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Underwater Target Detection With Hyperspectral
Data: Solutions for Both Known and Unknown

Water Quality
Sylvain Jay, Mireille Guillaume, Member, IEEE, and Jacques Blanc-Talon, Member, IEEE

Abstract—In this paper, we present various bathymetric filters,
based on the well-known MF, AMF and ACE detectors, for
underwater target detection from hyperspectral remote-sensing
data. In the case of unknown water characteristics, we also
propose the GBF, a GLRT-based filter that estimates these
parameters and detects at the same time. The results of this
estimation process, performed on both simulated and real data,
are encouraging, since under regular conditions of depth, water
quality and SNR, the accuracy is quite good. We show that
these new detectors outperform the usual ones, obtained by
detecting after correction of the water column effect by a classical
method. We also show that the estimation errors do not impact
much the detection performances, and therefore, this underwater
target detection method is self-sufficient and can be implemented
without any a priori knowledge on the water column.

Index Terms—Hyperspectral remote sensing, maximum likeli-
hood estimation, underwater object detection.

I. INTRODUCTION

MAPPING coastal water quality or benthic cover from
remote-sensed data is a very challenging and widely

studied problem: many authors have proved hyperspectral
imagery could enable to retrieve efficiently bathymetry, bottom
spectra or water constituents [1]–[4]. However, the detection
problem in such a context remains open. For example, in [5],
the purpose of the authors is more to classify pixels rather
to detect target pixels among the background. In [6], they
consider only very shallow waters and do not take into account
the attenuation by the water layer.
However, underwater target detection from remote-sensing
techniques is a very important problem; whether on a military
or a civilian aspect, there are many challenges.
In hyperspectral imagery, many detection algorithms have been
developed during the last decades to meet many practical situa-
tions. Thereby, according to the starting hypotheses, each filter
has several specificities: for example, when the mean spectral
vector and covariance matrix of the background are available,
the Matched Filter (MF) is developed, whereas the Adaptive
Matched Filter (AMF) [7] and Kelly Generalized Likelihood
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Ratio Test (GLRT) [8] are convenient when these parameters
have to be estimated. The Adaptive Cosine/Coherence Estima-
tor (ACE) is very attractive in terms of false alarm stability
because of its scaling invariance properties between training
and test data [9].
Unfortunately, the efficiency of these supervised detectors
decreases in the case of underwater target. Actually, bottom
and target spectra are considerably warped by the water
column, particularly in the visible and the near-infrared range.
This distortion depends not only on the depth but also on the
water quality [10]–[13].
In order to keep good detection performances for such scenes,
the idea is to insert a bathymetric model in the starting hy-
potheses before developing the filters, to correct these spectral
distortions.
In section II, we present the chosen bathymetric model of
reflectance, before using it in section III to develop new
versions of three of the most popular filters, namely MF, AMF
and ACE. In this section, we also propose a GLRT-based
filter, for the case of unknown depth and concentrations of
water constituents. This filter is designed to be self-sufficient
for underwater target detection (e.g. it does not need any
knowledge on water characteristics). We give the results of
this estimation method in section IV, and we compare the new
bathymetric detectors with usual filters applied after having
performed an inversion process. Both simulated and real data
are tested in this paper.

II. BATHYMETRIC MODEL OF REFLECTANCE

A. General equation
As previously mentioned, many authors have focused on the

ability of hyperspectral data to evaluate water characteristics.
Therefore, many models have been proposed for subsurface
reflectance, depending for example on the aim of the study or
on the zone to consider: in order to estimate phytoplankton
concentration in open sea or in such turbid waters that bottom
has no influence on the subsurface reflectance, a first-order
model is proposed in [14]. If the aim is to retrieve bathymetry,
the role of the bottom must be considered and more complex
models are developed as in [10].
Firstly, since we study underwater target detection in optically
shallow waters, we have chosen the well-known model of
Maritorena et al. [10], transformed in [11] to the subsurface
remote-sensing reflectance as follows:

r(λ) = r∞(λ)
(
1− e−2k(λ)H

)
+

rB(λ)

π
e−2k(λ)H (1)
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TABLE I
PARAMETERS, ACRONYMS AND DEFINITIONS

Parameter/Acronym Definition
a(λ) Total absorption coefficient of water

BAMF Bathymetric adaptive matched filter
BACE Bathymetric adaptive coherence/cosine estima-

tor
BMF Bathymetric matched filter
bb(λ) Total backscattering coefficient of water

CCDOM Concentration of colored dissolved organic mat-
ter

CNAP Concentration of non-algal particles
Cφ Concentration of phytoplankton pigments

GBF GLRT-based bathymetric filter
H Depth

k(λ) Attenuation coefficient of water (M1 model)
kd(λ) Attenuation coefficient of water in the down-

welling direction (M2 model)
kbu(λ), k

c
u(λ) Attenuation coefficients of water in the up-

welling direction for the photons that interact (do
not interact resp.) with the bottom (M2 model)

K Attenuation matrix of water (M1 model)
µb Mean bottom spectrum
µt Target spectrum
rB Bottom albedo (irradiance reflectance)
r Subsurface remotely-sensed reflectance

r∞ Subsurface remotely-sensed reflectance of an
infinitely deep water column

where r∞(λ) represents the subsurface remote-sensing re-
flectance over an optically deep water column, rB(λ) the
bottom albedo, k(λ) the attenuation coefficient and H the
depth (each parameter and acronym is defined in Table I). The
bottom is assumed to be a Lambertian reflector. The first term
in (1) is the water column contribution (predominant in deep
waters) whereas the second one is the bottom contribution.
A more realistic model is presented in [1] and has been widely
used during the last decade [13], [15]–[17]; in this expression,
the attenuation coefficient k(λ) is different in the upwelling
and downwelling directions (resp. ku(λ) and kd(λ)). One also
separates the photons that never interact with the bottom from
those that interact with the bottom:

r(λ) = r∞(λ)
(
1− e−(kd(λ)+kc

u(λ))H
)

+
rB(λ)

π
e−(kd(λ)+kb

u(λ))H . (2)

In this article, the simplified model (denoted as M1) is used
for simulations; the second one (denoted as M2) is used with
real data in order to assess the impact of a more realistic model
on estimation and detection. The theoretical developments are
made with M1, but can easily be written with M2.
For convenience, we ignore the effects of the water-air inter-
face, which can be represented by the empirical relation of
Lee et al. [11] and connected after the detection process, as
well as the atmosphere effects [18].

B. Modeling of physical parameters

The water quality plays an important role in the light
attenuation through two physical parameters, respectively the
absorption and the backscattering coefficients a(λ) and bb(λ).
They are mainly dependent on three optically active con-
stituents, phytoplankton pigments, colored dissolved organic

matter (or gelbstoff) and non-algal particles. Usually, the
absorption and backscattering coefficients are described as the
sum of the contributions of each component. In [13], Brando et
al. express them as following (neglecting the CDOM influence
on backscattering):

a(λ) = aw(λ) + Cφa
∗
φ(λ) + CCDOMe−SCDOM (λ−λ0)

+ CNAPa
∗
NAP (λ0)e−SNAP (λ−λ0) (3)

bb(λ) = bb,w(λ) + Cφb
∗
b,φ(λ1)

(
λ1

λ

)Yφ

+ CNAP b
∗
b,NAP (λ1)

(
λ1

λ

)YNAP

(4)

where the index w is related to pure water, φ to phytoplankton,
CDOM to gelbstoff and NAP to non-algal particles. a∗j (λ) and
b∗b,j(λ) spectra are the specific absorption and backscattering
coefficients. Reference wavelengths are fixed: λ0 = 440 nm
and λ1 = 542 nm.
We get the aw(λ), a∗φ(λ) and bb,w(λ) spectra from [19], [20]
and [21] respectively. The remaining parameters can be found
in [13].
The absorption and backscattering coefficients affect the
subsurface reflectance in (1) through the reflectance of an
infinitely deep water column rrs,∞(λ) and, of course, the
attenuation coefficients. There are several relations describing
these links; for rrs,∞(λ), they can be linear or quadratic with
respect to bb(λ)

bb(λ)+a(λ) [1], [14], or even more complex as in
[12], where Albert and Mobley take into account the surface
wind, the viewing angle and the solar zenith angle. We choose
expressions of intermediate complexity for both parameters:
k(λ) is taken from [22], whereas rrs,∞(λ), kd(λ), kbu(λ) and
kcu(λ) are taken from [1].

C. Algebraic expression of reflectance vector

In order to use (1) in the context of hyperspectral imagery,
we use a vector representation on the set {λ1, λ2, ..., λL}, to
lead to the following matrix form:

ρ = Kρ0 (5)

with ρ = r − r∞, ρ0 = 1
π rB − r∞ and

K = diag(e−2k(λ1)H , ..., e−2k(λL)H).
In (5), we can see clearly that the vector ρ just below the
water surface is the vector ρ0 calculated just above the
bottom and attenuated by the matrix K. The latter describes
the attenuation and contains information on depth H and
inherent water properties a(λ) and bb(λ).

III. DEVELOPMENT OF BATHYMETRIC DETECTORS

In this article, we develop target detection algorithms using
a statistical approach. Even though the assumption of nor-
mality is not always respected by hyperspectral data, many
studies for multivariate Gaussian distributions have been led
with success. So, we assume the spectral variability of ρ is
Gaussian and models only the intrinsic variability of the class
of the material. Actually, we do not consider mixed pixels but
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only pure ones. However, the bathymetric model (5) is linear
and therefore, the linear mixing of bottom pixels is not affected
by the water attenuation, and the abundances are preserved;
the subpixel detection algorithms presented in [7] could be
then developed in this context.
Two sets of data are used: training pixels are supposed ”target-
free” whereas a test pixel can represent either background or
target.
To decide whether the test pixel ρ belongs to the target class
(hypothesis H1) or the background class (hypothesis H0), we
derive a contrast function D from the likelihood ratio given by
the ratio of the two conditional probability density functions
under each hypothesis:

D(ρ) =
P (ρ|H1)

P (ρ|H0)

H1

≷
H0

µ. (6)

If D(ρ) is larger than µ, ρ is considered as a target pixel.
The likelihood ratio can lead to various functions according to
the corresponding hypotheses and a priori knowledge. In the
following sections, we transpose the well-known MF, AMF
and ACE detectors in the context of bathymetry. We could
mention the famous Kelly GLRT [8], but it turns out that, if
there are enough training pixels, the AMF and the Kelly GLRT
give some very similar results [9], [23]. Thus, we choose to
work with a number of training pixels at least five times greater
than the number of bands, in order to be sure the performances
of both filters are equivalent. However, it’s helpful to keep in
mind that the Kelly GLRT is more efficient than the AMF
for low training data support. Furthermore, we propose a
new GLRT-based detector if some water characteristics are
unknown, in order to develop underwater target detection
without any a priori knowledge on the water column.

A. Bathymetric matched filter (BMF)

For each test pixel, we consider the two following hypothe-
ses:

• H0: background pixel ⇒ ρ ∼ N (µb,Γb)
• H1: target pixel ⇒ ρ ∼ N (µt,Γt)

Note that µb = K (rb − r∞) and µt = K(rt − r∞) where rb
and rt are the bottom and target spectra respectively. Each
parameter is assumed to be known.
The logarithm of the likelihood ratio (6) written with Gaussian
conditional probability density functions leads to the following
linear bathymetric matched filter (assuming that the back-
ground and target classes share the same covariance matrix
Γ [7]):

dBMF (ρ) = (µt − µb)
tΓ−1(ρ− µb). (7)

B. Bathymetric adaptive matched filter (BAMF)

The previous BMF assumes all parameters are known,
including covariance matrix. In practical situations, the latter
must be estimated from data. An adaptive algorithm has been
developed in the original paper of Robey et al. [23], and
transposed in the hyperspectral context in [24]. The hypotheses
differ from the BMF in the sense that, under hypothesis H0,
the centered spectral vectors x = ρ − µb are distributed

as a Gaussian random vector with mean 0 and covariance
matrix Γ, and under hypothesis H1, it is assumed to have
mean b(µt − µb) and covariance matrix Γ. It means that the
difference µt−µb can be known up to a multiplicative factor
b. Therefore, we have:

• H0: background pixel ⇒ x ∼ N (0,Γ)
• H1: target pixel ⇒ x ∼ N (b(µt − µb),Γ)

The procedure, as described in [23], leads to the following
expression for the bathymetric adaptive matched filter):

dBAMF (ρ) =

[
(µt − µb)

tΓ̂
−1

(ρ− µb)
]2

(µt − µb)
tΓ̂

−1
(µt − µb)

. (8)

C. Bathymetric Adaptive Coherence/Cosine Estimator (BACE)

Another filter currently used is the Adaptive Coher-
ence/Cosine Estimator. Although one of its qualities is to deal
better than the above detectors with subpixel situations, it also
has an excellent power of discrimination between target and
other spectra present in the scene.
In [7], the authors express the ACE filter as the square cosine
of the angle between the test pixel and the target pixel in
the whitened coordinate space. The corresponding bathymetric
filter is:

dBACE(ρ) = cos2
(
Γ̂
− 1

2 (ρ− µb), Γ̂
− 1

2 (µt − µb)

)
(9)

dBACE(ρ) =
[
(µt − µb)

tΓ̂
−1

(ρ− µb)
]2

∗
1[

(µt − µb)
tΓ̂

−1
(µt − µb)

] [
(ρ− µb)

tΓ̂
−1

(ρ− µb)
] .
(10)

This detector has been also developed with a GLRT approach
in [25] by Kraut and Scharf.

D. A solution in case of unknown water parameters

Usually, the physical parameters such as depth or phyto-
plankton concentration are unknown a priori. But they are
needed in order to correct the target spectrum before detection
(from rt to µt). Therefore, the objective is to develop a self-
sufficient filter. We estimate the unknown set of parameters
θ using a maximum likelihood approach and developing the
GLRT with all the data (test pixel ρ and training pixels
χ = {ρ1, ...,ρN}).

1) A GLRT-based bathymetric filter (GBF): For example,
if both covariance matrix and depth are unknown, we consider
the following GLRT:

DGBF (ρ) =
max
θ

P (ρ, χ; θ|H1)

max
θ

P (ρ, χ; θ|H0)

H1

≷
H0

µ,

with θ = {Γ, H}. (11)

The development of this detector is showed in the appendix,
and leads to:

DGBF (ρ) =
1 + (ρ− µb(Ĥ))tS(Ĥ)−1(ρ− µb(Ĥ))

1 + (ρ− µt(Ĥ))tS(Ĥ)−1(ρ− µt(Ĥ))
. (12)
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In the same way, we can also develop this GLRT-based
bathymetric filter for depth and concentrations:

DGBF (ρ) =
max
θ

P (ρ, χ; θ|H1)

max
θ

P (ρ, χ; θ|H0)

H1

≷
H0

µ,

with θ = {Γ,H,Cφ, CCDOM , CNAP }. (13)

2) Parameter estimation: In the appendix, we see that,
for a large number of training pixels, estimating H under
the hypotheses H0 or H1 is equivalent to estimate H only
on training data. We can generalize for the estimation of
θ′ = {H,Cφ, CCDOM , CNAP }. Therefore, in the case of un-
known covariance, depth and concentrations, we obtain:

θ̂′ = argmax
θ′

|S(θ′)|−1 (14)

where S(θ′) =
N∑
i=1

(ρi − µb(θ
′))(ρi − µb(θ

′))t.

In this article, we optimize the likelihood function with a
simple optimization method, the relaxation method that alter-
natively maximizes each parameter in order to find a maximum
(we suppose that this function is at least locally convex around
the maximum).

IV. EXPERIMENTS AND RESULTS

A. Data

1) Simulated data: In simulated images, the bottom is built
from a linear mixture of three of the main components of
sand, namely quartz, feldspar and mica. The spectra are taken
from the USGS spectral library [26]. The intra-class variability
is modeled with a white Gaussian noise (σ = 0.02). Once
attenuated by the water column, the same white Gaussian
noise is added to model other sources of variability, including
sensor noise. It may be interesting to introduce a Poisson noise
instead in order to cope better with recent sensors, which attain
the Poisson noise limit; however, we also want to describe
the natural spectral variability that could be due to inhomo-
geneities of the water quality and that can be well modeled
by a Gaussian distribution. Therefore, this modification may
not improve the results.
In Fig. 1, we show the simulated images and the target and
bottom spectra used in this article over and under a 3m-high
turbid water column. In the entire article, the water constituent
concentrations of turbid water are taken from [13].
The wavelength range is fixed at 400-700 nm, with a spectral

resolution of 5 nm (61 spectral bands). Herein, the training
set contains 441 pixels in order to be sure that the BAMF
and Kelly GLRT are equivalent, and that the ML estimates
for physical parameters under hypotheses H0 and H1 are
almost equal. The signal-to-noise ratio (SNR) in decibels is

calculated as: SNR = 10 log
(∑

i

ρ2
i /

∑
i

n2
i

)
in which ni

is the simulated noise in pixel ρi. The SNR varies with the
additive sensor noise.

Fig. 1. Composite images from hyperspectral simulated data and the
corresponding observed reflectance spectra. Left column: bottom without
water. Right column: underwater bottom (H = 3 m, Cφ = 0.7 µg.L−1,
CCDOM = 0.08 m−1, CNAP = 2.8 mg.L−1).

2) Real data: Real data have been collected by ACTIMAR1

as part of the HYPLITT project, supported by the Office for
Advanced Research and Innovation (DGA/MRIS), France. The
study site is located in Quiberon Peninsula, on the West coast
of France (see Fig. 2). The spatial resolution is 0.4 m whereas
the spectral resolution is about 4.5 nm. The ATCOR model
[27] is used to perform hyperspectral atmospheric correction.
Finally, we use the model of Lee et al. [1] to describe the
water-air interface crossing.
In order to assess the detection performances, black and white
tarpaulins have been placed on a sandy bottom at different
depths: the depths in I1 and I2 are respectively 4.70 m and
6.70 m. The target size is 1 m2. Moreover, a greater range
of depths (between 0.20 m and 16.80 m) is available in
other images but unfortunately, the water quality has not been
measured.

B. Comparison with classical methods
We compare our estimation method against the least square

method, in which the error function is optimized by the
Levenberg-Marquardt (LEVMAR) algorithm, as proposed in
[12] and [15]. In order to assess the bathymetric filters, we
firstly perform an inversion with the parameters estimated with
the LEVMAR method, before applying the usual detectors
(AMF, ACE) to the transformed images. The Matlab imple-
mentation of the LEVMAR algorithm is used.

C. Estimation results
The above-mentioned GLRT-based filter estimates the miss-

ing physical parameters before detection. Consequently, the

1ACTIMAR is a firm specialised in a broad range of expertise areas within
the marine environment sector, especially high resolution remote sensing
applied to coastal zone management and deep ocean mapping.
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Fig. 2. HYPLITT true colour composite image. Two black tarpaulins and two white tarpaulins were placed in I1 and I2. The depth is 4.70 m for I1 and
6.70 m for I2.

performances depend on errors related to the estimation pro-
cess and first, we need to know what accuracy can be reached,
and then, what is the influence of these misestimations on
detection.
The estimation results depend on the a priori knowledge on
model parameters. So the precision is different if we estimate
the covariance matrix and depth only, or covariance matrix
and all the other physical parameters. In simulations, we
estimate the covariance matrix, depth and concentrations at
the same time, and therefore, we maximize the function (14)
with the optimization scheme described in section III-D2. As
a consequence, the errors would be lower if we had more a
priori knowledge on model parameters.
The results are obtained with training pixels χ = {ρ1, ...,ρN}
following the hypothesis H0 of section III. In real scenarios,
it seems feasible to obtain this training set since it comes to
consider an area of 64 m2 around the central pixel (with the
spatial resolution of HYPLITT images). Near the sea shores,
the depth do not vary very much within such small zones.
Otherwise, it is still possible to reduce the size of the training
set without lowering the results dramatically. In our future

TABLE II
RESULTS OF ML ESTIMATION IN THE CASE OF UNKNOWN COVARIANCE
MATRIX, DEPTH AND CONCENTRATIONS (SIMULATED DATA): RELATIVE

RMSE (%) AS A FUNCTION OF DEPTH (TURBID WATER) AND
CALCULATED WITH 500 RUNS.

H = 0.1m H = 5m H = 10m H = 20m H = 30m
H 1.18 0.33 0.50 1.62 26.81

Cφ 32.53 2.95 6.66 18.76 19.02
CCDOM 9.93 1.24 3.87 10.69 10.66
CNAP 34.94 2.97 3.56 3.77 3.35

works, we will try to model the bottom slope and insert it in
the likelihood expression in order to get a better estimation of
depth.
The results are presented in Table II: we show the evolution of
the relative Root Mean Square Error (RMSE) for the estima-
tion of physical parameters, as a function of depth. The MSE
for the parameter Y is given by: MSEY = Eχ

[
(Ŷ − Y )2

]
.

Excepted for very shallow water (0.1 m), in which the
water constituents do not have much influence on subsurface
reflectance, we note that, on simulated data, the deeper the
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TABLE III
RESULTS OF ML ESTIMATION IN THE CASE OF UNKNOWN COVARIANCE
MATRIX, DEPTH AND CONCENTRATIONS (SIMULATED DATA): RELATIVE

RMSE (%) AS A FUNCTION OF SNR (H = 14 M) AND CALCULATED WITH
100 RUNS.

SNR = 1dB SNR = 5dB SNR = 10dB SNR = 20dB
H 3.00 1.18 0.76 0.35

Cφ 51.65 17.44 10.77 5.81
CCDOM 27.26 10.84 6.93 3.63
CNAP 13.46 5.54 3.55 1.77

water is, the less precise the estimation of H , Cφ and CCDOM

is. Only the precision for CNAP seems to remain constant
in this range of depths. The precision of the estimation of
Cφ and CCDOM goes down at H = 20 m (18% and 10%
RMSE respectively) whereas H remains rather well estimated
up to this depth (2% RMSE); besides, this is still true for very
shallow water because, even if each other parameter are badly
estimated, the RMSE for H is equal to 1.18%.
For optically deep water (H = 30 m in these conditions of
experiments), the bottom has almost no more influence on
subsurface reflectance and we have: ρ w 0 ⇐⇒ r w r∞.
Therefore, r hardly does not depend on H any more and the
estimation of the depth becomes tricky. On the contrary, the
precision of the estimation of Cφ, CCDOM and CNAP does
not decrease beyond 20-30 m, since the reflectance remains
equal to r∞.
We also show the estimation robustness for high noise levels
in Table III for H = 14 m. From an overall point of view, we
see that the estimation errors remain moderate. As in previous
tables, we note that the most sensitive parameter is Cφ whereas
H remains well estimated, even for SNR = 1 dB.
Furthermore, we test this method on several real images
presented in the previous section. Depths vary from 0.20 m to
16.80 m. It is good to notice that, contrary to simulated data,
sandy bottoms are not perfectly plane, and these small varia-
tions of depth in each image definitely reduce the precision.
Unfortunately, water characteristic measurements could not be
realized for most of the data. The dry sand, wet sand and
target spectra have been acquired on the beach before the
flight; coupled with the depth H , they constitute the ground
truth. Therefore, in the following, we focus on the results of
depth estimation. We consider two images for each depth: their
size vary from 200 to 1000 pixels. In Table IV, we show the
relative RMSE of the estimation process for both maximum
likelihood estimation (MLE) and LEVMAR methods and both
models (1) and (2). Firstly, we can note that MLE performs
better than LEVMAR in most cases: for example, at a depth
of 2.83 m and using the M1 model, the RMSE for MLE is
22.4% whereas the RMSE for LEVMAR algorithm is 40.5%.
For this water quality and the M1 model, depths lower than
12 m can be estimated with MLE with a RMSE lower than
about 30%. In addition, using a more realistic model seems to
be quite interesting for improving easily the estimation results,
especially for MLE. The estimation errors are greater than in
Table II, and depend on the locations. Several reasons can
explain that: the bottom, depth or concentrations may change
within the image. The sunglint and some modeling errors can

TABLE IV
RESULTS OF DEPTH ESTIMATION IN THE CASE OF UNKNOWN COVARIANCE
MATRIX, DEPTH AND CONCENTRATIONS (REAL DATA): RELATIVE RMSE

(%) FOR BOTH METHODS AND BOTH M1 AND M2 MODELS.

H = 0.2m H = 1.12m H = 2.83m H = 4.70m
M1 M2 M1 M2 M1 M2 M1 M2

MLE 22.3 7.4 25.6 16.9 22.4 9.0 30.8 15.6
LEV 27.9 24.9 37.5 27.2 40.5 29.0 50.2 51.0

H = 6.70m H = 11.80m H = 16.80m
M1 M2 M1 M2 M1 M2

MLE 31.3 26.7 10.3 17.8 528.1 122.7
LEV 16.3 23.4 368.1 276.7 314.5 161.0

also affect the precision.
By way of example, we compare in Fig. 3 the simulated sub-
surface sand spectrum (obtained with the real sand spectrum
corrected with the estimated parameters) with several observed
spectra (H = 1.12 m) and we see that the simulated spectrum
fits quite well the observed spectra.

Therefore, the general trend emerging from these results
indicates that this estimation process performs well: however,
for very shallow waters, the effect of the water column is low
and smothered by noise, and then it is difficult to estimate
the water quality. For deep waters, the bottom does not have
much influence on reflectance and the depth estimation is less
precise. The resulting optimal range of depths is not fixed,
and especially depends on the noise level, water quality and
number of training pixels.

D. About the detection process

In real scenarios, the detection process could be as follow-
ing: assuming that the target pixels are sparse enough and
then, do not affect the estimation process, we estimate the
parameters in the test pixel neighborhood, and calculate the
output of the filter for each pixel of this neighborhood. In
this section, we prove the interest of this underwater target
detection method. In Fig. 4.a, we compare the performances
of each filter for detecting galvanized metal (first-line targets
in Fig. 1) under a 55m-high pure water column and a SNR

Fig. 3. Comparison between the simulated and real subsurface sand spectra
(H = 1.12 m, RMSE = 16.9%)
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Fig. 4. ROC curves describing the detection of galvanized metal in:
a) pure water (H = 55 m, SNR = 5.6 dB); b) turbid water (H = 14 m,
Cφ = 0.7 µg.L−1, CCDOM = 0.08 m−1, CNAP = 2.8 mg.L−1,
SNR = 9.9 dB).

of 5.6 dB. From an overall point of view, we can see clearly
that the bathymetric filters outperform the LEVMAR-based
methods. For a probability of false alarm (PFA) of 10−3,
bathymetric filters detect around 80% of target pixels whereas
LEVAMF or LEVACE do not detect any target pixels. These
performances depend obviously on the differences between
target and bottom spectra, and on the water quality. For more
turbid water (see Fig. 4.b), the probability of detection is
around 0.7 for a PFA of 10−3 at 14 m and for SNR = 9.9 dB.
These previous curves show the performances for a fixed

SNR. But it would be interesting to study the noise robustness
of these detectors; indeed, we can fear that the GLRT-based
filter is sensitive for low SNRs because the precision of
the estimation decreases when the noise level increases. In
Fig. 5, we plot the probability of detection of galvanized metal
as a function of SNR for a given depth. We can see that
BMF and GBF detect better than BAMF and BACE, even
for noisy images. GBF is more robust than BAMF, as both
filters are rather equivalent for high SNRs, whereas for low
SNRs, its performances decrease slower than those of BAMF.

Fig. 5. Probability of detecting galvanized metal as a function of SNR
(H = 14 m, Cφ = 0.7 µg.L−1, CCDOM = 0.08 m−1, CNAP = 2.8 mg.L−1).
The PFA is fixed at 10−4.

Then, as previously showed in [28] with BMF, the parameter
estimation does not have too much influence on detection
performances. Besides, these results can be combined with
those of Table III: we note that even if the RMSEs on Cφ and
CCDOM is respectively about 17% and 11% for SNR = 5 dB,
GBF remains rather equivalent to the other filters. In such
conditions, this GLRT-based filter is robust to estimation errors
on physical parameters and can be used without any a priori
knowledge on water column.
We also implement our algorithms (built with the M2 model)
on the real data presented in Fig. 2. We present the associated
detection results for both I1 and I2 sites in Fig. 6. The global
tendency confirms that the bathymetric filters outperform
the LEVMAR-based detectors. For such depths, the white
tarpaulins are well detected by each filter, as all target pixels
are detected for a PFA of 10−3. Regarding the black tarpaulins
that are more difficult to detect, BAMF and BACE perform
slightly better than LEVAMF and LEVACE respectively in I1
and I2. In this case, we can also notice that GBF is the most
efficient detector: for example, in I1 and I2 and for a PFA of
10−3, the PD is equal to 0.8 whereas it is lower than 0.2 for
the other detectors. As mentioned previously, this confirms the
fact that GBF overcomes the other filters in tricky conditions,
despite the estimation errors on the depth and concentrations.
Moreover, let note that in these images, the existing sunglint
can affect the performance and therefore, a prior correction
would certainly increase it.
As far as the computation time is concerned, we compare the
per-pixel processing time for both estimation and detection.
For LEVMAR-based methods and with a 3 Ghz processor,
it is equal to 12 ms and 13 ms for I1 and I2 respectively,
while our algorithm needs 4 ms and 2.4 ms. Of course, it is
possible to improve easily our algorithm using a more efficient
optimization scheme, such as gradient-based techniques, since
the relaxation method is not very fast.
Therefore, these last results confirm the interest of such
bathymetric filters for the underwater target detection.
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Fig. 6. ROC curves describing the detection of: a) white tarpaulin in I1: H = 4.70 m, Cφ = 1.5 µg.L−1, CCDOM = 0.09 m−1, CNAP = 3 mg.L−1;
b) white tarpaulin in I2: H = 6.70 m, Cφ = 2.4 µg.L−1, CCDOM = 0.09 m−1, CNAP < 2 mg.L−1; c) black tarpaulin in I1: H = 4.70 m, Cφ = 1.5 µg.L−1,
CCDOM = 0.09 m−1, CNAP = 3 mg.L−1; d) black tarpaulin in I2: H = 6.70 m, Cφ = 2.4 µg.L−1, CCDOM = 0.09 m−1, CNAP < 2 mg.L−1.

V. CONCLUSIONS

In this article, we develop a new approach for detecting
underwater targets. We use a bathymetric model of subsur-
face reflectance, which is described as a weighted sum of
the bottom and water column influences. This well-known
physical model takes into account the water quality through
the concentrations of three optically active constituents, e.g.
the phytoplankton pigments, CDOM and non-algal particles.
Then, using a statistical approach and considering a pixel as a
random vector parameterized by the above-mentioned depth
and concentrations, we develop new bathymetric detectors,
based on usual ones. In real scenarios, most of the time, some
of the water characteristics are unknown and therefore, we also
propose the GBF, a GLRT-based filter that estimates these pa-
rameters on training pixels for a self-sufficient detection. This
filter shows good robustness properties, and copes well with
noisy scenarios and low contrasted targets. It is particularly
adapted to difficult detection situations, such as underwater

detection with sunglint effects.
This estimation method is tested on both simulated and real
data and assessed as a function of the depth and SNR. The
global results are good, especially for depths between a few
meters and about 20 m, and a SNR greater than 5 dB. The
estimation of Cφ is the most sensitive for usual values of depth
and SNR, whereas the one of CNAP is not very sensitive. The
estimation of H is quite good for such depths and SNRs,
but is much more difficult for turbid waters deeper than
20 m, as the bottom has no more influence on subsurface
reflectance. Besides, we observe the same phenomenon for
the estimation of H on real data. On the other hand, the
precision of concentration estimation does not decrease any
more beyond 20 m since the reflectance remains equal the
reflectance of an infinitely deep water column. However, we
have to keep in mind that these depth values depends on the
noise level, water quality and number of training pixels.
Moreover, we see that the insertion of a more realistic bathy-
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metric model enables to increase easily the estimation results.
The underwater detection algorithms are tested on simulated
and real data. We see that the proposed detectors overcome
the classical ones for deep areas, even when the parameter
estimation is less accurate. On real hyperspectral images, good
detection rates are obtained for depths between 4 m and 7 m.
The misestimations of covariance matrix and physical param-
eters H , Cφ, CCDOM and CNAP can impact the detection
performances but still improve them with respect to usual
filters, and therefore, allow the detection without any a priori
knowledge on water column.
In our future works, we will study the Cramer-Rao bounds for
the estimation of model parameters. Under some hypotheses
on the covariance structure, some works have already been
done on simulated data [29]; we will then extend our methods
to a more general case, and test them on real data. We will
also introduce a parametric model for the depth in order to
cope with varying depths in the studied area.

APPENDIX

If some parameters (H , Cφ, CCDOM or/and CNAP ) are
unknown, we cannot use BMF, BAMF or BACE, because
we need to know them for correcting the bottom and target
spectra. For example, if both covariance matrix and depth are
unknown, we have the following GLRT:

DGBF (ρ) =
max
θ

P (ρ, χ; θ|H1)

max
θ

P (ρ, χ; θ|H0)

H1

≷
H0

µ, θ = {Γ,H}. (15)

As Kelly does in [8], we first estimate the covariance matrix
under each hypothesis. For H0 and H1, we obtain respectively:

Γ̂0 =
1

N + 1

[
(ρ− µb(H))(ρ− µb(H))t + S(H)

]
(16)

Γ̂1 =
1

N + 1

[
(ρ− µt(H))(ρ− µy(H))t + S(H)

]
(17)

where S(H) =
N∑
i=1

(ρi − µb(H))(ρi − µb(H))t is obtained

from training data. The GLR becomes:

DGBF (ρ) =
max
H

|Γ̂1|−1

max
H

|Γ̂0|−1
. (18)

We can show that, if the number of training pixels N is large
enough, optimizing the likelihood function under hypothesis
H0 is equivalent to optimize it under hypothesis H1 or only on
training data. This can be verified in Fig. 7: we plot the MSE
of the difference between the depth estimate under hypothesis
H0 or H1, and the depth estimate Ĥ calculated only on training
data, as a function of N. We can see that if N is about seven
times greater than the number of bands, the MSE is lower
than 10−4 m2, e.g. the error is lower than 1 cm. Thus, we can
consider the ML estimates ĤH1 and ĤH0 are almost equal to
Ĥ , and with the lemma for the determinant calculation used by
Kelly in [8], we finally obtain the following GLR (for unknown
covariance matrix and depth):

DGBF (ρ) =
1 + (ρ− µb(Ĥ))tS(Ĥ)−1(ρ− µb(Ĥ))

1 + (ρ− µt(Ĥ))tS(Ĥ)−1(ρ− µt(Ĥ))
. (19)

Fig. 7. Maximum MSE of the difference between the depth estimate under
hypothesis H0 or H1, and the depth estimate Ĥ calculated only on training
data, as a function of N (H = 10 m, turbid water).
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[27] R. Richter and D. Schläpfer, “Geo-atmospheric processing of airborne
imaging spectrometry data, part.2: atmospheric/topographic correction,”
International Journal of Remote Sensing, vol. 23, no. 13, pp. 2631–2649,
2002.

[28] S. Jay and M. Guillaume, “Underwater target detection with hyperspec-
tral remote-sensing imagery,” Proc. of IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), 2010.

[29] ——, “Estimation of water column parameters with a maximum like-
lihood approach,” Proc. of 3rd Workshop on Hyperspectral Image and
Signal Processing: Evolution in Remote Sensing (WHISPERS), 2011.

Sylvain Jay received the M.Sc. degree in Image
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