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Abstract

The aim of the present paper is to investigate the consequences of the loading on the free surface response in polycrys-
talline aggregates. The study is made on a 316L stainless steel. Finite element computations using a crystal plasticity
model are performed to simulate a polycrystalline aggregate submitted to different cyclic loadings. A statistical analysis
of the results is carried out to extract information concerning the local stress and local strain fields at the free surface.
The analysis of plastic strain localization on surface maps and inside the bulk through transparent volumetric views
allows to exhibit the effects of the grain orientation and of the loading on local mechanical fields. The computation of
an indicator characterizing extrusion/intrusion steps give some information on the initiation sites.

Keywords: Polycrystal, Crystal plasticity, Finite Element Analysis, Fatigue, Surface relief

1. Introduction

Fatigue crack initiation can be studied at several scales.
For engineers working at a macroscale, initiation means
that one of the microcracks becomes large enough to be
seen as a macroscopic crack, the propagation of which is
no longer influenced by the local texture: This occurs for
a crack length of several grains. In material science, fa-
tigue crack nucleation is rather related to crack lengths
close to the grain size. Under High Cycle Fatigue con-
ditions, the initiation period may represent between one
half and 90% of the component life. Since the microprop-
agation is affected by the local grain microstructure, this
is the main source of the scatter that is classically found
in this domain. The so called “Microstructurally Short
Cracks (MSCs)” and the different stages of initiation and
micropropagation have been described in a well known pa-
per [1]. Microstructural features such as grain boundaries
and crystallographic orientations play an important role
in this process.

Nevertheless, the different stages of fatigue cracks ini-
tiation and propagation were defined earlier [2]. Accord-
ing to his work, initiation is mainly due to Persistent Slip
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Bands (PSBs), the presence of which can be explained
by means of a physical model introducing dislocation mo-
tions [3]. Observations of fatigued copper single crystals
allow to understand the formation of intrusion–extrusion
steps at the free surface, also called Persistent Slip Mark-
ings (PSMs), which leads to the initiation of a surface
microcrack [4]. Blochwitz et al. [5] measured PSM ap-
pearing at the surface of a nickel polycrystal under cyclic
loading. Further observations about fatigue induced sur-
face relief were carried out by Man et al. on 316L Stain-
less Steel using Atomic Force Microscope [6]. This work
showed that extrusion steps height increases significantly
during the early fatigue cycles before developing with a
three times slower growth rate, proportional to the number
of cycles N . Discrete Dislocation Dynamics simulations
showed that the extrusion height remains proportional to√

N in the case of symmetric cyclic loading, while it is
linearly related to N in the presence of a positive mean
strain [7]. This statement is consistent with the fact that
fatigue life decreases for a given stress amplitude, when a
mean stress is applied. Being aware of these experimental
observations, reproducing these surface steps and predict-
ing their growth with a numerical model is a key point for
a better prediction of fatigue crack initiation.

Recent studies compared 2D FE simulations and ex-
perimentally observed plastic strain localization [8] or slip
traces [9]. Some of the numerical studies were focused on
the effect of free surface but without introducing crystal
plasticity [10]. First investigations on surface effect in 3D
polycrystalline aggregates were presented in [11], but only
monotonic loadings were considered and only a few orien-
tation configurations were investigated. Statistical analy-
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ses, based on multiple microstructure configurations, were
conducted to look into the origin of the scatter observed
in the results under HCF conditions [12].

The aim of this paper is to study the free surface effect
in polycrystalline aggregate, using Finite Element Crystal
Plasticity (FECP). This implies to get accurate informa-
tion about both plastic strain localization and its spatial
organization on the surface and inside the bulk. That is
why 3D computations have been performed. A crystal
plasticity model with non linear kinematic hardening is in-
troduced in a 3D mesh which conforms grain boundaries.
The free surface response is studied for a series of loading
paths with a quick overview of the mesh sensitivity. A
statistical study is performed to characterize the influence
of the neighborhood on the local mechanical fields.

The paper is organized as follows. In the first part, the
constitutive equations, the material parameter identifica-
tion, the FE mesh and the applied boundary conditions are
described. Next, several statistical analyses are performed
to characterize:

i The distribution of local variables depending on the
mesh density.

ii The von Mises stress and the cumulated viscoplastic
slip for various classes of grains (all grains, surface
grains, core grains and BC grains).

iii The influence of crystallographic orientation and grain
boundary misorientation on a grain behavior.

Finally, we focus on the localization of different vari-
ables such as cumulated viscoplastic slip, von Mises plastic
strain and intrusion/extrusion steps that are candidate fa-
tigue indicators.

2. Numerical model

2.1. Constitutive equations

Méric–Cailletaud’s crystal plasticity model is used, in
the framework of the finite element code ZeBuLoN [13].
Small strain assumption is used, which seems reasonable,
since, in our past experience, the amount of rotation of
a slip plane is around 1◦ for 1% macroscopic strain. Un-
der cyclic loading, ratchetting may be present if the lo-
cal loading path presents unbalanced stress components.
However, as long as the loading conditions prevent mean
stress or mean strain to appear, which is the case in our
study, no ratchetting can occur, so small strains assump-
tion reminds reasonable. Otherwise large strains modeling
might be necessary to capture local lattice rotations. Each
grain is assigned a randomly selected orientation and the
displacement fields are supposed to be continuous at grain
boundaries. Therefore, stress discontinuities can appear
at these sites. Strain rate tensor is decomposed into an
elastic and a viscoplastic part:

ε̇
∼

= ε̇
∼

e + ε̇
∼

p = C
≈

−1 : σ̇
∼

+ ε̇
∼

p (1)

Cubic elasticity is defined by the fourth order tensor of
elastic moduli C

≈

. Hence elasticity itself produces residual
intergranular stresses.

The resolved shear stress τ s is computed on each slip
system s by means of the orientation tensor m

∼

s:

τ s = σ
∼

: m
∼

s (2)

with m
∼

s =
1

2

(

ls ⊗ ns + ns ⊗ ls
)

(3)

where ns is the normal to the slip plane and ls is the slip
direction.

The viscoplastic strain rate tensor is defined as the sum
of the contributions of all the slip systems s. Each vis-
coplastic slip rate γ̇s is given by a power law, function of
the resolved shear stress, the initial critical resolved shear
stress τ0 and two hardening variables, xs for kinematic
hardening and rs for isotropic hardening.

ε̇
∼

p =
∑

s

γ̇sm
∼

s (4)

γ̇s = sign(τ s − xs)v̇s (5)

v̇s =

〈 |τ s − xs| − rs − τ0

K

〉n

(6)

where K and n are the parameters which define viscosity,
γ̇s stands for slip rate, vs is the cumulated viscoplastic slip
on slip system s. The operator 〈.〉 takes the positive part
of its argument.

Hardening depends on two internal state variables, αs

for kinematic and ρs for isotropic hardening, as described
by equations (7) to (10). This framework offers a single
set of active slip systems, and avoids complex procedures
attached to the definition of slip activity for the time in-
dependent plastic case [14].

xs = cαs (7)

rs = bQ
∑

r

hsrρr (8)

α̇s =
(

sign(τ s − xs) − dαs
)

v̇s (9)

ρ̇s = (1 − bρs)v̇s (10)

where c and d are material parameters for kinematic hard-
ening, Q and b are material parameters for isotropic hard-
ening. Self-hardening and latent hardening between differ-
ent slip systems are characterized by means of the interac-
tion matrix hsr. The material of the study is an austenitic
stainless steel, the crystallographic structure of which is
FCC. Slip operates on octahedral slip systems (see fig-
ure 1), so that slip plane normals and directions are respec-
tively {1 1 1} and 〈 1 1 0 〉. The corresponding interaction
matrix is defined by six coefficient hi [15].

2.2. Material parameters identification

The parameters of the cubic elasticity matrix for
austenite are provided by Huntington [16], therefore no
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Figure 1: Octahedral slip systems in FCC crystal.

identification is required for these coefficients. The mate-
rial parameters of the crystal plasticity model are identi-
fied from the macroscopic tensile curve, solving the inverse
problem by means of a mean field model. Phases are char-
acterized by classes of crystallographic orientations. The
identification process introduces two steps, both of them
based on the classical approach deriving from the problem
of an inclusion in an infinite medium [17]. The reference
model in this domain is the self-consistent scheme due to
Hill [18], that defines internal stresses by means the elasto-
plastic accommodation tensor L

≈

∗, depending on the shape
of inclusions.

σ̇
∼

i = Σ̇
∼

+ L
≈

∗ :
(

Ė
∼

− ε̇
∼

i
)

(11)

where σ
∼

i and Σ
∼

are respectively the local (for phase i) and
macroscopic stress tensors, ε

∼

i is the strain tensor related
to phase i and E

∼
the macroscopic strain tensor.

In our case, Berveiller–Zaoui’s model (BZ) is used in-
stead. It can be deduced from Hill’s model, for the special
case of a monotonic loading path, uniform elasticity and
spherical shape of the inclusions.

σ
∼

i = Σ
∼

+ 2µ(1 − β)α
(

E
∼

p − ε
∼

p,i
)

(12)

β =
2(4 − 5ν)

15(1 − ν)
(13)

1

α
= 1 +

3µEp

2Σ
(14)

where µ is the macroscopic shear modulus and ν the Pois-
son’s ratio. Ep and Σ are respectively the von Mises equiv-
alent of the macroscopic plastic strain and of the stress ten-
sor. During the deformation, α varies from 1 to 0. This
model does not need any additional parameter to define
the scale transition rule. It can then be easily applied to
calibrate the single crystal material parameters on the ten-
sile test [19]. Since the model is valid for tensile tests only,
the identification has then to be refined for cyclic tests.
This is made by means of the β-scale transition rule [20],

described by equations 15 to 19, which is more accurate
for cyclic and non-proportional loadings.

σ
∼

i = Σ
∼

+ 2µ(1 − β)
(

β
∼

− β
∼

i
)

(15)

β =
2(4 − 5ν)

15(1 − ν)
(16)

β
∼

=
∑

i

fiβ
∼

i (17)

β̇
∼

i
= ε̇

∼

p,i − Dεp,i
eq β

∼

i (18)

εp,i
eq =

√

2

3
ε
∼

p,i : ε
∼

p,i (19)

where β
∼

i and β
∼

are respectively the local and average ac-
commodation tensors, fi is the volume fraction of phase i,
and D is the parameter allowing to adjust the transition
rule. The set of parameters originating from the applica-
tion of BZ’s model is used to initialize the identification
process. This new step allows to identify the scale tran-
sition parameter D and to refine the values of the single
crystal model parameters. Both monotonic tensile and
cyclic tests are taken into account in the process.

The experimental data base was provided by EDF [21]:
Tensile and cyclic tests have been performed on a 316L
stainless steel. The mechanical steady state is assumed
to be reached at the 10th simulated cycle, Nsta, for each
loading amplitude. The slip matrix coefficient hi have been
chosen in agreement with recent studies which mention a
strong latent hardening on collinear systems [22, 23]. The
parameters obtained are presented in table 1. Figure 2
illustrates the good agreement between experiments and
simulations for a tensile test and three strain controlled
cyclic tests ∆ε/2 = 0.2%, 0.3% and 0.5%.

For a deformation greater than 0.2%, the BZ simu-
lation is in perfect agreement with experiment for the
tensile test. The simulation performed with the β-model
slightly overestimates the value for small strain and un-
derestimates it for larger strains (see figure 2a), but the
agreement is still acceptable. This degradation of the sim-
ulation is linked to the fact that a compromise must be
made between monotonic and cyclic tests. The simulation
of the latter is very satisfactory (figure 2b to 2d). Since
our study focuses on small strain ranges, the preference
has been given to the ∆ε/2 = 0.2% test in the calibration
process.

Nevertheless, this identification still remains incom-
plete, as most of the numerical studies on polycrystals
using CPFE. Indeed, our model calibration is based on
fatigue tests at the macro-scale, transposed at the scale
of the Representative Volume Element (RVE) of the poly-
crystal. To make this step more rigorous, one should use
the same type of data from a polycrystal, but at the grain
scale. This means getting stress–strain state of each grain
within the polycrystal, at the surface and inside the bulk,
with a non-destructive technique to let the possibility to
provide data at different steps during loading and unload-
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Figure 2: Comparison between experimental and numerical results
on tensile and cyclic tests.

Cubic elasticity
C1111 197,000 MPa
C1122 125,000 MPa
C1212 122,000 MPa

Flow rule
K 12 MPa.s-n

n 11
τ0 40 MPa

Isotropic hardening
Q 10 MPa
b 3
Kinematic hardening

c 40,000 MPa
d 1,500 MPa
Slip interaction matrix
h1 1
h2 1
h3 0.6
h4 12.3
h5 1.6
h6 1.8
Scale transition model
E 190,000 MPa
ν 0.3
µ 70,000 MPa
D 192

Table 1: Material parameters identified for 316L Steel.

ing sequences. Thus, having access to the local stress–
strain tensors on a real microstructure, i.e. grain shape
and orientations, would give a better reference for the
comparison with the crystal plasticity model. Such experi-
mental data could be obtained using 3D synchrotron imag-
ing techniques like Absorption Contrast Tomography and
Diffraction Contrast Tomography (DCT) [24, 25]. Poly-
crystal samples made of a few hundred to a few thousand
grains can be reconstructed into a voxelated volume and
then converted into a mesh ready for Finite Element com-
putations. As proposed by Oddershede et al. [26], it is also
possible to use near-field and far-field DCT acquisitions
of a polycrystalline specimen to determine the average of
elastic strain tensors in each grains with a precision close to
10−4 without having to reconstruct the polycrystalline ag-
gregate. As a second example, Reischig et al. based their
strain tensor measurements on the reconstructed volume
and the Friedel pairs [27, 28]. However these grain-resolved
strain tensor measurement techniques are restricted to a
certain class of materials and has not been tested on Stain-
less Steel right now. This might be introduced in future
work.

2.3. Mesh and boundary conditions

The mesh, which global size is 250µm × 250µm ×
125µm, consists of 291 grains with an average size close
to 50µm. It is built by applying a Voronoi tessellation

4



Mesh Coarse Medium Fine
Elements 16,099 65,170 454,673
Degrees of freedom 70,497 277,530 1,880,697
Number of domains 1 4 20
CPU time [h] 3 20 52

Table 2: Main features of the three meshes.

on a regular distribution of seeds, which generates trun-
cated octahedron shaped grains. Creating a scatter on
germ positions allows to get grains with homogeneous size
and shape and to have various geometrical orientations for
grain boundaries (see figure 3). Tetrahedral elements with
quadratic interpolation are used, following [29]. Three
mesh densities are used for our preliminary investigation
(coarse, medium and fine) with respectively 23,499, 92,341
and 626,899 nodes. Mesh density is kept homogeneous in-
side the whole aggregate, without any mesh refinement
near grain boundaries. Parallel computing is used for the
two larger meshes, with a FETI domain decomposition
technique [30]. Table 2 sums up the number of elements,
nodes, resulting degrees of freedom, number of domains
and CPU time for each mesh density. The loading ap-
plied in the computation considered in this table is the
uniaxial-y, which corresponds to a cyclic deformation of
±0.2% in y direction. It will be described hereafter. The
CPU time remains relatively high even for a large num-
ber of subdomains. As pointed out elsewhere [31], this
could be improved by replacing the current linear solver
(sparse direct) by a DSCPACK solver. It was not made
here since our DSCPACK version does not detect the rigid
body modes.

A tension–compression cyclic load is considered with a
load ratio R = −1. Four kinds of cyclic loading are in-
vestigated; uniaxial in x direction, uniaxial in y direction,
biaxial and biaxial with the same equivalent strain as uni-
axial. In each case, symmetric boundary conditions are
applied on the hidden faces (see figure 3) and face Z is a
free surface. For each type of loading, the other boundary
conditions are:

(a) Uniaxial-x

• Face X: cyclic loading to obtain Exx = ±0.2%.

• Face Y : uniform normal displacement.

(b) Uniaxial-y

• Face X: uniform normal displacement.

• Face Y : cyclic loading to obtain Eyy = ±0.2%.

(c) Biaxial-eq

• Face X: cyclic loading to obtain Exx = ±0.14%.

• Face Y : cyclic loading to obtain Eyy = ±0.14%.

(d) Biaxial

• Face X: cyclic loading to obtain Exx = ±0.2%.

• Face Y : cyclic loading to obtain Eyy = ±0.2%.

XX

YY

ZZ

Figure 3: Polycrystalline aggregate made of 291 grains (fine mesh).

In cases (a) and (b), a multipoint constraint is applied
to preserve a zero resulting force for the faces with an uni-
form normal displacement. That way, all faces stay flat
during the whole computation except face Z, which is free.
This is obviously not reproducing the realistic boundary
conditions, where local stress deviation would change the
displacement field to fit the deformation of adjacent grains.
In our case, more constraint are added than with experi-
mental [32] or periodic [22] boundary conditions. But, as
explained later in the paper, the perturbation of the stress
and strain fields, due to these MPC boundary conditions,
vanishes after the first layer of grains.

3. Results and discussion

3.1. Investigated parameters and variables

In the following, the effect of crystal plasticity is char-
acterized by three parameters, the influence of which will
be analyzed on the stress and strain fields.

• dGB: distance to the grain boundary, defined for each
integration point.

• Mmax: Schmid factor at the macroscale, defined for
each grain.
This parameter is described by the equation.

Ms = (N · ns) × (N · ls) (20)

Mmax = max
s

Ms (21)
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where the loading direction in N direction.

• ∆θi
w: weighted misorientation of a grain with its ad-

jacent grains. The misorientation ∆θi,j between two
adjacent grains i and j, accounting for cubic crystal
symmetry, is computed according to Randle [33]. A
C++ routine detects adjacent grains and calculates
the contact surface between the grains i and j, writ-
ten Si,j . Then ∆θi

w is computed by weighting each
misorientation ∆θi,j by Si,j .

∆θi
w =

1
∑

j Si,j

∑

j

Si,j∆θi,j (22)

• θGB/load: angle between the loading axis and the nor-
mal to the grain boundary plane.

The grain location inside the aggregate is another pa-
rameter that will be studied. Figure 4 shows the three
classes of grains depending on their location: in contact
with boundary conditions, inside the core or at the sur-
face. A grain is considered as in contact with BC if at
least one of his nodes is under displacement control in one
of the BC. The surface grains have at least one node on
the free surface, without being affected by one of the BC.
Finally, the core grains are the remaining ones.

A series of variables will be post-processed from the FE
results.

• σmises, the equivalent von Mises stress, computed
from the second invariant of deviatoric stress s

∼
by

σmises =

√

3

2
s
∼

: s
∼

(23)

•
∑

γcum, the sum of cumulated viscoplastic slips on
all the slip systems.

∑

γcum =
∑

s

vs (24)

• εp
mises, the von Mises equivalent plastic strain:

εp
mises =

√

2

3
ε
∼

p : ε
∼

p (25)

• Nγ , the number of active slip systems, defined by

v̇s >
1

100
max

r
v̇r and v̇s > 1 × 10−4 s−1 (26)

• γ
surf

, the slip trace indicator or PSM indicator takes
account of both local amount of plastic slip and the
orientation of the glide with respect to the free sur-
face normal. The projection on the free surface nor-
mal vector nsurf of the plastic slip of each slip plane
is calculated. This variable provides an estimation
of the height of the steps (intrusion–extrusion phe-
nomenon) that can be created at the surface. For all

Grains at BC

Core grains

Surface grains

Figure 4: Exploded view of the aggregate mesh with a color code to
exhibit the different types of grains: grains at BC, core grains and
surface grains.

the slip planes p and the associated slip systems s,
the norm of this vector is:

γp
surf =

(

∑

s∈p

γsls
)

· nsurf (27)

The maximum value of these contributions, written
γsurf , is stored with the associated surface trace ori-
entation lsurf .

γsurf = max
p

(

|γp
surf |

)

× sign(γp
surf) (28)

lsurf =
nsurf × n(γsurf)

|nsurf × n(γsurf)|
(29)

γ
surf

= γsurf lsurf (30)

3.2. Influence of the mesh density

The choice of a relevant and reliable mesh density for
polycrystalline aggregates remains a key problem in mi-
cromechanical Finite Element Analysis (FEA). It is shown
in the following that meshes must have both high and ho-
mogeneous density. This is demonstrated on the uniaxial-y
loading problem with the three meshes presented in sec-
tion 2.3. All the computations are based on the same set
of 291 orientations, and the distributions of the local vari-
ables in the whole aggregate are investigated on Gauss

6
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Figure 5: Local variables distributions Distribution (logarithmic
scale) with different mesh densities.

points. These distributions and the related statistical pa-
rameters obtained with each of the three meshes are shown
in figure 5 and in table 3. As a classical result, the finest
mesh promotes local variables dispersion, especially in the
case of plastic strain, without changing mean values.

The effect of mesh density can also be seen from an-
other point of view. With refined meshes, integration
points get closer to grain boundaries, where discontinuities
encourage critical values. Figure 6 exhibits this effect. In-
deed, the smaller the distance to grain boundary dGB, the
higher the critical values. However, the average plots show
no influence of dGB, whatever mesh is used. So it can be
stated that mesh density mainly affects the scattering of
local variables, namely stress and plastic strain, especially
near grain boundaries. Thus, in the case of a statistical
analysis of local fields, mesh density should remain uni-
form in the whole aggregate. Otherwise, localization and
scattering will be favored in the zones where the mesh
is refined and the conclusions about critical zones could
be biased. For these reasons, the rest of the computations
were performed with the finest mesh density, homogeneous
in the whole aggregate.

3.3. Statistical analysis

Fifteen different orientation sets have been applied
to the uniaxial-y problem. Figure 7 presents the over-

Mesh Min Mean Max Std dev.
coarse 6.89e-07 1.91e-02 8.37e-02 6.95e-03

medium 0.00e+00 1.89e-02 1.11e-01 7.28e-03
fine 0.00e+00 1.90e-02 1.47e-01 7.72e-03

(a)
∑

γcum

Mesh Min Mean Max Std dev.
coarse 4.91e-07 1.03e-03 3.87e-03 3.23e-04

medium 0.00e+00 1.04e-03 5.05e-03 3.62e-04
fine 0.00e+00 1.05e-03 6.44e-03 4.10e-04

(b) ε
p

mises

Mesh Min Mean Max Std dev.
coarse 3.79e+01 1.21e+02 2.39e+02 2.32e+01

medium 3.50e+01 1.20e+02 2.22e+02 2.29e+01
fine 2.68e+01 1.21e+02 2.54e+02 2.32e+01

(c) σmises[MP a]

Mesh Min Mean Max Std dev.
coarse 0.00e+00 3.81e+00 8.00e+00 1.15e+00

medium 0.00e+00 3.75e+00 8.00e+00 1.16e+00
fine 0.00e+00 3.73e+00 8.00e+00 1.17e+00

(d) Nγ

Table 3: Statistical analysis of the distribution of local variables at
Gauss points with different mesh densities.
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Figure 6: Values at Gauss points of some critical variables versus
distance to grain boundary dGB. Discrete values (light points) and
interval averages (dark lines) are both shown.
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Figure 7: Inverse pole figure in y direction (loading axis) of the 15
orientation sets used in the statistical analysis.

all inverse pole figure in the loading direction (y) of the
15×291 = 4365 crystallographic orientations. This reveals
no preferential texture, thus a wide range of configuration
are tested with an isotropic global response. A statisti-
cal analysis is presented based on Gauss points values and
grain averages.

3.3.1. Validation of the aggregate thickness

The aggregate used in this paper has a depth of about
three grains under the free surface. To ensure the valid-
ity of such a model with the behavior inside the bulk of
the material we studied the evolution along the three space
axes of |σzz|. |σzz| is the absolute value of the normal com-
ponent of the stress on the facet perpendicular to the free
surface direction. This component reveals the perturba-
tion coming from both the free surface and the boundary
condition applied at the opposite face of the aggregate,
i.e. on the z = 0 plane, where the normal displacement is
set to zero. Figures 8a, 8b and 8c present the evolution
of the space average and the standard deviation of |σzz|
by small intervals along x, y and z axes. These plots are
generated by averaging the Gauss point values in several
“slices”, separated by parallel planes, perpendicular to the
studied axis. It clearly shows that along x, i.e. the direc-
tion perpendicular to both the loading direction and the
free surface, and along y, i.e. the loading direction, |σzz|
is rather constant around 13 MPa (±2 MPa) with a slight
increase near the boundary conditions. But along z axis,
|σzz| is close to a nil value at the free surface, then in-
creases rapidly to the same value as for x and y after the
first layer of half-grains (around dSURF = 30µm). It re-
mains constant until the depth of 100µm where is starts to
increase again until 23 MPa at the boundary condition. In
every direction, the standard deviation is mainly propor-
tional to the average value. These observations prove that
both the free surface and the boundary condition at the
opposite side have a limited influence on the local mechan-
ical fields, once the first layer of grains has been reached.
Furthermore, our analysis is focused on the free surface,
so a depth of three grains under the free surface is rea-
sonable in the framework of this paper. However, next

studies could be carried on with a larger amount of grains
to obtain a higher fraction of grains that will be for sure
considered as part of the RVE.

3.3.2. Stress and plastic strain distributions

Figure 9 represents the density of probability of the
von Mises stress σmises, von Mises plastic strain εp

mises and
cumulated viscoplastic slip

∑

γcum for different classes of
grains (all grains, surface grains, core grains and grains at
Boundary Conditions). By restricting the plot either to
surface grains or to the core grains, the curves have the
same shape than those obtained for all grains. The most
significant effect can be seen on core grains, that present
less plasticity than the rest of the grains. The maximum
values are reached at the surface, thus providing a possible
justification for having a preferential crack initiation at
this location.

3.3.3. Influence of Schmid factor

Now, we focus on the grain intrinsic parameters and
the influence of the neighborhood on his own mechanical
response. The influence of the maximum Schmid factor
Mmax is first investigated on the variables of section 3.1
for different types of grains.

Figure 10 presents the average variables for each in-
terval of Mmax. Whatever the type of grains (core, sur-
face or BC grains), the curves of figure 10a (respectively
10b, 10c) shows a similar shape. A strong correlation ap-
pear between Mmax and the local stress and strain state
for each type of grain. However, when looking at surface
grains curves, plastic strain variables depend more on the
Schmid factor than the other grains: There is a weaker
influence of the neighborhood for the surface grains than
for others. In fact, surface grains behave more like sin-
gle crystal than bulk grains due to the lower constraint
at the surface. This is in good agreement with an other
numerical study, previously conducted with a very simple
model [34]. Nevertheless, focusing on the Schmid factor
only does not allow to incorporate in the discussion the
influence of grain neighborhood.

3.3.4. Influence of the misorientation

Another parameter, the weighted misorientation ∆θi
w

of grain i, can be used as a data characterizing neighbor-
hood. Figure 11 shows the influence of weighted misorien-
tation ∆θw on the investigated variables. For all types of
grains, the results show a slight increase of the stress (re-
spectively, a slight decrease of the plastic strain) for larger
misorientations, as shown in figure 11a (respectively fig-
ure 11b). In addition, the viscoplastic cumulated slip is
not affected by ∆θw. Therefore, it seems that all grains are
not strongly affected by the weighted misorientation. Al-
though this parameter is built from neighborhood param-
eters, it seems to be insufficient to characterize neighbor-
hood effect. One may combine misorientation with Schmid
factor to build a more accurate neighborhood parameter.
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Figure 8: Evolution of the space average and standard deviation of
|σzz | along x, y and z axes.

3.4. Loading effect

In the following, the effects of loading (uniaxial and bi-
axial) are studied on a single orientation set by means of
three techniques. Figure 12a shows grain labels, crystallo-
graphic orientation (as a classical EBSD map) and grain
boundary misorientations related to this orientation set.
The thickness of the lines representing grain boundaries is
related to the value of the misorientation at the frontier,
the higher it is, the thicker the lines is.

3.4.1. Surface effect

First, the contour map of the viscoplastic cumulated
slip and the equivalent plastic strain on the free surface Z
are analyzed. Figures 13 and 14 represent the results for
each loading case. The contour values of the cumulated
viscoplastic slip of the aggregate show important differ-
ences depending on the loading conditions. Indeed, the lo-
calization patterns are different for the uniaxial-x loading,
the uniaxial-y loading or biaxial cases. When biaxial-eq
loading is applied, the response of the free surface differs
qualitatively from those in both uniaxial loading cases.
Obviously, this has nothing to do with a linear combina-
tion of the two uniaxial cases. In fact, the values obtained
for the biaxial loading are quite higher (more than four
times the maximum value obtained for uniaxial loading).
The map obtained with the equivalent von Mises plastic
strain, in figure 14, looks like the cumulated viscoplastic
strain map, figure 13. For biaxial-eq loading, the values
are higher than for uniaxial loading and the morphology
differs from the uniaxial case. The disparity of the re-
sults is mainly due to the activation of different slip sys-
tems which depends on the loading direction. Indeed, for
a given grain orientation, a load in direction x, y or both,
does not activate the same slip systems.

Figure 15 shows the contour maps of the von Mises
stress σmises on the free surface. It generally exhibits con-
trasted values on each side of the grain boundaries. Com-
paring with figures 13 and 14, we can also notice that due
to the crystal plasticity model, there is no complete corre-
lation between stress and plastic strain localization.

To complete the study, the number of active slip sys-
tems Nγ is investigated for each loading, figure 16. In the
same aggregate, the number of active slip systems depends
on the loading type. For example, for uniaxial-x loading, a
grain can have three active slip systems when six are active
for uniaxial-y loading, and conversely (see for example, the
grains 259 and 274). In both biaxial and biaxial-eq cases,
the distribution of Nγ seems very similar, so it is weakly af-
fected by loading amplitude. From a global point of view,
biaxial loadings, even with the same equivalent deforma-
tion, lead to a larger number of grains with more active slip
systems, if compared to uniaxial loading (see for example,
the grains 258, 276 and 291).

In conclusion, through the results of figures 13, 14, 15
and 16, we can conclude that the free surface response
remains closely related to the crystallographic orientation.
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Figure 9: Density of probability of (a) σmises, (b) ε
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mises
and (c)

∑

γcum for different types of grains.
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Figure 12: Description of the studied orientation set at the free sur-
face. (a) Grain labels, EBSD map and misorientation between grains
described by the thickness of lines. (b) Orientation color code in
standard stereo-triangle. (c) Maximal Schmid factor in standard
stereo-triangle.

Table 4 sums up various observations carried out at
grain boundaries on figure 13, 14, 15 and 16. Specific ori-
entation and misorientation configuration are presented.
For instance, grain boundaries with both low and high
misorientations are studied. Moreover, various angle con-
figurations (angle between the loading axis and the grain
boundary θGB/load) are also shown.

Plastic flow is enhanced at grain boundaries (grains
287/244, grains 289/290, grains 218/266). This can be the
consequence of a strong misorientation (grains 287/244,
grains 289/290) but it may also happen with a lower
misorientation (grains 218/266). Thus, a strong misori-
entation does not always produce a localization (grains
275/276) and, low misorientations can even produce a
plastic strain localization (grains 218/226). The angle be-
tween the loading axis and the grain boundary θGB/load

is not a key factor: strong localization can be present
with various values of θGB/load (18◦ for the grains 289/290,

about 45◦ for the grains 244/287 or 218/266, 72◦ for the
grains 289/290). Moreover, according to the loading con-
ditions, there can be high or low localization at some
grain boundaries (grains 244/287: uniaxial-y, uniaxial-x,
grains 218/266: uniaxial-x, uniaxial-y) whether the crys-
tallographic misorientation is high or low.

3.4.2. Strain localization in the bulk

A new visualization technique has been developed to
characterize the deformation state in the bulk of the aggre-
gate. It consists in transparent volumetric views, revealing
the spatial organization of local fields in the volume. These
views have been generated using the opacity filter from
the graphical post-processing tool Salome [35], which is an
open-source Pre- and Post-Processing software. Viscoplas-
tic cumulated slip isosurfaces are illustrated in figure 18 for
uniaxial-x, uniaxial-y and biaxial-eq loadings. The differ-
ent parts of the figures correspond to snapshots taken from
the three space directions. Referring to the classical A and
B facets [1], illustrated in figure 17, experimental studies
showed that uniaxial cyclic loadings lead to mixed A/B
facets and biaxial loadings cause mostly B facets which
are more damaging for the material. Figure 18b, referring
to uniaxial-x case, shows localization bands oriented at
45◦ with respect to loading direction, in snapshots taken
from the top (y direction) and from the front (z direction)
which is the free surface direction. More specifically, in
the view from the top, these bands are emerging from the
free surface like B facets. In the z direction, a surface
“shear” and the component absence along the direction of
the free surface are highlighted like A facets. Respectively
figure 18b, referring to uniaxial-y case, shows the same
patterns, seen from the right (x direction) and from the
front (z direction). Table 5 summarizes the identified lo-
calization bands patterns. In contrast, figure 18c reveals
localization bands at 45◦ in x and y directions. In both x
and y views, the bands have a component in the direction
of the free surface, such as B facets. Therefore, this phe-
nomenon involves more formation of intrusion/extrusion.
Thus, we can conclude with a higher vulnerability, and an
early microcrack initiation, in the case of biaxial loading.
These global views prove a good agreement with previous
experimental [36, 37] and numerical studies [38].

3.4.3. Surface slip marking indicators

The last analysis on the free surface behavior is ob-
tained through a parameter providing information on the
intrusion/extrusion mechanism. An estimation of the pos-
sible step height and orientation is obtained by drawing
color lines, the orientation of which is determined by the
surface trace of the plane lsurf and the color by the inten-
sity of γsurf . Figure 19 shows the results obtained for all
loading cases. For a given grain (e.g. grains 266, 276 or
291), a change of loading direction involves a change in di-
rection and intensity of the steps, figure 19a and 19b. For
the biaxial load, the intensity is higher than for the uni-
axial case, (e.g. grains 263, 264 or 273). The maximum
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Figure 13:
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γcum free surface Z map for each loading case.
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intensity is often reached near grain boundaries where ad-
ditional slip systems are activated due to local stress de-
viation (e.g. grains 273, 278, 286 or 291). On the other
hand, if we focus our attention on the interior of a partic-
ular grain, there is mainly one or two active planes. The
results are in agreement with experiments [39]. This pa-
rameter allows to show a little influence of the surface grain
neighborhood. But it also reinforces the results previously
obtained regarding crystal orientation.

4. Conclusion

The main purpose of the paper was to study the conse-
quences of the loading on the free surface response in poly-
crystalline aggregates, using Finite Element Crystal Plas-
ticity. First, a statistical analysis is carried out to study
the local strain and stress fields at the free surface and
extract information on the neighborhood effect. The influ-
ence of the Schmid factor and the weighted misorientation
have been studied on various variables: the equivalent von
Mises stress, the von Mises equivalent plastic strain and
the sum of cumulated viscoplastic slip. It seems that these
factors are insufficient to characterize neighborhood effect.
Then, different innovative tools were used to analyze the
effects of free surface on local mechanical fields: surface
contour maps, transparent volumetric views, a parameter
characterizing the extrusion/intrusion surface steps. The
response depends on the loading and seems strongly in-
fluenced by the crystallographic orientation of the grains.
The benefit of the transparent volumetric views must be
emphasized. This new visualization technique allowed us
to highlight the plastic strain localization patterns inside
the bulk. The results obtained are in agreement with ex-
perimental results: mixed A/B facets for uniaxial loadings,
mostly B facets for biaxial loadings.

While using the same single crystal model for surface
and core grains, in the framework of classical continuum
mechanics, that is without any specific gradient type effect,
the numerical results show that surface grains behave more
like its single crystal counterpart than core grains. Indeed,
plastic slip activity in surface grains depends strongly on
the Schmid factor. Surrounding grains are more involved
in the neighboring effect when they are located inside the
core. Studying consequences of strain localization at the

free surface and inside the volume of the polycrystal re-
vealed a harmful impact of biaxial loading compared to
uniaxial loading. Local aspect of PSM can hardly be de-
scribed with actual mesh density, but gives relevant in-
formation about their intensity and orientation. However,
better information on surface grains and the induced relief
could be provided by Discrete Dislocation Dynamics cou-
pled with FE. Some improvement could be provided to the
model identification by combining macro and grain scale
identification. This can be achieved using local strain ten-
sors measurements through the brand new DCT analysis
techniques, which is a real challenge for both experimental
and numerical studies of polycrystals.
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Grains ∆θ Loading θGB/load Observations
275/276 55.4◦ uniaxial-x 87◦ No localization for

∑

γcum and εp
mises,

(high) contrasted values for σmises

uniaxial-y 3◦ No localization for
∑

γcum and εp
mises

biaxial-eq 3◦/ 87◦ Very light localization for
∑

γcum and εp
mises,

contrasted values for σmises and Nγ

biaxial 3◦/ 87◦ Light localization for
∑

γcum and εp
mises,

highly contrasted values for σmises and Nγ

244/287 47.8◦ uniaxial-x 46◦ No localization for
∑

γcum and εp
mises,

(high) light localization for σmises, contrasted values for Nγ

uniaxial-y 44◦ Strong localization for
∑

γcum and εp
mises,

high values for σmises, contrasted values for Nγ

biaxial(-eq) 46◦/ 44◦ Localization and contrasted values for
∑

γcum and εp
mises

289/290 53.4◦ uniaxial-x 72◦ No localization for
∑

γcum and εp
mises

(high)
uniaxial-y 18◦ Strong localization for

∑

γcum, εp
mises and σmises

biaxial(-eq) 72◦/ 18◦ Strong localization for
∑

γcum and εp
mises

218/266 21.0◦ uniaxial-x 36◦ Localization for
∑

γcum and εp
mises,

(low) contrasted values for σmises and Nγ

uniaxial-y 54◦ Light localization for εp
mises

biaxial(-eq) 36◦/ 54◦ Strong localization for
∑

γcum and εp
mises,

contrasted values for σmises and Nγ

269/270 11.1◦ all 26◦/ 64◦ No localization for
∑

γcum and εp
mises

(low)

Table 4: Description of the localization of local variables at typical grain boundaries accounting for orientation and misorientation parameters.

(a) Uniaxial-x (b) Uniaxial-y (c) Biaxial-eq

Figure 18: Transparent volumetric views of
∑

γcum in each space direction for the three loading cases.
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Figure 19: Surface intrusion/extrusion indicator orientation and intensity for each loading case.
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Load
45◦ bands in direction

Facets
x y z

Uniaxial-x ∗ ∗ A + B
Uniaxial-y ∗ ∗ A + B
Biaxial-eq ∗ ∗ B

Table 5: Plastic localization patterns and facets type in each loading
case.
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