the assumption that the camera undergoes

a rotation of no more than 90◦ between consecutive views.

Note that this is a mild assumption implicitly verified when

capturing images with the goal of carrying out point cor-

respondences across consecutive pairs of images. Further-

more, our method can virtually be used with any objective

since it does not rely on calculating bounds on any partic-

ular cost function. This is particularly important since the

DAQ formulation introduces a different unknown scale with

each view and using an appropriate, say normalized, cost

function is highly recommended.

2. Background and notation

The scene is imaged by n pinhole cameras represented,

in some arbitrarily chosen projective frame, by a set of 3×
4 full row-rank camera matrices Pi, i = 1 . . . n. Planes,

image and scene points are represented by homogeneous

coordinate vectors. A scene point X expressed in this frame

projects in the ith image onto the point xi ∼ PiX (∼ is

the equality up to a scale). We use (.)k to refer to the kth

coordinate of the vector in argument and (.)kℓ to refer to

the entry at row k and column ℓ of the matrix in argument.

The identity matrix and the null vector (dimensions are to

be deduced from the context) are denoted by I and 0.

Camera signatures and chirality: Camera (optical) cen-

ters Ci are special points whose coordinates satisfy PiCi =
0. These coordinates can be obtained (with fixed scale)

through the expansion of det
(

Pi

Π⊺

)

= Π⊺Ci along the

entries of the 4-vector Π. Scene points in front of a pair

of cameras in the true metric configuration may appear in

front of one camera but behind the other in a projective

reconstruction. In such case, the cameras are said to be

twisted by the projective transformation and untwisted oth-

erwise. Based on Hartley’s chirality theory [9] and using

scene points that are visible by each camera pair, Nistér [12]

proposed a simple yet robust twist test on cameras. The test

is carried out by determining the signature ζi ∈ {−1, +1}



of each camera as given by Algorithm 2, p.173 in [12].

Cameras with opposite signatures are twisted. A projec-

tive transformation that twists a pair of cameras moves the

plane at infinity from its canonical position into one that

cuts through the line segment joining their optical centers.

All optical centers of cameras with positive signatures, i.e.

ζi = 1, lie on one side with respect to the plane at infinity.

Those with ζi = −1 lie on the opposite side. The true plane

at infinity, whose coordinate vector is denoted by Π∞, must

satisfy

ζiζjΠ
⊺

∞CiC
⊺

j Π∞ > 0 for all i, j = 1, . . . n. (1)

Π∞ being homogeneous, (1) can also be expressed by arbi-

trarily choosing a common sign ζiΠ
⊺

∞Ci > 0 (or < 0) for

all views. These inequalities are commonly known as the

chirality inequalities of camera centers.

The Dual Absolute Quadric: The position of the plane at

infinity is important in camera self-calibration as it allows

to upgrade the projective scene and cameras to an affine

frame. In particular, once its position is known, the inter-

image homographies induced by the plane at infinity can

be recovered. Given the plane at infinity Π⊺

∞ = ( π⊺

∞ 1 )
and arbitrarily choosing the first camera as a reference, i.e.

P1 = [ I | 0 ], such homographies relating the reference

camera with each of the remaining cameras are given by

Pi

[

I

−π⊺

∞

]

= µiKRiK
−1

for i = 2, . . . n. (2)

In (2), each matrix Ri is a 3×3 orthogonal matrix represent-

ing the rotation between the reference and the ith camera, K

is a 3 × 3 upper-triangular matrix embedding the camera’s

intrinsic parameters, and µi scalars. Given(2), the following

Pi

[

ω n

n⊺ s

]

P
⊺

i = λiω, i = 1 . . . n (3)

holds for all views for some λi > 0 (since λi = µ2
i ).

The 4 × 4 rank-3 symmetric positive semi-definite matrix
[

ω n

n⊺ s

]

represents the DAQ and the 3 × 3 symmetric

positive-definite matrix ω = KK⊺ (with ω33=1) represents

the DIAC, n = −ωπ∞ and s a scalar. Finding the DAQ

is equivalent to simultaneously locating the plane at infinity

and the DIAC. Once the matrix ω is known, we extract the

intrinsic parameters using Cholesky factorization.

Linear matrix inequalities: If matrix A is positive-definite

(resp. positive semi-definite), we denote A > 0 or −A <

0 (resp. A ≥ 0 or −A ≤ 0). Given matrices A and B,

A > B (resp. A ≥ B) means A − B > 0 (resp. A −
B ≥ 0). A LMI is a constraint on a real-valued vector y =
(y0, y1, y2, . . . ym) such that

A(y) > 0 (4)

where A(y) = A0 +
∑m

i=1 yiAi is an affine function of y

involving symmetric matrices A0, . . .Am. A LMI may also

be a negative definiteness constraint A(y) < 0. While (4) is

a strict LMI, the inequality therein may also be non-strict

as to express positive (resp. negative) semi-definiteness

A(y) ≥ 0 (resp. A(y) ≤ 0). A LMI feasibility problem

is a convex optimization problem that can be solved very

efficiently using interior-point methods [2]. Solving such

problem means either finding y that satisfies the considered

LMI or determining that no solution exists. From a practical

point of view, some LMI softwares consider LMIs as non-

strict by default (SeDumi) while in others (Matlab Control

Toolbox) inequalities are considered as strict. Note that, for

a sufficiently small value ǫ > 0, a strict inequality (resp.

non-strict), e.g. A > 0 (resp. A ≥ 0), can be turned into

a non-strict A ≥ −ǫI (resp. strict A > ǫI) inequality. We

recall that the largest eigenvalue λ+ and the smallest eigen-

value λ− of a symmetric matrix A satisfy λ−
I ≤ A ≤ λ+

I.

The GEVs of two matrices A and B are the values of λ sat-

isfying det(A − λB) = 0. Given affine matrices A(y) and

B(y) in y, the GEV problem consists in finding a y maximiz-

ing (resp. minimizing) their smallest (resp. largest) GEV.

Maximizing the smallest GEV can be obtained by solving

max
y

λ

s.t. A(y) ≥ λB(y), B(y) ≥ 0, C(y) ≥ 0
(5)

possibly subject to additional constraints C(y) > 0. This is

a quasiconvex problem that can be solved by bisection on

λ. LMIs are used to solve a variety of problems which can

be brought on the form (4) or its non-strict counterpart. In

particular, some problems can be reformulated as LMIs by

using the Schur complement lemma [2].

Lemma 2.1 Given a real symmetric block-partitioned ma-

trix D =
[

A B

B⊺ C

]

and the Schur complement

S = C− B⊺A−1B of (the symmetric block) A in D,

if A > 0, then D ≥ 0 ⇔ S ≥ 0. (6)

3. LMI conditions on the DAQ

Proposition 3.1 Let λ−
i be the maximum value of the small-

est GEV obtained by solving

max
ω,n,s

λ

s.t. Pi

[

ω n

n⊺ s

]

P
⊺

i ≥ λω, Ω ≥ 0, ω > 0,

(ω)kℓ ≤ (ω)kℓ ≤ (ω)kℓ, k, ℓ = 1, 2, 3

(7)

over the unknown vector n, scalar s and the also unknown ω

whose entries are bounded. If the entries of the true DIAC

are within the bounds (ω)kℓ and (ω)kℓ, then λ−
i is bounded

from above and the LMI

Pi

[

ω n

n⊺ s

]

P
⊺

i ≤ λ−
i ω (8)

is feasible for at least the true DIAC and DAQ.



Proof The DAQ projection equation (3) conveys the in-

formation that, for the true DAQ and DIAC, the ma-

trices Pi

[

ω n

n⊺ s

]

P
⊺

i and ω admit λi as a GEV since

det(Pi

[

ω n

n⊺ s

]

P
⊺

i − λiω) = 0. More importantly, λi

is a GEV with algebraic multiplicity 3. This can be easily

seen by noticing that the GEVs of these two matrices are

the eigenvalues of ω−1Pi

[

ω n

n⊺ s

]

P
⊺

i which simplifies to

λiI. As a consequence, if we allow ω and
[

ω n

n⊺ s

]

to

possibly be the true DIAC and true DAQ, then λ−
i ≥ λi and

the inequality (8) holds.

The claim in this proposition is that bounds on the entries

of ω suffice for the GEV problem (7) to be bounded: no

bounds on n and s are necessary. To demonstrate this, we

use the fact that the DAQ projection equation (3) implies

the well-known Kruppa’s equations

[ qi ]×HiωH
⊺

i [ qi ]
⊺

× = λi[ qi ]×ω[ qi ]
⊺

× (9)

where Pi = [ Hi | qi ] and [ qi ]× is the skew-symmetric ma-

trix constructed from qi and associated with the cross-

product. Because of the congruence transformation

any λ satisfying Pi

[

ω n

n⊺ s

]

P
⊺

i ≥ λω also satisfies

[ qi ]×HiωH
⊺

i [ qi ]
⊺

× ≥ λ[ qi ]×ω[ qi ]
⊺

×. Hence the solution

set of the former is included in the solution set of the latter.

If the entries of ω are bounded, all entries of the matrices on

both sides of the equality in (9) are also bounded. Moreover,

because ω > 0, the diagonal entries of both matrices ought

to be strictly positive. This implies that any λ satisfying the

LMI version of Kruppa’s equation subject to ω > 0 must be

bounded from above. Hence, the maximum of the smallest

GEV of Pi

[

ω n

n⊺ s

]

P
⊺

i and ω is also bounded.

This proof allows to deduce the following Corollary.

Corollary 3.2 Let λ−
i be the value of λ obtained by solving

the problem

max
ω,n,s

λ

s.t. [ qi ]×HiωH
⊺

i [ qi ]
⊺

× ≥ λ[ qi ]×ω[ qi ]
⊺

×,

ω > 0,

(ω)kℓ ≤ (ω)kℓ ≤ (ω)kℓ, k, ℓ = 1, 2, 3

(10)

for some unknown but bounded ω. If the entries of the true

DIAC are within the bounds (ω)kℓ and (ω)kℓ, then λ−
i is

bounded from above and the LMI (8) is feasible for at least

the true DIAC and DAQ.

Proposition 3.3 Assuming ω > 0, LMI (8) is feasible for

a rank-3 matrix
[

ω n

n⊺ s

]

where s = n⊺ω−1n if and only

if (11) is feasible
[

ω [ ω n ]P⊺

i

Pi

[

ω
n⊺

]

λ−

i
ω

]

≥ 0. (11)

Proof The proof then boils down to applying

Schur’s lemma Lemma 2.1 after noticing that

Pi

[

ω n

n⊺ n⊺ω−1n

]

P
⊺

i = Pi

[

ω
n⊺

]

ω−1[ ω n ]P⊺

i and

that λ−
i ω−Pi

[

ω
n⊺

]

ω−1[ω n ]P⊺

i is the Schur complement

of the matrix on the left hand-side of inequality (11).

Proposition 3.4 The following LMI

ζiζjPi

[

ω n

n⊺ s

]

P
⊺

j + ζiζjPj

[

ω n

n⊺ s

]

P
⊺

i ≥ 0 (12)

is feasible for at least the true DAQ and DIAC when the ro-

tation angle between two distinct views i and j of the cam-

era (about an arbitrary axis) is at most 90◦.

Proof The proof relies on the fact that

Pi

[

ω n

n⊺ s

]

P
⊺

j = µiµjKRijK
⊺ (see (2)) where

Rij = RiR
⊺

j is the rotation between the two views. Consider

the eigendecomposition Rij = Udiag(eJθ, e−Jθ, 1)U−1

where diag(. . .) is the diagonal matrix of (unit norm, two

of which are complex conjugate) eigenvalues of Rij and

θ is the rotation angle between the two views. Because

R−1
ij = R

⊺

ij , we also have R
⊺

ij = Udiag(e−Jθ, eJθ, 1)U−1.

We can hence deduce that the eigendecomposition

of the symmetric matrix Rij + R
⊺

ij is of the form

Rij + R
⊺

ij = Udiag(2 cos(θ), 2 cos(θ), 2)U−1. For

rotations not exceeding 90◦, we have Rij + R
⊺

ij ≥ 0
which remains true under a congruence trans-

formation, i.e. K(Rij + R
⊺

ij )K
⊺ ≥ 0. Since

Pi

[

ω n

n⊺ s

]

P
⊺

j + Pj

[

ω n

n⊺ s

]

P
⊺

i = µiµjK(Rij + R
⊺

ij )K
⊺

matrix on the left-hand side is either positive or neg-

ative semi-definite. In particular, positive or negative

definiteness is dependent upon the sign of µiµj and

can be set by considering the signatures of the involved

projection matrices. Indeed, one my use (2) to show that

µ3
i = det

(

Pi

[

I

−π⊺

∞

])

= det
(

Pi

−π⊺

∞
1

)

which expands

to µ3
i = Π⊺

∞Ci. Because sign(µiµj) = sign(µ3
iµ

3
j ), we

have sign(µiµj) = sign(Π⊺

∞CiC
⊺

j Π∞). Using (1), we

deduce that sign(ζiζjµiµj) > 0 thus implying (12) is

feasible.

Proposition 3.5 If the LMIs

ω > 0,

ζiζi+1Pi

[

ω n

n⊺ s

]

P
⊺

i+1
+ ζiζi+1Pi+1

[

ω n

n⊺ s

]

P
⊺

i
≥ 0

for all i = 1 . . . n

(13)

are simultaneously feasible for some rank-3
[

ω n

n⊺ s

]

,

then the candidate plane at infinity, with coordinates Π =
(−n⊺ω−1 1)⊺, is guaranteed to satisfy chirality inequali-

ties with respect to camera centers for all views; that is, all

ζiΠ
⊺Ci for i = 1 . . . n carry the same sign.



Proof The real parts of the eigenvalues of a matrix, whose

sum with its transpose (i.e symmetric part) is definite, carry

the same signs as those of its symmetric part. In our

case, the eigenvalues of the matrix on the left-hand side

of (13) are positive and so should be the determinant of

ζiζi+1Pi

[

ω n

n⊺ s

]

P
⊺

i+1. Furthermore, using the rank-3

condition on the quadric and ω > 0, imply that the fea-

sible quadric must be of the form
[

I

n⊺ω−1

]

ω[ I ω−1n ].

In this case, the determinant of ζiζi+1Pi

[

ω n

n⊺ s

]

P
⊺

i+1

is positive if and only if the det(ζi[ I ω−1n ]P⊺

i ) and

det(ζi+1[ I ω−1n ]P⊺

i+1) carry the same sign. These de-

terminants respectively expand to ζiΠ
⊺Ci and ζi+1Π

⊺Ci+1

hence demonstrating that both expressions carry the same

sign which naturally generalizes to all camera centers when

considering all views.

4. LMI-based Branch-and-Prune DAQ search

The B&P algorithmic paradigm requires that an initial

bounded space of the sought parameters, containing the op-

timal solution, to be given. The parameters’ space is re-

cursively subdivided into subspaces some of which are dis-

carded while the others are kept for further investigation.

This results in a dynamically generated search tree that is

branched through subdivision and pruned through the elimi-

nation of subspaces. The B&P algorithm we propose shares

with the well-known B&B the branching and pruning of the

parameters space. It however differs from B&B in that a

bounding function on the targeted objective is not needed.

Our method assumes that only bounds on the DIAC’s pa-

rameters are available and no bounds on the plane at infin-

ity are needed. Bounds on the intrinsic parameters can be

easily translated into bounds on the 5 unknown entries of

the DIAC’s matrix ω while (ω)33 = 1. These bounds ac-

count for the initial parameters space to be subdivided and

searched. At each iteration of our algorithm, we are given

lower bounds (ω)kℓ and upper bounds (ω)kℓ on the entries

of ω for which a decision on whether this bounded subspace

is to be investigated further or discarded following some

LMI feasibility/infeasibility pruning conditions.

In the first step, one computes, for each view (except the

first), the maximum value λ−
i of the smallest GEV by solv-

ing either problem (7) in Proposition 3.1 or (10) in Corol-

lary 3.2. Note however that (10) is computationally less

expensive as it involves only 5 unknowns instead of 9 when

using (7). We have used (10) in all the experiments whose

results are reported in Section 5. GEV bounds obtained

by (10) are generally less tight than those obtained by (7)

possibly resulting in more branching. However, the subse-

quent pruning step, which we present next, is rather efficient

in discarding parameter subspaces and the overall search is

significantly faster when using (10).

In the second step, we carry out a LMI feasibil-

ity/infeasibility pruning test within the bounds of ω at hand

and involving simultaneously all views. The LMIs to be

tested for feasibility/infeasibility depend on whether one

would like to consider chirality of camera centers or not.

We recall that the chirality/rotation LMIs (13) can be con-

sidered only when the rotation between consecutive images

is known to be at most 90◦. Given all λ−
i calculated in the

previous step, the pruning test is as follows:

Rank-3 pruning test (without chirality): Test the simulta-

neous feasibility/infeasibility of LMIs (11) i = 2 . . . n when

considering all views with ω > 0 and the bound constraints

(ω)kℓ ≤ (ω)kℓ ≤ (ω)kℓ, k, ℓ = 1, 2, 3 (ω33 = 1). From

Proposition 3.3, we understand that if these LMIs are infea-

sible, a positive semi-definite rank-3 quadric satisfying the

DAQ projection equations (3) for all views is guaranteed not

to exist for the specified bounds of ω. In such case, the con-

sidered subspace defined by the bounds of ω is discarded.

The subspace of ω is kept for further subdivision if these

LMIs are simultaneously feasible.

Rank-3 and chirality test: Test the simultaneous feasibil-

ity/infeasibility of LMIs (11) i = 2 . . . n along with the chi-

rality/rotation LMIs (13) i = 1 . . . n− 1 between consecu-

tive views with ω > 0,
[

ω n

n⊺ s

]

≥ 0 and the bound con-

straints (ω)kℓ ≤ (ω)kℓ ≤ (ω)kℓ, k, ℓ = 1, 2, 3 (ω33 = 1).

If these LMIs are infeasible, then a positive semi-definite

rank-3 quadric, satisfying (3) and leading to a candidate

plane at infinity satisfying the chirality inequalities with re-

spect to camera centers, is guaranteed not to exist within

the considered bounds of ω. This is due to Propositions 3.4

and 3.5. Again, the subspace of ω is kept for further subdi-

vision if these LMIs are simultaneously feasible.

Every subspace of ω in which the LMIs are satisfied is

considered ”alive”. Alive subspaces are stored in a list that

is maintained sorted with respect to some objective evalu-

ated at some feasible solution of the subspace. Although

this might not be the best value of the objective in the con-

sidered subspace, we use this information as an indication

on which subspace is more (or less) likely to contain the op-

timal solution. This indication becomes particularly more

reliable with every reduction of the subspaces. The search

tree generated by the subdivision of the space is explored

following a best-first search strategy. This is carried out by

visiting first, at each iteration, the alive subspace of parame-

ters whose feasible solution yielded the smallest value of the

objective. Branching is carried out along the longest edge;

that is, assuming (ω)kℓ ≤ (ω)kℓ ≤ (ω)kℓ, then the subspace

is subdivided into two subspaces midway along the DIAC’s

parameter for which |(ω)kℓ − (ω)kℓ| is the largest. Each of

these subspaces is then either alive (feasible LMIs) or dis-

carded (infeasible LMIs). Note that a branch ceases to be

explored when the bounds on ω are tight enough. The algo-



rithm stops when the value of the objective for the best fea-

sible solution is within some arbitrarily small value ǫ from

the global optimum. If such solution fails to exist, the algo-

rithm stops once there are no more alive subspaces and the

best feasible solution is returned. All the results reported in

this paper were obtained by minimizing (F: Frobenius)

max
i=2...n

||
Pi

[

ω n

n⊺ n⊺ω−1n

]

P
⊺

i

||Pi

[

ω n

n⊺ n⊺ω−1n

]

P
⊺

i ||F
− ω

||ω||F
||F . (14)

Remark: Note that, as in [7], relaxing the rank constraint

(for a posteriori enforcement) is possible in our method and

boils down to checking the infeasibility of (8) instead of that

of (11) after solving the GEV problems. However, while

enforcing the rank a posteriori works well in [7] for the

Dual Linear method, it proved computationally inefficient

for our B&P algorithm. This is because subspaces contain-

ing only full-rank quadrics satisfying (8) are not pruned but

rather kept for further investigation yielding an increase in

the branching and hence more GEVs and LMIs to solve.

5. Experiments

We tested our method using synthetic and real images.

Normalization of image points was used throughout. Pro-

jective reconstruction was obtained by [8] and refined via

Bundle Adjustment (BA) using Rabaud’s SfM Toolbox

vision.ucsd.edu/˜vrabaud. The algorithm was imple-

mented in MATLAB2012a and all the LMI problems were

solved using its LMI control toolbox. All experiments were

carried out on a Pentium i5/2.50GHz/6GB RAM.

Simulations: We generated a set of 120 random 3D points

scattered within a sphere of radius 100 units for each scene

simulation. The cameras were placed about 280±75 units

away from the center of the sphere. The motion of the cam-

era was restricted so that all views face the scene and the

rotation between consecutive images was at most 90◦ about

an arbitrary axis passing nearby the center of the sphere.

All scene points were projected on 256×256 images using a

camera of constant intrinsic parameters with horizontal and

vertical focal lengths fx = fy = 300, zero-skew α = 0, and

principal point u0 = 128 and v0 = 128. The synthetic im-

ages were obtained by adding various levels of zero-mean

Gaussian noise to the pixel coordinates. For each image se-

quence length and noise level (std. dev. from 0 to 2.0 with

0.5 step), we ran 100 independent tests. We conducted two

separate tests with and without our chirality/rotation LMIs.

For each data set, the stratified method [3], starting form

exactly the same initial bounds on the intrinsic parameters,

was also used for comparison. The results obtained were

refined by minimizing the sum of squares of the DAQ pro-

jection error using Levenberg-Marquardt algorithm. A test

was considered successful if the individual error in focal

lengths and principal points are within 20% and |α| < 20.

The accuracy of the 3D reconstruction was evaluated by

computing the RMS error after aligning the reconstructed

point cloud with the original cloud through the best metric

transformation in a least-square sense. Both point clouds

are normalized while keeping their mean distance equal to√
2 before computing the error. The projective structure

is upgraded to metric with the help of the change of ba-

sis transformation, which can easily be improved by other

refinement techniques like BA. If f i
x, f

i
y, α

i, ui
0, v

i
0, i =

1 . . . N are intrinsic parameters obtained form N differ-

ent calibrations, the RMS errors are computed as fol-

lows: ∆frms = (

∑N
i=1(f

i
x − fx)

2 + (f i
y − fy)

2

N((fx)2 + (fy)2)
)1/2,

∆uvrms = (

∑N
i=1(u

i
0 − u0)

2 + (vi0 − v0)
2

N((u0)2 + (v0)2)
)1/2 and

∆αrms = (

∑N
i=1(α

i − α)2

N
)1/2. Various measurements

of the success rate and accuracy for different methods are

shown in Figures 1-4. Our results suggest that the proposed

method is stable from as few as 4 views. When rotation

LMIs are added or more views are used, the success rate

improves as expected. Our method does not consider all the

reconstructed points to be in front of the camera, which in

fact may be unreliable in the presence of noise. This may

be one reason behind the failure of the stratified method.

On the other hand, two globally optimal solutions of the

stratified method may not necessarily be the global solu-

tion as a whole. It is important to notice that there may

be multiple global solutions in some cases. We have how-

ever considered only the first solution found. The termina-

tion of the algorithms before exploring all possible solutions

could be another reason of failure in such cases for both

methods. Incorporating the chirality/rotation LMIs and/or

increasing the number of views customarily decreases the

3D reconstruction error. The results in Figure 2(right) show

few abnormalities with higher levels of noise in 5-7 views.

This is probably due to the change in the number of sam-

ples for error computation. The samples that would have

failed with only 5 views but succeeded with 7 are likely to

give larger errors and hence increase the overall error. Our

method with and without the rotation LMIs, as shown in

Figure 3, is significantly faster than the stratified one while

providing good quality intrinsic parameters (Figure 4 for 5

views) that require only little refinement. It is observed that

the optimization with chirality/rotation LMIs is computa-

tionally more expensive. This results in an increase of the

overall running-time even when the number of iterations is

substantially decreased. Note that we have been unable to

conduct a meaningful comparison of our method against the

polynomial method in [4]. Unlike in [4], in most cases with

our data, the method failed to converge to the optimal DAQ

with a relaxation order of 2. We found that [4] gives the

vision.ucsd.edu/~vrabaud


Figure 1. Success rate for 1 pixel noise (left) and 5 views (right).

Figure 2. 3D RMS error for 1 pixel noise (left), 5 views (middle), and variable views and noise (right).

right results with an order of relaxation 3 but with about 30

minutes of running-time on the conducted tests.

Real Images: We present the results obtained with three

image sequences. Our method without chirality/rotation

LMIs, with chirality/rotation LMIs and the stratified method

are labeled as A, B and C respectively. The first sequence

consists of 9 3000 × 4000 images of a standard-sized foot-

ball, Figure 5(left), in which 14 common points were man-

ually selected. These points are corners of the truncated

icosahedron present on its surface. The wire-frame re-

construction of our method with chirality/rotation LMIs is

shown in Figure 5(middle-right). In this figure, the structure

was upgraded to Euclidean (the real world measurement of

the sides of polygons is known to be 4.5cm) and a sphere

was fitted to the reconstructed 3D points and shown. The

qualitative results of our method with and without chiral-

ity/rotation LMIs are not shown separately because of them

being very similar. However, the quantitative results are

presented. The following geometric parameters were com-

puted and compared in Table 1 against those of FIFA:

1. LS: RMS error of the length of sides.

2. AH: RMS error of the internal angles of hexagons.

3. AP: RMS error of the internal angles of pentagons.

4. A-HP: Mean(M) and Variance(V) of Dihedral angles

between hexagons and pentagons (expected: 142.62).

5. A-HH: Dihedral angle between two hexagons (ex-

pected: 138.19).

6. CS: Sphere circumference (expected: 68-70 cm).

Figure 5. Football (left), fitted sphere/Method B (middle-right)

LS
AH AP

A-HP
A-HH

CS
(cm) M V (cm)

A 0.16 1.01 0.88 141.52 2.53 135.93 68.05

B 0.16 1.03 0.083 141.51 2.54 135.93 68.06

C 2.12 5.64 11.03 161.37 1.57 160.48 134.63

Table 1. Geometric measurements.

The second image sequence we used is the ”Model

house” from www.robots.ox.ac.uk/˜vgg with 95 im-

age points common in 6 576 × 768 images. Our meth-

ods with and without chirality/rotation LMIs produced the

same results whereas the stratified method failed to provide

a valid result. Figure 6 shows one of the images and two

views of the reconstructed surface before and after texture

mapping. The ground truth being available, the 3D RMS

error computed for this sequence is 0.0109.

The third image sequence (results in Table 2) consisted

of 8 1200×1600 images (not shown) with 16 feature points

common to all views. The camera parameters were obtained

using the pattern-based calibration technique followed by

methods A, B and C.

www.robots.ox.ac.uk/~vgg


Figure 3. Median time taken for 1 pixel noise (left) and 5 views (right).

Figure 4. RMS error in intrinsic parameters before and after the refinement for 5 views.

Figure 6. Model house reconstruction with method B.

fx fy u0 v0 α
A 1615.49 1610.70 810.73 615.21 0.63

B 1611.90 1610.45 812.09 611.55 0.49

C 1603.86 1597.58 749.04 645.37 -32.29

Pattern-based 1601.32 1606.14 808.87 613.59 0.00

Table 2. Camera intrinsic parameters.

6. Conclusion

We have presented a new globally optimal algorithm

for estimating the DAQ under the rank-3 and, optionally,

camera centers chirality constraints. The proposed method

employs the Branch-and-Prune algorithmic paradigm and

requires to explore the space of only 5 parameters. Our

algorithm relies on some new results providing LMI fea-

sibility/infeasibility pruning conditions. Our LMI chiral-

ity/rotation conditions were obtained under the mild as-

sumption that the camera undergoes a rotation of no more

than 90◦ between consecutive views.
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