Preprints, Working Papers, ... Year : 2014

Paley-Littlewood decomposition for sectorial operators and interpolation spaces

Abstract

We prove Paley-Littlewood decompositions for the scales of fractional powers of $0$-sectorial operators $A$ on a Banach space which correspond to Triebel-Lizorkin spaces and the scale of Besov spaces if $A$ is the classical Laplace operator on $L^p(\R^n).$ We use the $H^\infty$-calculus, spectral multiplier theorems and generalized square functions on Banach spaces and apply our results to Laplace-type operators on manifolds and graphs, Schrödinger operators and Hermite expansion. We also give variants of these results for bisectorial operators and for generators of groups with a bounded $H^\infty$-calculus on strips.
Fichier principal
Vignette du fichier
Interpolation.pdf (367.83 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-01017662 , version 1 (02-07-2014)
hal-01017662 , version 2 (19-02-2016)

Identifiers

Cite

Christoph Kriegler, Lutz Weis. Paley-Littlewood decomposition for sectorial operators and interpolation spaces. 2014. ⟨hal-01017662v1⟩
388 View
367 Download

Altmetric

Share

More