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Nonparametric Hierarchical Clustering of

Functional Data

Marc Boullé, Romain Guigourès and Fabrice Rossi

Abstract In this paper, we deal with the problem of curves clustering. We propose a

nonparametric method which partitions the curves into clusters and discretizes the

dimensions of the curve points into intervals. The cross-product of these partitions

forms a data-grid which is obtained using a Bayesian model selection approach while

making no assumptions regarding the curves. Finally, a post-processing technique,

aiming at reducing the number of clusters in order to improve the interpretability of

the clustering, is proposed. It consists in optimally merging the clusters step by step,

which corresponds to an agglomerative hierarchical classification whose dissimilarity

measure is the variation of the criterion. Interestingly this measure is none other

than the sum of the Kullback-Leibler divergences between clusters distributions

before and after the merges. The practical interest of the approach for functional data

exploratory analysis is presented and compared with an alternative approach on an

artificial and a real world data set.
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90 rue de Tolbiac

75013 Paris - France

e-mail: romain.guigoures@malix.univ-paris1.fr , fabrice.rossi@univ-paris1.fr

1
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1 Introduction

In functional data analysis (FDA [Ramsay and Silverman, 2005]), observations are

functions (or curves). Each function is sampled at possibly different evaluation points,

leading to variable-length sets of pairs (evaluation point, function value). Functional

data arise in many domains, such as daily records of precipitation at a weather

station or hardware monitoring where each curve is a time series related to a physical

quantity recorded at a specified sampling rate.

Exploratory analysis methods for large functional data sets are needed in practical

applications such as e.g. electric consumption monitoring [Hébrail et al., 2010]. They

reduce data complexity by combining clustering techniques with function approxima-

tion methods, representing a functional data set by a small set of piecewise constant

prototypes. In this type of approach, both the number of prototypes and the number of

segments (constant parts of the prototypes) are under user control. On a positive side,

this limits the risk of cognitive overwhelming as the user can ask for a low complexity

representation. Unfortunately, this can also induce under/over-fitting of the model

to the data; additionally the number of prototypes and the number of segments both

need to be tuned, while they can be adjusted independently in [Hébrail et al., 2010],

increasing the risk of over/under-fitting. Other parametric approaches for function

clustering and/or function approximation can be found in e.g. [Cadez et al., 2000,

Chamroukhi et al., 2010, Gaffney and Smyth, 2004, Ramsay and Silverman, 2005].

All those methods make (sometimes implicit) assumptions on the distribution of the

functions and/or on the measurement noise.

Nonparametric functional approaches (e.g. [Ferraty and Vieu, 2006]) have been

proposed, in particular in [Gasser et al., 1998, Delaigle and Hall, 2010], where the

problem of density estimation of a random function is considered. However, those

models do not tackle directly the summarizing problem outlined in [Hébrail et al., 2010]

and recalled above. Nonparametric Bayesian approaches based on Dirichlet process

have also been applied to the problem of curves clustering. They aim at inferring

a clustering distribution on an infinite mixture model [Nguyen and Gelfand, 2011,

Teh, 2010]. The clustering model is obtained by sampling the posterior distribution

using Bayesian inference methods.

The present paper proposes a new nonparametric exploratory method for func-

tional data, based on data grid models [Boullé, 2010]. The method makes assumption

neither on the functional data distribution nor on the measurement noise. Given a set

of sampled functions defined on a common interval [a,b], with values in [u,v], the

method outputs a clustering of the functions associated to partitions of [a,b] and [u,v]
in sub-intervals which can be used to summarize the values taken by the functions

in each cluster, leading to results comparable to those of [Hébrail et al., 2010]. Both

approaches are for that matter compared in this article.

The method has no parameters and obtains in a fully automated way an optimal

summary of the functional data set, using a Bayesian approach with data dependent

priors. In some cases, especially for large scale data sets, the optimal number of

clusters and of sub-intervals may be too large for a user to interpret all the discovered

fine grained patterns in a reasonable time. Therefore, the method is complemented
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with a post-processing step which offers the user a way to decrease the number of

clusters in a greedy optimal way. The number of sub-intervals, that is the level of

details kept in the functions, is automatically adjusted in an optimal way when the

number of clusters is reduced.

The post-processing technique consists in merging successively the clusters in the

least costly way, from the finest clustering model to one single cluster containing all

the curves. It appears that the cost of the merge of two clusters is a weighted sum of

Kullback-Leibler divergences from the merged clusters to the created cluster which

can be interpreted as a dissimilarity measure between the two clusters that have been

merged. Thus, the post-processing technique can be considered as an agglomerative

hierarchical clustering [Hastie et al., 2001]. Decision-making tools can be plotted

using a dendrogram and a Pareto chart of the criterion value as a function of the

number of clusters.

The rest of the paper is organized as follows. Section 2 introduces the problem

of curves clustering and relates our method to alternative approaches. Next, in

Section 3, the clustering method based on joint density estimation is introduced.

Then, the post-processing technique is detailed in section 4. In Section 5 the results

of experimentations on an artificial data set and on a power consumption data set are

shown. Finally Section 6 gives a summary.

2 Functional data exploratory analysis

In this section, we describe in formal terms the data under analysis and the goals of

the analysis.

Let C be a collection of n functions or curves, ci,1 ≤ i ≤ n, defined from [a,b]
to [u,v], two real intervals. Each curve is sampled at mi values in [a,b], leading to a

series of observations denoted ci = (xi j,yi j)
mi
j=1, with yi j = ci(xi j).

As in all data exploratory settings, our main goal is to reduce the complex-

ity of the data set and to discover patterns in the data. We are therefore inter-

ested in finding clusters of similar functions as well as in finding functional pat-

terns, that is systematic and simple regular shapes in individual functions. In

[Chamroukhi et al., 2010, Hébrail et al., 2010] functional patterns are simple func-

tions such as interval indicator functions or polynomial functions of low degree:

a function is approximated by a linear combination of such simple functions in

[Hébrail et al., 2010] or generated by a logistic switching process based on low de-

gree polynomial functions in [Chamroukhi et al., 2010]. B-splines could also be used

as in [Abraham et al., 2003] but with no simplification virtues.

Let us denote kC the number of curve clusters. Given kC classes Fk of “simple

functions” used to discover functional patterns (e.g., piecewise constant functions

with P segments), the method proposed in [Hébrail et al., 2010] finds a partition

(Ck)
kC

k=1 of C and kC simple functions ( fk ∈Fk)
kC

k=1 which aim at minimizing



4 Marc Boullé, Romain Guigourès and Fabrice Rossi

kC

∑
k=1

∑
ci∈Ck

mi

∑
j=1

(yi j− fk(xi j))
2
, (1)

which corresponds to a form of K-means constrained by the choice of the segments,

in the functional space L2. The approach of [Chamroukhi et al., 2010] optimizes a

similar criterion obtained from a maximum likelihood estimation of the parameters

of the functional generative model.

Given a specific choice of the simple function classes, the functional prototypes

( fk)
kC

k=1 obtained by [Chamroukhi et al., 2010, Hébrail et al., 2010] induce kC par-

titions of [a,b] into sub-intervals on which functions are roughly constant. Those

partitions are the main tool used by the analyst to understand the functional pattern

inside each cluster. The general abstract goal of functional data exploration is there-

fore to build clusters of similar functions associated to sub-intervals of the input

space of the functions which summarize the behavior of the functions.

Bayesian Approaches, as described in [Nguyen and Gelfand, 2011], assume that

the collection of curves realizations can be represented by a set of canonical curves

drawn from a Gaussian Process and organized into clusters. The clusters are de-

scribed using a label function that is a realization of a multinomial distribution with

a Dirichlet prior. Whereas parametric models using a fixed and finite number of pa-

rameters may suffer from over- or under-fitting, Bayesian nonparametric approaches

were proposed to overcome these issues. By using a model with an unbounded

complexity, underfitting is mitigated, while the Bayesian approach of computing

or approximating the full posterior over parameters lessens over-fitting [Teh, 2010].

Finally, the parameters distribution is obtained by sampling the posterior distribution

using Bayesian inference methods such as Markov Chain Monte Carlo [Neal, 2000]

or Variational Inference [Blei and Jordan, 2005]. Then a post-treatment is required

for the choice of the clustering parameters among their distribution.

The Dirichlet Process prior requires two parameters : a concentration parameter

and a base distribution. For a concentration parameter α and a data set containing

n curves, the expected number of clusters k̄ is k̄ = α log(n) [Wallach et al., 2010].

Hence, the concentration parameter has a significant impact on the obtained number

of clusters. For that matter, according to [Vogt et al., 2010], one should not expect to

be able to reliably estimate this parameter.

Our method - named MODL and detailed in Section 3 - is comparable to ap-

proaches based on Dirichlet process (DP) in so much as all estimate a posterior

probability based on the likelihood and a prior distribution of the parameters. The

methods are also nonparametric with an unbounded complexity, since the number of

parameters is not fixed and grows with the amount of available data.

Nevertheless, MODL is intrinsically different from the DP based methods. First,

approaches based on DP are Bayesian and yield a distribution of clusterings, the final

clustering being selected using a post-treatment like chosing the mode of the posterior

distribution or by studying the clusters co-occurence matrix. By contrast, MODL is

a MAP approach, the most probable model is directly obtained using optimization

algorithms. Secondly, MODL is not applied on the values but on the order statistics of

the sample. One first benefit is to avoid outliers or scaling problems. By using order
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statistics, the retrieved models are invariant by any monotonic transformation of the

input data, which makes sense since the method aims at modeling the correlations

between the variables, not the values directly. Then, DP based methods consider

distributions of the parameters that lie in R or any continuous space, which measure

is consequently infinite. As for MODL, the correlations between the variables are

modeled on a sample. In the case of curves clustering, these variables are the location

X , the corresponding curve realization Y , and the curve label C. This allows to work

on a finite discrete space and thus to simplify the model computation, that mainly

comes down to counting problems. Finally, the MODL approach is clearly data

dependant. In a first phase, the data sample is used cautiously to build the model

space and the prior : only the size of the sample and the values (or empirical ranks) of

each variable taken independently are exploited. The correlation model is inferred in

a second phase, using a standard MAP approach. Hence, proving the consistency of

this data dependant modeling technique is still an open issue. Actually, experimental

results with both reliable and fine grained retrieved patterns show the relevancy of

the approach.

3 MODL Approach for Functional Data Analysis

In this section, we summarize the principles of data grid models, detailed in

[Boullé, 2010], and apply this approach on the functional data.

3.1 Data Grid Models

Data grid models [Boullé, 2010] have been introduced for the data preparation phase

of the data mining process [Chapman et al., 2000], which is a key phase, both time

consuming and critical for the quality of the results. They allow to automatically,

rapidly and reliably evaluate the class conditional probability of any subset of vari-

ables in supervised learning and the joint probability in unsupervised learning. Data

grid models are based on a partitioning of each variable into intervals in the numeri-

cal case and into groups of values in the categorical case. The cross-product of the

univariate partitions forms a multivariate partition of the representation space into

a set of cells. This multivariate partition, called data grid, is a piecewise constant

nonparametric estimator of the conditional or joint probability. The best data grid

is searched using a Bayesian model selection approach and efficient combinatorial

algorithms.
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3.2 Application to Functional Data

We propose to represent the collection C of n curves as a unique data set with

m = ∑
n
i=1 mi observations and three variables, C to store the curve identifier, X and

Y for the point coordinates. We can apply the data grid models in the unsupervised

setting to estimate the joint density p(C,X ,Y ) between the three variable. The curve

variable C is grouped into clusters of curves, whereas each point dimension X and Y

is discretized into intervals. The cross-product of these univariate partitions forms

a data grid of cells, whith a peacewise constant joint density estimation per triplet

of curve cluster, X interval and Y interval. As p(X ,Y |C) = p(C,X ,Y )
p(C) , this can also be

interpreted as an estimator of the joint density between the point dimensions, which

is constant per cluster of curves. This means that similar curves with respect to the

joint density of their point dimensions will tend to be grouped into the same clusters.

It is noteworthy that the (X ,Y ) discretization is optimized globally for the set of all

curves and not locally per cluster as in [Hébrail et al., 2010].

We introduce in Definition 1 a family of functional data clustering models, based

on clusters of curves, intervals for each point dimension, and a multinomial distribu-

tion of all the points on the cells of the resulting data grid.

Definition 1. A functional data clustering model is defined by:

• a number of clusters of curves,

• a number of intervals for each point dimension,

• the repartition of the curves into the clusters of curves,

• the distribution of the points of the functional data set on the cells of the data grid,

• the distribution of the points belonging to each cluster on the curves of the cluster.

Notation.

• C : collection of curves, size n = |C |.
• P: point data set containing all points of C using 3 variables, size m = |P|.
• C: curve variable

• X ,Y : variables for the point dimensions

• kC: number of clusters of curves

• kX ,kY : number of intervals for variables X and Y

• k = kCkX kY : number of cells of the data grid

• niC : number of curves in cluster iC
• mi: number of points for curve i

• miC : cumulated number of points for curves of cluster iC
• m jX , m jY : cumulated number of points for intervals jX of X and jY of Y

• miC jX jY : cumulated number of points for cell (iC, jX , jY ) of the data grid

We assume that the numbers of curves n and points m are known in advance and

we aim at modeling the joint distribution of the m points on the curve and the point

dimensions. In order to select the best model, we apply a Bayesian approach, using

the prior distribution on the model parameters described in Definition 2.
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Definition 2. The prior for the parameters of a functional data clustering model are

chosen hierarchically and uniformly at each level:

• the numbers of clusters kC and of intervals kX ,kY are independent from each other,

and uniformly distributed between 1 and n for the curves, between 1 and m for

the point dimensions,

• for a given number kC of clusters, every partitions of the n curves into kC clusters

are equiprobable,

• for a model of size (kC,kX ,kY ), every distributions of the m points on the k =
kCkX kY cells of the data grid are equiprobable,

• for a given cluster of curves, every distributions of the points in the cluster on the

curves of the cluster are equiprobable,

• for a given interval of X (resp. Y ), every distributions of the ranks of the X (resp.

Y ) values of points are equiprobable.

Taking the negative log of the posterior probability of a model given the data, this

provides the evaluation criterion given in Theorem 1, which specializes to functional

data clustering the unsupervised data grid model general criterion [Boullé, 2010].

Theorem 1. A functional data clustering model M distributed according to a uniform

hierarchical prior is Bayes optimal if the value of the following criteria is minimal

c(M) =− log(P(M))− log(P(P|M))

= logn+2logm+ logB(n,kC)

+ log

(

m+ k−1

k−1

)

+
kC

∑
iC=1

log

(

miC +niC −1

niC −1

)

+ logm!−
kC

∑
iC=1

kX

∑
jX=1

kY

∑
jY=1

logmiC jX jY !

+
kC

∑
iC=1

logmiC !−
n

∑
i=1

logmi!

+
kX

∑
jX=1

logm jX !+
kY

∑
jY=1

logm jY !

(2)

B(n,k) is the number of divisions of n elements into k subsets (with eventually

empty subsets). When n = k, B(n,k) is the Bell number. In the general case, B(n,k)
can be written as B(n,k) = ∑

k
i=1 S(n, i), where S(n, i) is the Stirling number of the

second kind [Abramowitz and Stegun, 1970], which stands for the number of ways

of partitioning a set of n elements into i nonempty subsets.

As negative log of probabilities are coding lengths, the model selection technique

is similar to a minimum description length approach [Rissanen, 1978]. The first line

in Formula 2 relates to the prior distribution of the numbers of cluster kC and of

intervals kX and kY , and to the specification of the partition of the curves into clusters.

The second line represents the specification of the parameters of the multinomial
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distribution of the m points on the k cells of the data grid, followed by the specification

of the multinomial distribution of the points of each cluster on the curves of the

cluster. The third line stands for the likelihood of the distribution of the points on the

cells, by the mean of a multinomial term. The last line corresponds to the likelihood

of the distribution of the points of each cluster on the curves of the cluster, followed

by the likelihood of the distribution of the ranks of the X values (resp. Y values) in

each interval.

3.3 Optimization Algorithm

The optimization heuristics have practical scaling properties, with O(m) space com-

plexity and O(m
√

m logm) time complexity. The main heuristic is a greedy bottom-up

heuristic, which starts with a fine grained model, with a few points per interval on X

and Y and a few curves per cluster, considers all the merges between clusters and

adjacent intervals, and performs the best merge if the criterion decreases after the

merge, as detailed in Algorithm 1

This heuristic is enhanced with post-optimization steps (moves of interval bounds

and of curves across clusters), and embedded into the variable neighborhood search

(VNS) meta-heuristic [Hansen and Mladenovic, 2001], which mainly benefits from

multiple runs of the algorithm with different initial random solutions.

Algorithm 1 Greedy Bottom Up Merge Heuristic

Require: M (initial solution)

Ensure: M∗ ; c(M∗)≤ c(M)
M∗←M

while solution is improved do

M′←M∗

for all merge u between 2 clusters or adjacent intervals of X or Y do

M+←M∗+u

if c(M+)< c(M′) then

M′←M+

end if

end for

if c(M′)< c(M∗) then

M∗←M′ (improved solution)

end if

end while

The optimization algorithms summarized above have been extensively evaluated

in [Boullé, 2010], using a large variety of artificial data sets, where the true data

distribution is known. Overall, the method is both resilient to noise and able to

detect complex fine grained patterns. It is able to approximate any data distribution,

provided that there are enough instances in the train data sample.
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4 Agglomerative Hierarchical Clustering

The model carried out by the method detailed in the section 3 is optimal according

to the criterion introduced in Theorem 1. This parameter-free solution allows to

track fine and relevant patterns without over-fitting. This provides a suitable initial

solution to lead an exploratory analysis. Still, this initial solution may be too fine for

an easy interpretation. We propose here a post-processing technique which aims at

simplifying the clustering while minimizing the loss of information. This allows to

explore the retrieved patterns at any granularity, up to the finest model, without any

user parameter.

We first study the impact of a merge on the criterion, then focus on the properties

of the proposed dissimilarity measure and finally describe the agglomerative hier-

archical clustering heuristic. It is noteworthy than the same modeling criterion is

optimized both for building the initial clustering and for aggregating the clusters in

the agglomerative heuristic.

4.1 The Cost of Merging two Clusters

Let M1C ,2C
and MγC

be two clustering models, the first one is the model before the

merge of the clusters 1C and 2C, the second one is the model after the merge, that

yields a new cluster γC = 1C ∪2C. We denote ∆c(1C,2C) the cost of the merge of 1C

and 2C, defined as:

∆c(1C,2C) = c(MγC
)− c(M1C ,2C

)

It results from Theorem 1 that the clustering model MγC
is a less probable MODL

explanation of the data set P than M1C ,2C
according to a factor based on ∆c(1C,2C).

p(MγC
|P) = e−∆c(1C ,2C)p(M1C ,2C

|P) (3)

We focus on the asymptotic behavior of ∆c(1C,2C) when the number of data points

m tends to infinity.

Theorem 2. The criterion variation is asymptotically equal to a weighted sum of the

Kullback-Leibler divergences from the clusters 1C and 2C to γC, estimated on the

kX × kY bivariate discretization.

∆c(1C,2C) =m1C
DKL(1C||γC)+m2C

DKL(2C||γC)+O(log(mγC
)) (4)

Proof. The full proof is left out for brevity. Mainly, the computation of ∆c(1C,2C)
makes some prior terms (2 first lines of Formula 2) vanish and bounds the other

ones by O(log(mγC
)) terms. Then, using the Stirling approximation log(m!) =
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m(log(m)− 1)+O(log(m)), the variation of the likelihood (the two last lines of

Formula 2) can be rewritten as a weighted sum of Kullback-Leibler divergences.

4.2 The Cost of a Merge as a Dissimilarity Measure

As the criterion defined in Theorem 1 is used to find the best model, we naturally

chose it to evaluate the quality of the clustering. When two clusters are merged, the

criterion decreases and its resulting variation can be viewed as dissimilarity between

both clusters. When the number of points tends to infinity, the dissimilarity measure

asymptotically converges to a weighted sum of Kullback-Leibler divergence (see

Theorem 2). This divergence is a non symmetric measure of the difference between

two distributions [Cover and Thomas, 1991]. The variation of the criterion ∆c has

some interesting properties. First, it is symmetrical, ∆(1C,2C) = ∆(2C,1C). Then,

∆c(1C,2C) is asymptotically non-negative since the Kullback-Leibler divergence

is also [Cover and Thomas, 1991]. The weights have an important impact on the

merge in the case of unbalanced clusters. A trade-off is achieved between merging

two balanced clusters with similar distributions and merging two different clusters,

one of them having a tiny weight. The best merge is the one with the least loss of

information, as c(M) can be interpreted as the total coding length of the clustering

model plus the data points given the model.

4.3 The Agglomerative Hierarchical Classification

The principle of the agglomerative clustering is to merge successively the clusters

in order to build a tree called dendrogram. The usual dissimilarity measures for the

dendrogram are based on Euclidean distances (Single-Linkage, Complete-Linkage,

Ward ...). Here we build a dendrogram using the criterion variation ∆c. Due to the

properties of this dissimilarity measure, the resulting dendrogram is well-balanced.

Indeed, given the trade-off between merging similarly distributed clusters and merg-

ing tiny with large clusters, we obtain clusters with comparable sizes at each level of

hierarchy.

Let us notice that during the agglomerative process, the best merge can relate

either to the cluster variable C or to the points dimensions X or Y . Therefore, the

granularity of the representation of the curves coarsens as the number of clusters

decreases. As a consequence, the dissimilarity measure between two clusters of

a partition “coarsens” together with the coarsening of the other partitions. This

makes sense since fewer clusters in the partition need a less discriminative similarity

measure to be distinguished. It is noteworthy that during the agglomerative process,

partitions are coarsened but not re-optimized by locally moving the bounds of the

intervals. Although this may be sub-optimal, this allows to ease the exploratory

analysis by using the same family of nested intervals at any model granularity.
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5 Experiments

In this section, we first highlight properties of our approach using an artificial data

set and then apply it on a real-life data set, next we successively merge the clusters

and finally show what kind of exploratory analysis can be performed.

5.1 Experiments on an artificial data set

A variable z is sampled from an uniform distribution: Z ∼U (−1,1). εi denotes a

white Gaussian noise: E ∼N (0,0.25). Let us consider the four following distribu-

tions:

• f1 : x = z+ εx , y = z+ εy

• f2 : x = z+ εx , y =−z+ εy

• f3 : x = z+ εx , y = αz+ εy

with α ∈ {−1,1}
and p(α =−1) = p(α = 1)

• f4 : x = (0.75+ εx)cos(π(1+ z)) ,

y = (0.75+ εy)sin(π(1+ z))

(a) f1 (b) f2

(c) f3 (d) f4

Fig. 1: Artificially generated distributions.
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We generate a collection of 40 curves using each distribution defined previously

(10 curves per distribution). We generate a data set P of 105 points. Each point

is a triple of values with a randomly chosen curve (among 40), a x and a y value

generated according to the distribution related to the curve.

We apply our functional data clustering method introduced in Section 3 on subsets

of P of increasing sizes. The experiment is running 10 times per subset of points

that are resampled each time. The graph on Figure 2 displays the average number of

clusters and the number of X and Y intervals for a given number of points m. For

very small subsets (below 400 data points), there are not enough data to discover

significant patterns, and our method produces one single cluster of curves, with

one single interval for the X and Y variables. From 400 data points, the numbers

of clusters and intervals start to grow. Finally with only 25 points per curve on

average, that is 1000 points in the whole point data set, our method recovers the

underlying pattern and produces four clusters of curves related to the f1, f2, f3 and

f4 distributions.

Despite the method retrieved the actual number of clusters, below 2000 data

points, the clusters may not be totally pure and some curves misplaced into clusters.

In our experiments, for 1000 data points, 2% of the curves are misplaced on average,

while for 2000 points, all the curves are systematically placed in their actual cluster.

It is noteworthy that by growing the size of the subset beyond 2000 data points,

the number of retrieved patterns is constant and equal to four. By contrast, the number

of intervals grows with the number of data points. This shows the good asymptotic

behaviour of the method: it retrieves the true number of patterns and exploits the

growing number of data to better approximate the pattern shapes.

Fig. 2: Number of clusters (solid line), number of X intervals (tight dotted line) and

number of Y intervals (spaced dotted line) for a given number of data points m.

Regarding the results of the experiments on this data set, it is noteworthy that

MODL does not require the same point locations for each curve. This may be an

usefull property to make a clustering of functionnal data for which the measurement

have not been recorded at regular intervals. Moreover, beyond the clustering of

functional data, our method is able to deal with distributions. Thus, it is possible to

detect clusters of multimodal distributions like the ones generated using f3 and f4.
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5.2 Analysis of a power consumption data set

We use the data set [Hébrail et al., 2010] which consists in the electric power con-

sumption recorded in a personal home during almost one year (349 days). Each

curve consists in 144 measurements which give the power consumption of a day

at a 10 minutes sampling rate. There are 50,256 data points and three features: the

time of the measure X , the power measure Y and the day identifier C. The study of

this data set aims at grouping the days according to the characteristic of the power

consumption of each day. First, the optimal model is computed using the MODL

approach. Finally the approach is compared to that of [Hébrail et al., 2010].

The MODL-Optimal Discretization. The optimal clustering consists in a data grid

defined by 57 clusters, 7 intervals on X and 10 on Y . This means that the 349 recorded

days have been grouped into 57 clusters, each day has been discretized into 7 time

segments and the power measures into 10 power segments. This result highlights

some characteristic days, such as the workdays, the days off or the days when nobody

is at home. The summarized prototypes, represented by piecewise constant lines,

show the average power consumption per time segment. The conditional probabilities

of the power segments given the time segments are represented by grey cells, where

the grey level shows the related conditional probability. The first representation has

been chosen in order to simplify the reading of the curve, and the second to highlight

some interesting phenomena such as the multimodal distributions of data points

within the time segments.

(a) (b)

Fig. 3: Two examples among the 57 clusters, the plots display the summarized

prototypes and the conditional probabilities represented by darkened cells. Figure (a)

represents the largest cluster, typifying days where the power consumption is very

low and almost constant ; the residents were probably not at home. Figure (b), that is

the second largest cluster, shows a workday with a low consumption during the night

and the office hours, and with peaks in the morning and evening.
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Multimodal distributions. In Figure 3.(b), we notice that the prototype is located

between two dark cells for the third time segment. This means that the majority of

the data points have been recorded in the higher and the lower power segments but

rarely in the interval where the prototype is for this time segment. Thus, a multimodal

distribution of the data points on this time segment is highlighted, which is confirmed

by Figure 4.(b). Let us notice that 3.(a) is another illustration of a multimodal

distribution for which the points are more frequent in the lower mode than in the

upper one. Overall, the method extends the clustering of curves to clustering of

distributions.

(a) (b)

Fig. 4: Prototypes and stacked curves for the clusters of Figures 3 (a) and (b).

Merging the Clusters. Whereas the finest data grid yields a rich clustering and

useful information for some characteristic clusters, a more synthetic and easily

interpretable view of the power consumption over the year may be desirable in some

applications. That is why agglomerative merges have been performed and represented

on Figure 5 by a dendrogram and a Pareto chart presenting the percentage of kept

information as a function of the number of clusters. This measure is defined as

following:

Definition 3. Let M/0 be the null model with one cluster of curves and one interval

per point dimension, whose data grid consists in one cell containing all the points.

Its properties are detailed in [Boullé, 2010]. We denote Mopt the optimal model

according to the optimization of the criterion defined in the Theorem 1 and Mk the

model resulting from successive merges until obtaining k clusters. The percentage of

kept information for k clusters τk is defined as:

τk =
c(Mk)− c(M/0)

c(Mopt)− c(M/0)
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The dendrogram is well-balanced and the Pareto chart is concave, which allows

to divide by three the number of clusters while keeping almost 90% of the initial

information.

(a) Dendrogram (b) Pareto chart

Fig. 5: Dendrogram and Pareto chart of kept information per number of clusters.

Comparative analysis of the modeling results. In order to highlight the differences

between the results retrieved using MODL and the approach of [Hébrail et al., 2010],

we propose to study a simplified data grid by coarsening the optimal model until

having four clusters, using the post-processing technique detailed in Section 4. By

doing this, 50% of the information is kept and the power consumption and the time

discretizations are reduced to four intervals. Contrary to MODL, the approach of

[Hébrail et al., 2010] requires the user to specify the number of clusters and time

segments. We applied therefore their clustering technique with four clusters and a

total of sixteen time intervals that are optimally distributed over the four clusters.

The clusters retrieved by both approaches are displayed in Figures 6 and 7.

MODL computes a global discretization for both the time and the power consump-

tion. Conversely, the approach of [Hébrail et al., 2010] makes a discretization of the

temporal variable only, that is different for each cluster of curves. In certain cases

like the cluster 3 of the Figure 7, it may be suitable to avoid over-discretizations,

and a few number of time segments is better for a local interpretation. However,

having common time segments for all the clusters enables an easier comparison

between the clusters. In the context of the daily power consumption, MODL enables

the identification of four periods: the night (midnight - 6.35 AM), the morning (6.35

AM - 8.45 AM), the day (8.45 AM - 6.35 PM) and the evening (6.35 PM - midnight).

We are then able to compare the differences in terms of power consumption between

the clusters of curves for each period of the day.

The approach of [Hébrail et al., 2010] is based on the k-means and thus minimizes

the variance between the curves locally to each time segment. It is the reason why the

prototype are close to the average curves in the clusters obtained by this approach. In

MODL, this property is not wanted. As a consequence, the prototype and the average

curves seem less correlated. MODL is based on a joint density estimation that yields

more complex patterns. To highlight the differences in terms of patterns, we propose
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Fig. 6: The four clusters of curves retrieved using MODL with the average (black

line) and the prototype (red solid line) curves. The number in parenthesis above each

curve refers to the number of curves in the cluster.
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Fig. 7: The four clusters of days retrieved using the approach of [Hébrail et al., 2010]

with the average (black line) and the prototype (red solid line) curves. The number in

parenthesis above each curve refers to the number of curves in the cluster.
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to focus on a specific time segment. The first interval (i.e the night) found by MODL

also exists in the four clusters obtained using the approach of [Hébrail et al., 2010].

Let us focus on this time segment to investigate on the distributions of the power

consumption measurements for each cluster of curves. To do that, we compute

the probability density function of the power consumption variable locally to the

first time segment, using a kernel density estimator [Sheather and Jones, 1991]. The

results are displayed in Figures 8 and 9.
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Fig. 8: Kernel density estimation of the power consumption measurements between

midnight and 6.35 AM for each cluster of curves retrieved using MODL.

The density functions for the power consumption are similar for all the four

clusters retrieved by the approach of [Hébrail et al., 2010] during the night: for all

the four clusters, we observe that the power measurements are very dense around

one unique low consumption value that corresponds to the year average power

consumption of the studied time segment. As for MODL, the density functions are

very similar for the clusters 1 and 3 and also very similar to the ones displayed

in Figure 9. However, the cluster 4 is different in that the density peak has been

translated to an upper power interval. Finally, the cluster 2 highlights multimodalities

with three power values around which the measurements are dense. This complex

pattern has been retrieved by MODL since it based on joint density estimation ; the

competing approach cannot track such patterns.

The curves of Figures 6 and 7 do not clearly highlight the differences between the

results. Displaying the calendar with different colors for the 4 clusters gives a more

powerful reading of the differences between the results obtained using both methods.

This is displayed in Figures 10 and 11.



18 Marc Boullé, Romain Guigourès and Fabrice Rossi

0 1 2 3 4 5 6
0

1
2

3
4

Kmeans 1 (66)

Active power

D
en

si
ty

0 1 2 3 4 5 6

0
1

2
3

4

Kmeans 2 (136)

Active power

D
en

si
ty

0 1 2 3 4 5 6

0
1

2
3

4
5

Kmeans 3 (105)

Active power

D
en

si
ty

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Kmeans 4 (42)

Active power

D
en

si
ty

Fig. 9: Kernel density estimation of the power consumption measurements between

midnight and 6.35 AM for each cluster of curves retrieved using the approach of

[Hébrail et al., 2010].

The calendar of the clusters retrieved using MODL (see Figure 10) emphasizes

a certain seasonality. Indeed, the way the curves are grouped highlights a link with

the weather and the temperatures in France this year. The summer, from June to

September, is a season when the temperatures are usually high. On the calendar, there

are two clusters corresponding to this period. The rest of the year, the temperatures

are lower and lead to an increase of the power consumption which is materialized by

the two other clusters. It appears that in late April and early May, the temperature

was exceptionally high this year: these days have been classified into the summer

clusters. Interestingly, the cluster shown in Figure 3.(a) where nobody was at home

and the power consumption is low, has been included into a summer cluster (periods

from the 23th of February to the 2nd of March and from the 29th of October to the

3rd of November).

For its part, the calendar obtained using the approach of [Hébrail et al., 2010]

does not show a seasonality as the one retrieved using MODL does. The clusters

are more distributed all over the year. The dark blue cluster (i.e the one with the

higher average power consumption) groups however only cold winter days and can

be compared to the reddest cluster of the Figure 10. The palest cluster (i.e the one

with the lower average power consumption) characterizes also the warmer days and

the days where there is nobody at home (see Figure 3.(a)). As for the other ones with

intermediate average power consumption, they do not show any correlation with the

period of the day and thus do not allow an immediate interpretation.
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January February March April May June

1 8 15 22 29 5 12 19 26 5 12 19 26 2 9 16 23 30 7 14 21 28 4 11 18 25
2 9 16 23 30 6 13 20 27 6 13 20 27 3 10 17 24 1 8 15 22 29 5 12 19 26
3 10 17 24 31 7 14 21 28 7 14 21 28 4 11 18 25 2 9 16 23 30 6 13 20 27
4 11 18 25 1 8 15 22 1 8 15 22 29 5 12 19 26 3 10 17 24 31 7 14 21 28
5 12 19 26 2 9 16 23 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29
6 13 20 27 3 10 17 24 3 10 17 24 31 7 14 21 28 5 12 19 26 2 9 16 23 30
7 14 21 28 4 11 18 25 4 11 18 25 1 8 15 22 29 6 13 20 27 3 10 17 24 1

July August September October November December

2 9 16 23 30 6 13 20 27 3 10 17 24 1 8 15 22 29 5 12 19 26 3 10 17 24 31
3 10 17 24 31 7 14 21 28 4 11 18 25 2 9 16 23 30 6 13 20 27 4 11 18 25
4 11 18 25 1 8 15 22 29 5 12 19 26 3 10 17 24 31 7 14 21 28 5 12 19 26
5 12 19 26 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29 6 13 20 27
6 13 20 27 3 10 17 24 31 7 14 21 28 5 12 19 26 2 9 16 23 30 7 14 21 28
7 14 21 28 4 11 18 25 1 8 15 22 29 6 13 20 27 3 10 17 24 1 8 15 22 29
8 15 22 29 5 12 19 26 2 9 16 23 30 7 14 21 28 4 11 18 25 2 9 16 23 30

Fig. 10: Calendar of the year 2007 retrieved using MODL. Each line represents a day

of the week. There are four colors (one per cluster), the redder the color, the higher

the average power consumption of the cluster is. The white days correspond to days

with missing data.

January February March April May June

1 8 15 22 29 5 12 19 26 5 12 19 26 2 9 16 23 30 7 14 21 28 4 11 18 25
2 9 16 23 30 6 13 20 27 6 13 20 27 3 10 17 24 1 8 15 22 29 5 12 19 26
3 10 17 24 31 7 14 21 28 7 14 21 28 4 11 18 25 2 9 16 23 30 6 13 20 27
4 11 18 25 1 8 15 22 1 8 15 22 29 5 12 19 26 3 10 17 24 31 7 14 21 28
5 12 19 26 2 9 16 23 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29
6 13 20 27 3 10 17 24 3 10 17 24 31 7 14 21 28 5 12 19 26 2 9 16 23 30
7 14 21 28 4 11 18 25 4 11 18 25 1 8 15 22 29 6 13 20 27 3 10 17 24 1

July August September October November December

2 9 16 23 30 6 13 20 27 3 10 17 24 1 8 15 22 29 5 12 19 26 3 10 17 24 31
3 10 17 24 31 7 14 21 28 4 11 18 25 2 9 16 23 30 6 13 20 27 4 11 18 25
4 11 18 25 1 8 15 22 29 5 12 19 26 3 10 17 24 31 7 14 21 28 5 12 19 26
5 12 19 26 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29 6 13 20 27
6 13 20 27 3 10 17 24 31 7 14 21 28 5 12 19 26 2 9 16 23 30 7 14 21 28
7 14 21 28 4 11 18 25 1 8 15 22 29 6 13 20 27 3 10 17 24 1 8 15 22 29
8 15 22 29 5 12 19 26 2 9 16 23 30 7 14 21 28 4 11 18 25 2 9 16 23 30

Fig. 11: Calendar of the year 2007 retrieved using the approach of

[Hébrail et al., 2010]. Each line represents a day of the week. There are four colors

(one per cluster), the bluer the color, the higher the average power consumption of

the cluster is. The white days correspond to days with missing data.

All in all, both approaches track different patterns and consequently retrieve differ-

ent clustering schemes. On the one hand, MODL requires no user-defined parameters

and is suitable when there are no prior knowledges of the data. Moreover, the ap-

proach is supplemented by powerful exploratory analysis tools allowing a global

interpretation of the results at different granularity levels. On the other hand, the

approach of [Hébrail et al., 2010] enables a thorough understanding of the clusters

by making a time decomposition locally to every cluster. In this practical case study,

it appears that both methods are complementary.
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6 Conclusion

In this paper, we have focused on functional data exploratory analysis, more particu-

larly on curves clustering. The method that is proposed in this paper does not consider

the data set as a collection of curves but rather as a set of data points with three fea-

tures, two continuous, the point coordinates, and one categorical, the curve identifier.

By clustering the curves and discretizing each point variable while selecting the best

model according to a Bayesian approach, the method behaves as a nonparametric

estimator of the joint density of both the curve and point variables. In case of large

data sets, the best model tends to be too fine grained for an easy interpretation. To

overcome this issue, a post-processing technique is proposed. This technique aims at

merging successively the clusters until obtaining a simplified clustering while losing

the least accuracy. This process is equivalent to making a hierarchical agglomerative

classification, whose dissimilarity measure is a weighted sum of Kullback-Leibler

divergences from the new cluster to the two merged clusters. Experimentations have

been conducted on an artificial data set in order to highlight interesting properties

of the method and on a real world data set, the power consumption of a home over

a year. On the one hand, the finest model highlights interesting phenomena such as

multimodal distributions for some time segments among the same cluster. As for the

post-processing technique, a well-balanced dendrogram and a concave Pareto chart

emphasize the ability of the finest model to be simplified with few information loss,

leading to a more interpretable clustering. An interpretation of these results has been

made focusing on the differences with an alternative approach.

Beyond clustering of curves, the proposed method is able to cluster a collection

of distributions. In future works, we plan to extend the method to multidimensional

distributions by considering more than two point dimensions.
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[Chamroukhi et al., 2010] Chamroukhi, F., Samé, A., Govaert, G., and Aknin, P. (2010). A hidden

process regression model for functional data description. application to curve discrimination.

Neurocomputing, 73(7-9):1210–1221.

[Chapman et al., 2000] Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C.,

and Wirth, R. (2000). CRISP-DM 1.0 : step-by-step data mining guide.



Nonparametric Hierarchical Clustering of Functional Data 21

[Cover and Thomas, 1991] Cover, T. and Thomas, J. (1991). Elements of information theory.

Wiley-Interscience, New York, NY, USA.

[Delaigle and Hall, 2010] Delaigle, G. and Hall, P. (2010). Defining probability density for a

distribution of random functions. Annals of Statistics, 38(2):1171–1193.

[Ferraty and Vieu, 2006] Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis:

Theory and Practice. Springer Verlag.

[Gaffney and Smyth, 2004] Gaffney, S. and Smyth, P. (2004). Joint probabilistic curve clustering

and alignment. In Advances in Neural Information Processing Systems 17.

[Gasser et al., 1998] Gasser, T., Hall, P., and Presnell, B. (1998). Nonparametric estimation of the

mode of a distribution of random curves. Journal of the Royal Statistical Society, 60:681–691.

[Hansen and Mladenovic, 2001] Hansen, P. and Mladenovic, N. (2001). Variable neighborhood

search: principles and applications. European Journal of Operational Research, 130:449–467.

[Hastie et al., 2001] Hastie, T., Tibshirani, R., and Friedman, J. (2001). The elements of statistical

learning. Springer.

[Hébrail et al., 2010] Hébrail, G., Hugueney, B., Lechevallier, Y., and Rossi, F. (2010). Exploratory

Analysis of Functional Data via Clustering and Optimal Segmentation. Neurocomputing, 73(7-

9):1125–1141.

[Neal, 2000] Neal, R. M. (2000). Markov chain sampling methods for dirichlet process mixture

models. Journal of Computational AND Graphical Statistics, 9(2):249–265.

[Nguyen and Gelfand, 2011] Nguyen, X. and Gelfand, A. (2011). The dirichlet labeling process

for clustering functional data. Sinica Statistica, 21(3):1249–1289.

[Ramsay and Silverman, 2005] Ramsay, J. and Silverman, B. (2005). Functional Data Analysis.

Springer Series in Statistics. Springer.

[Rissanen, 1978] Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14:465–

471.

[Sheather and Jones, 1991] Sheather, S. and Jones, M. (1991). A reliable data-based bandwidth

selection method for kernel density estimation. Journal of the Royal Statistical Society. Series B

(Methodological), pages 683–690.

[Teh, 2010] Teh, Y. W. (2010). Dirichlet processes. In Encyclopedia of Machine Learning. Springer.

[Vogt et al., 2010] Vogt, J. E., Prabhakaran, S., Fuchs, T. J., and Roth, V. (2010). The translation-

invariant wishart-dirichlet process for clustering distance data.

[Wallach et al., 2010] Wallach, H. M., Jensen, S. T., Dicker, L., and Heller, K. A. (2010). An

alternative prior process for nonparametric bayesian clustering. In AISTATS, pages 892–899.


