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2D-3D Camera Fusion for Visual Odometry in Outdoor Environments

Danda Pani Paudel1 Cédric Demonceaux1 Adlane Habed2 Pascal Vasseur3 and In So Kweon4

Abstract— Accurate estimation of camera motion is very
important for many robotics applications involving SfM and
visual SLAM. Such accuracy is attempted by refining the
estimated motion through nonlinear optimization. As many
modern robots are equipped with both 2D and 3D cameras,
it is both highly desirable and challenging to exploit data
acquired from both modalities to achieve a better localization.
Existing refinement methods, such as Bundle adjustment and
loop closing, may be employed only when precise 2D-to-3D
correspondences across frames are available. In this paper,
we propose a framework for robot localization that benefits
from both 2D and 3D information without requiring such
accurate correspondences to be established. This is carried out
through a 2D-3D based initial motion estimation followed by
a constrained nonlinear optimization for motion refinement.
The initial motion estimation finds the best possible 2D-to-3D
correspondences and localizes the cameras with respect the 3D
scene. The refinement step minimizes the projection errors of
3D points while preserving the existing relationships between
images. The problems of occlusion and that of missing scene
parts are handled by comparing the image-based reconstruction
and 3D sensor measurements. The effect of data inaccuracies
is minimized using an M-estimator based technique. Our
experiments have demonstrated that the proposed framework
allows to obtain a good initial motion estimate and a significant
improvement through refinement.

I. INTRODUCTION

In this paper we aim to fuse calibrated synchronized 2D

and 3D moving cameras for a better estimation of their mo-

tion. Accurate motion estimation is of prime importance in

visual Simultaneously Localization and Mapping (vSLAM).

An accurate environment map is generally required for an

accurate localization. In turn, building an accurate environ-

ment map is not possible without an accurate localization,

hence, making it a paradoxical “chicken and egg” problem.

With the relatively recent proliferation of affordable 3D

and 2D sensors, many mobile robots are, or can easily be,

equipped with both 2D and 3D cameras [1][2][4][5][6]. Most

of such robots localize themselves using the Iterative Closest

Point (ICP) algorithm (or one of its variants). Some robots

also use 2D images for localization whereas the mapping

is done using the 3D sensors. Long run outdoor localization

based on 3D information alone is difficult mainly because of

the unreliable 3D feature descriptors and local minima traps

(typical to ICP). In the 2D-2D case, however, the develop-

ment of reliable 2D image feature descriptors (such as SIFT),
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2D-to-2D matching has become more trustworthy. Unfor-

tunately, 2D features alone may not allow to compute the

motion up to desired accuracy. Furthermore, finding precise

2D-to-3D correspondences based on 2D features matching is

not trivial even for a calibrated setup. Localization based on

such 2D-to-3D correspondences and 2D-2D based refinement

may suffer from significant error accumulation. One example

of such error accumulation is shown in Fig. 1. This error is

usually minimized by loop closing techniques as described

in [3]. However, in particular when robots travel long dis-

tances, loop closing, if ever possible, may not adequately

compensate for error accumulation thus leaving visible ar-

tifacts in the map. This demands robots to make small and

frequent loops so that the accumulated error remains under

control. In practice, making such small loops while building

large maps is undoubtedly a burden for the task at hand

and often impossible. While incorporating information from

extra sensors such as GPS has been proposed [6][8], it is

often argued that such information is neither accurate nor

reliable enough. It is highly recommended, when building

large maps, to perform the loop closing with large real loops,

whenever possible, thus reducing the accumulation error.

Consequently, the robots moving around large structures

require a very accurate localization: good localization makes

the paradoxical vSLAM problem less difficult.

Visual odometry is generally carried out by relying on 2D-

2D, 3D-3D, or 2D-3D information. 2D-2D based methods

typically track features in monocular or stereo images and

estimate the motion between them [9][10]. Some of these

methods improve the localization accuracy by simultaneously

processing multiple frames, while using Bundle Adjustment

(BA) for refinement. Some other methods obtain the motion

parameters by registering images such that the photometric

error between them is minimized [11], [12]. For the same

purpose, most 3D-3D based methods use ICP or its vari-

ants [13][20][14] between conjugately acquired point clouds

obtained from the 3D camera [18][17]. However, ICP-based

methods are computationally expensive due to the calculation

of the nearest neighbors for every point at each iteration.

Both of these methods use the information from either

camera only and, hence, do not fully exploit all the available

information. Recent works [19][15] propose the use of

information provided from both cameras during the process

of localization. The work in [19] refines the camera pose

obtained from Structure-from-Motion (SfM) using an extra

constraint of a plane-induced homography via scene planes.

This method provides a very good insight for a possibility

to improve the camera pose when the partial 3D is known.

However, it uses only the information from planes that are



in the scene. The methods presented in [17][15][16] have

been tested in indoor environments mainly with a Kinect

sensor. Extension of these methods to outdoor environments

with possibly different kinds of 3D cameras is not trivial

due to various unhandled situations that may arise. Typical

issues arising in outdoor scenes and/or different camera

setups occur, for example, when 2D and 3D cameras do

not share the exact same field of view, when the 3D points

are sparse (as opposed to pixel-to-pixel mapping of RGB-D

cameras), in the absence of required scene structures, and in

the event of low frame rates and/or large displacements of

the cameras. Note that other 2D-3D based existing refinement

methods, such as Bundle adjustment and loop closing, are not

applicable under these circumstances because they require

precise 2D-to-3D correspondences across frames.

In this work, we first propose a complete framework for

visual odometry of 2D-3D camera system in an outdoor

environment addressing the above mentioned difficulties.

This framework computes the pose by localizing a set of

cameras at once with respect to the 3D scene acquired in

the previous frame using a minimum of three corresponding

points among all the views. We also propose a constrained

nonlinear optimization framework that further refines this

pose. The first step of our method uses only the known part of

the scene whereas our refinement process uses the constraints

that arise from the unknown part of the scene as well. Unlike

[19], our method makes no prior assumption regarding the

geometry of the scanned scene. Furthermore, the proposed

method differs from [23] as it has been specifically designed

for synchronized 2D-3D cameras in outdoor setup.

Our paper is organized as follows: we introduce the back-

ground and the used notations in Section II. We formulate

the optimization problem to obtain the optimal odometry

parameters in Section III. The solution to this problem is

presented in the form of an algorithm in the same section. In

Section IV, experiments with two real datasets are presented

and discussed. Section V concludes our work.

II. NOTATION AND BACKGROUND

The setup consists of a 3D scanner and multiple cali-

brated cameras as shown in Fig. 2. At any given instant,

the 3D scanner scans the scene points X1
k , k = 1 . . . p

in its coordinate frame O1. At the same time, calibrated

cameras with known extrinsic parameters Ri|ti, i = 1 . . .m
capture m images, from which a set of 2D feature points

are extracted. Let x1ij , j = 1 . . . n represent those feature

points in the ith image. P (R, t,X) is the projection function

that maps a point X to its 2D counterpart in the images

captured from R|t. When the system moves by R′|t′ to

next position, the corresponding variables are represented

by similar notations with change in superscript. If x1ij and

x2ij , j = 1 . . . n are the corresponding sets of feature points

in two consecutive images taken by ith camera, their 2D-to-

3D correspondences are specified by a function φ. Let φi(j)
be a function that maps each pair of 2D points x1ij ↔ x2ij ,

to the corresponding 3D point X1
k . Every rotation matrix

R is represented by a 4 × 1 vector of quaternions q unless

Fig. 1: An example of error accumulation around a loop:

Map built by a Laser-Camera system around a large structure

(top-left). Image taken at a loop closing point with only one

tree at the corner (top-right). Map built before (red) and

after (white) the visit around the loop using 2D-2D based

refinement [6] (bottom-left). Refined map obtained using our

method (bottom-right). The scans of the same tree distant

before come significantly closer after refinement.
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Fig. 2: Ray diagram of the experimental setup.

mentioned otherwise. Similarly, q′ for R′. Both 3D and 2D

points are represented by 3× 1 vectors, the latter being the

homogeneous representation in camera coordinate system.

III. 2D-3D ODOMETRY

In this section, we establish the relationships between

pairs of image points in two views and the scene points

acquired from the first one. Using these relationships, we

propose an optimization framework whose optimal solution

is the required odometry parameters. A complete algorithm

for solving this optimization problem is also discussed. The

proposed method deals with the case in which the 2D

cameras and 3D sensors are synchronized and 2D-to-2D

correspondences between the pairs of images acquired by

the same camera are known.



A. 2D-3D based Localization

It is trivial to find the 2D-to-3D correspondences, X1
k ↔

P (Rm, tm, X
1
k) in one frame. However, we need cross-

frame correspondences to estimate the motion R′|t′. Such

correspondences can be obtained by matching the 2D feature

points between images. Note that, most P (Rm, tm, X
1
k),

when considered as feature points, are unlikely to result

in reliable feature descriptors for matching. Therefore, we

extract a separate set of 2D feature points to obtain better

2D-2D correspondences x1ij ↔ x2ij . Motion estimation from

these correspondences requires at least 5 points to compute

the motion with an unknown scale. On the other hand, if

we can find 2D-3D correspondences x2ij ↔ X1
k , it would

require only 3 points to estimate the motion including the

scale. In order to benefit from this, the required 2D-to-

3D correspondences are computed for each image which is

established by the mapping function φi(j) computed as

φi(j) =
argmin

k ∈ {1, . . . , p}
||x1ij−P (Ri, ti, X

1
k)||, j = 1 . . . n.

(1)

It is important to notice that the correspondences obtained in

this manner are not perfect. We make a strong consideration

of this restriction while refining the estimated motion. The

search required to minimize (1) can be performed using a

KD-tree like structure where the projections of all 3D points

build one tree in each image. The detected feature points

traverse these trees in search for the best possible match.

Once the required correspondences are obtained, the set of

cameras in second frame can be localized with respect to the

previously acquired 3D scene using the method presented

in [7]. The advantage of using this method is that it requires

a minimum of 3 correspondences among all the views and

does not require a complex scene as demanded by ICP

or SfM. For example, even a planar scene with sufficient

texture can be processed. For low frame rates and/or large

displacements, feature matching methods still work better

than tracking them. Since only 3 correspondences are needed,

finding them from already matched 2D-2D to sparse 3D is

very much achievable in practice.

B. 2D-2D-to-3D based motion refinement

In the refinement process, we wish to minimize the sum

of projection errors over all the computed 2D-to-3D corre-

spondences. Hence, the cost to be minimized is defined as

ζ(R′, t′) =

m∑

i=1

n∑

j=1

||x2ij−P (RiR
′, R′ti+t

′, X1
φi(j)

)||2. (2)

At the same time, the Essential matrix between two views

of the same camera in different frames is expressed as

Ei(R
′, t′) = [t′i]×R

′

i, (3)

where R′

i|t
′

i is the pose of ith camera in second frame with

respect to the first one. It is related to R′|t′ as follows

(
R′

i t′i
0 1

)
=

(
Ri ti
0 1

)(
R′ t′

0 1

)(
Ri ti
0 1

)
−1

. (4)

Hence, the epipolar constraint that relates the points in two

views of different frames can be written as

(x2ij)
TEi(R

′, t′)x1ij = 0. (5)

Note that the minimization of cost defined in (2) locates the

set of cameras of the second frame with respect the 3D points

cloud acquired in the first frame. Similarly, (5) localizes the

second camera with respect to the first one. Theoretically, it

can be seen that (2) and (5) are redundant. However, in the

presence of noisy data and unknown correspondences, satis-

fying only the non-redundant condition does not necessarily

satisfy the other. Recall that, the 2D-to-3D correspondences

computed from (1) are not precise enough to obtain an

accurate localization. Hence, localizing the cameras based

only on the minimization of a cost function derived for

such inaccurate data may simply destroy the relative pose.

Satisfying only (5) does not make use of the known scene.

Therefore, we choose to incorporate both equations in an

optimization framework to obtain a better solution. For the

optimization, the cost of (2) is minimized while imposing

(5) as a constraint. It is important to notice that (5) makes

use of the unknown part of the scene as well.

Basically, our problem is to localize a set of 2D cameras

for known 2D-to-2D (x1ij ↔ x2ij) and unknown 2D-2D-

to-3D (x1ij ↔ x2ij ↔ X1
φi(j)

) correspondences in a noisy

environment. Hence, finding the optimal φi itself is part

of the optimization process. The motion estimation based

on computed φi is called 2D-3D registration. Finding better

values of R′ and t′ from 2D-2D-to-3D relationship is called

the camera pose refinement. Both registration and refinement

processes in a common optimization framework is written as

min

q′, t′, φ

m∑

i=1

n∑

j=1

||x2ij − P (RiR
′, R′ti + t′, X1

φi(j)
)||2,

subject to (x2ij)
TEi(R

′, t′)x1ij = 0,

||q′||2 = 1, i = 1 . . .m, j = 1 . . . n. (6)

The optimization problem (6) considers that every image

point has its corresponding 3D point in the scene. In practice,

there could be two problems: (a) multiple 3D points lying

on the back-projected ray from the second camera center

through an image point. All such points satisfy the epipolar

constraint and hence, lead to correspondence ambiguity, and

(b) extra 2D or missing 3D points resulting invalid 2D-to-

3D correspondences. We address both of these problems by

assigning the weights derived from the scale histogram for

each correspondence.

If X̃ij is the two-view reconstruction obtained using

the motion estimated from 2D-to-3D correspondences, the

relative scale of reconstruction for known 3D-to-3D corre-

spondences X̃ij ↔ X1
φi(j)

is computed as

si(j) =
||RT

i X̃ij −RT
i ti||

||X1
φi(j)

||
, j = 1 . . .m. (7)

Since the motion is estimated with true scales, in the ideal

case si(j) = 1 ∀i ∈ 1 . . .m, j ∈ 1 . . . n. In practice, when



a combined histogram H(u), u = 1 . . . b of these scales

is built, it holds the highest number of samples in the bin

corresponding to true scale (usually, close to 1). If that bin

is umax, then the weights are distributed as follows:

wi(j) =

{
1 si(j) ∈ H(umax)

0 otherwise.
(8)

Furthermore, the effect of data inaccuracies is reduced by

introducing a robust estimation technique. Hence, the opti-

mization problem (6) with robust estimation and histogram

based weighting can be re-written as

min

q′, t′, φ

m∑

i=1

n∑

j=1

wi(j)ρ(||x
2
ij − P (RiR

′, R′ti + t′, X1
φi(j)

)||),

subject to ρ((x2ij)
TEi(R

′, t′)x1ij) = 0,

||q′||2 = 1, i = 1 . . .m, j = 1 . . . n.
(9)

where ρ(x) is Tukey bi-weighted potential function. For a

threshold of ξ, it is defined as

ρ(y) =

{
y6

6 − ξ2y4

2 + ξ4y2

2 for |y| < ξ
ξ6

6 otherwise
(10)

whose influence function is ψ(y) = y
(
ξ2 − y2

)2
for |y| < ξ

and 0 otherwise.

Note that, the cost is derived only for the known part

of the scene. However, the constraint includes the unknown

part of the scene as well. The optimal odometry parameters

are obtained by iteratively solving this optimization problem.

First, 2D-to-3D correspondences are found using (1) and the

method [7] is used to estimate intial R′ and t′. Then, the rest

is a constrained nonlinear optimization problem whose local

optimal solution can be obtained by iteratively re-weighted

least-squares (IRLS) technique. Each iteration of IRLS uses

interior-point method to solve the constrained nonlinear least-

squares problem. In our implementation, we have relaxed the

strict equality of constraints to avoid the infeasibility that

would arise due to noisy data.

C. The algorithm

For known extrinsic parameters Ri|ti, i = 1 . . .m and

calibrated cameras, the proposed method works in two steps.

Both steps are carried out for each pair of consecutive frames

l and l + 1 as described in Algorithm 1.

D. Normalization and pose recovery

To avoid any numerical issues arising due to the dispro-

portionate measurement of different systems, the 3D points

are scaled and transformed such that their centroid remains

within one unit away from the 3D camera coordinate system.

All other translation terms are also normalized accordingly,

i.e. if λ = (
∑p

l=1 ||X
1
l ||)/p, they are scaled to λti, i =

1 . . .m. Note that, the knowledge of λ is sufficient to recover

the estimated motion with true scale. We also normalize the

data during robust estimation i.e. y in (10) is scaled with

twice of its median value and ξ is set to 1, whenever used.

Algorithm 1 2D-3D Odometry

Extract and match feature points to obtain xlij ↔ xl+1
ij .

Iterate over following two steps until convergence.

1) 2D-3D registration:

For each Camera i = 1 . . .m,

a) Compute P (Ri, ti, X
l
k), k = 1 . . . p and build a

KD-tree.

b) Find 2D-to-3D correspondences maps φi(j), j =
1 . . . n using (1).

Using all Cameras: Perform 2D-3D based RANSAC

and estimate R′

0|t
′

0 using [7].

2) 2D-2D-to-3D based refinement: Starting from R′

0|t
′

0,

iterate until convergence,

a) Reconstruct the scene X̃ l
ij , j = 1 . . . n and com-

pute scales si(j) for each point.

b) Build a combined scale histogram H(u), u =
1 . . . b for all cameras.

c) Compute weights wi(j), j = 1 . . . n using H(u).
d) Update the pose by optimizing (9) for known

φi(j) obtained from step 1(c).

IV. EXPERIMENTS

We have tested our method using two different real

datasets. Both datasets were acquired by a moving vehicle

equipped with a laser-camera system. However, these two

setups greatly differ from one another. We have used SURF

descriptor based matching to obtain the 2D-to-2D correspon-

dences. The constrained nonlinear least-squares optimization

problem is solved by using MATLAB-R2012a Optimization

Toolbox with interior-point method.

KAIST Dataset: We conducted our first experiments using

data obtained from a Laser-Camera system dedicated to

reconstructing very large outdoor structures. This system

uses two 2D laser scanners and four 2D cameras which are

synchronized and calibrated for both intrinsic and extrinsic

parameters. Laser scanners used here provide a wide angle

of view of the scanning plane so that the system can observe

tall objects as well as the ground making its suitable to

scan the environment from a close distance. The 3D map

(reconstruction) of the environment is made by collecting

these 2D scans at the proper location. Therefore, this system

requires a very precise localization for a good reconstruction.

Extrinsic parameters of 2D cameras were estimated by laser

points and a pattern-based calibration method. However, it

still possesses the mean projection error of about 0.5 pixels.

The interested reader may refer to [6] for details regarding

the experimental setup. The dataset we have tested is a

continuous trip of the Laser-Camera scanning system within

the compound of KAIST (Korea) for a distance of about

3 KM. The system made seven different loops during its

travel. The original reconstruction and the loops are shown

in Fig. 3. The lengths of the loops, as shown in Table I, range

from about 200 meters to 1.5 KM. Each camera captured

480 × 640 pix. images with a rate of about 20 frames/sec.



Loop Size (m) Bok et al. (m) Our method (m)

1 351.76 4.063 1.548

2 386.38 4.538 1.469

3 224.37 4.765 4.398

4 242.87 1.696 1.077

5 931.14 3.884 2.858

6 1496.4 7.182 6.381

7 546.05 5.502 2.115

TABLE I: Loop size and loop closing errors in meters for

Bok et al. [6] and our method.

The 2D-to-2D correspondences are computed between im-

ages escaping each 10 frames. The original reconstruction

obtained by Laser-Camera system was used as the required

3D information for our method. Note that this reconstruction

was not very accurate. Nevertheless, we were still able to

refine the motion using such inaccurate data.

The qualitative and quantitative results are presented in

Fig. 4 and Table I respectively. The errors were computed

by performing the ICP between two points clouds captured at

the loop closing point before and after the loop travel. Note

that, loop closing methods are not applied to the presented

results. Our goal is to obtain a better localization so that it

would be suitable for the loop closing methods. We strongly

believe that the localization with such accuracy can be a

very suitable input for loop closing. Our experiments clearly

show significant improvements in loop closing errors by

our method for all the loops tested. Since, most of the

loop closing methods used in practice provide only the

local optimal solution; these improvements contribute to their

convergence to the desired one. It can also be seen that the

error reduction is independent of the loop length. In fact,

the improvement is dependent upon the quality of feature

points.The remaining residual error is the combined effect

of the errors in calibration, matching, and measurements.

To analyze reconstruction accuracy, we fitted the surface

on the reconstructed points cloud using an algorithm that

we have developed in-house. This algorithm takes advantage

of the camera motion and the order of scanned points. The

reconstructed surface was mapped with texture from the

same images that were used for localization. The textured

scene with its various stages is shown in Fig. 5 for only one

side of the reconstruction around the first loop (about 350

meters). This part of the reconstruction consists of about

1.3× 106 3D points and 2.5× 106 triangles.

KITTI Dataset: The proposed method was

also tested on the benchmark dataset available at

(http://www.cvlibs.net/datasets/kitti/). The details of the

experimental setup is described in [22]. We have used the

stereo pair of gray images and the 3D data scanned from

a Velodyne laser scanner. The results obtained before and

after refinement for 5 different sequences were compared

against the provided ground truth. Errors in rotation and

translation were computed by using the evaluation code

provided along with the dataset which uses the ground truth

obtained using GPS and other odometry sensors. Although

this ground truth might not be very accurate for local poses

Fig. 3: Large map reconstructed using Laser-Camera system

in a single trip shown with starting and end points (left).

Closed loops made during the travel. Boxes shown are the

loop closing locations of seven different loops (right).

Fig. 4: Results similar to Fig. 1 for seventh Loop. Recon-

struction with a red box at the loop closing location (top),

obtained using Bok et al. (bottom-left) and our method after

refinement (bottom-right). The double sided arrows show the

gap between two different reconstructions of the same scene.

comparison, it is relevant over a long sequence due to

no error accumulation process. Therefore, the errors were

measured at the sequence steps of (100,200,...,800) and

are presented in Table II. Fig. 6 shows the map obtained

for the fifth sequence. A close observation shows that

the localization before the refinement is already quite

satisfactory. Its further refinement makes the result very

close to the ground truth itself. Here again, the results are

presented without the loop closing.

V. CONCLUSION

A method to fuse the information from 2D and 3D cameras

for outdoor visual odometry has been proposed. Our demon-

stration with two different datasets show the possibility of

estimating accurate motion of 2D-3D camera system even

when the 3D scene is acquired up to some inaccuracies.

Minimization of 3D projection errors while enforcing the

relationship between images is key for such accuracy. An

extension of our method to multi-frame processing is likely

to improve the results further.



Fig. 5: Surface reconstruction and texture mapping showing the accuracy of localization. Reconstructed 3D, fitted surface,

and texture mapping in a close view (top row, left to right). Texture mapping of the structure scanned around loop 1 (bottom).
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Fig. 6: Map built by our method (Initial Estimate and Refined

Motion) vs. Ground Truth for the fifth sequence.

Sq.N N.Frames
Initial Estimate Refined

∆T (%) ∆R(◦/m) ∆T (%) ∆R(◦/m)

3 801 1.6774 0.000432 1.6398 0.000216

5 2761 1.9147 0.000245 1.8679 0.000162

7 1101 2.3410 0.000231 1.5689 0.000192

8 4071 2.3122 0.000447 1.9799 0.000196

9 1591 1.7562 0.000270 1.5604 0.000197

TABLE II: Translation (∆T ) and Rotation (∆R) errors in

Initial and Refined results for five different sequences.
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