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Abstract. In numerous applicative contexts, data are too rich and too
complex to be represented by numerical vectors. A general approach to
extend machine learning and data mining techniques to such data is to
really on a dissimilarity or on a kernel that measures how different or
similar two objects are.
This approach has been used to define several variants of the Self Orga-
nizing Map (SOM). This paper reviews those variants in using a common
set of notations in order to outline differences and similarities between
them. It discusses the advantages and drawbacks of the variants, as well
as the actual relevance of the dissimilarity/kernel SOM for practical ap-
plications.
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1 Introduction

Complex data are frequently too rich and too elaborate to be represented in
a simple tabular form where each object is described via a fixed set of at-
tributes/variables with numerical and/or nominal values. This is especially the
case for relational data when objects of different categories are interconnected
by relations of different types. For instance online retailers have interconnected
customers and products databases, in which a customer can buy one or several
copies of a product, and can also leave some score and/or review of said products.

Adapting data mining and machine learning methods to complex data is
possible, but time consuming and complex, both at the theoretical level (e.g.,
consistency of the algorithms is generally proved only in the Euclidean case) and
on a practical point of view (new implementations are needed). Therefore, it is
tempting to build generic methods that use only properties that are shared by
all types of data.

Two such generic approaches have been used successfully: the dissimilarity
based approach and the kernel based approach [42]. Both are based on fairly
generic assumptions: the analyst is given a data set on which either a dissim-
ilarity or a kernel is defined. A dissimilarity measures how much two objects
differs, while a kernel can be seen as a form a similarity measure, at least in
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the correlation sense. Dozens of dissimilarities and kernels have been proposed
over the years, covering many types of complex data (see e.g. [15]). Then one
needs only to adapt a classical data mining or machine learning method to the
dissimilarity/kernel setting in order to obtain a fully generic approach. As a
dissimilarity can always be constructed from a kernel, dissimilarity algorithms
are probably the more generic ones. A typical example is the k nearest neighbor
method which is based only on dissimilarities.

We review in this paper variants of the Self Organizing Map (SOM) that
have been proposed following this line of research, that is SOM variants that
operate on dissimilarity/kernel data. We discuss whether those variants are re-
ally usable and helpful in practice. The paper is organized as follows. Section
2 describes our general setting: dissimilarity data, kernel data and the Self Or-
ganizing Map. Section 3 is dedicated to the oldest dissimilarity variant of the
SOM, the Median SOM, while Section 4 focuses on the modern variant, the re-
lational SOM. Section 5 presents a different approach to SOM extensions based
on the deterministic annealing principle. Section 6 describes kernel based vari-
ants of the SOM. An unifying view is provided in Section 7 which shows that
the differences between the SOM variants are mainly explained by the optimiza-
tion strategy rather than by the data properties. Finally Section 8 gathers our
personal remarks and insights on the dissimilarity/kernel SOM variants.

2 General setting

The data set under study comprises N data points x1, . . . , xN from an abstract
space X . We specify below the two options, namely dissimilarity data and kernel
data. We also recall the classical SOM algorithms.

2.1 Dissimilarity data

In the dissimilarity data setting (a.k.a. the pairwise data setting), it is assumed
that the data are described indirectly by a square N × N symmetric matrix
D that contains dissimilarities between the data points. The convention is that
Dij = d(xi, xj), a non negative real number, is high when xi and xj are different
and low when they are similar. Minimal assumptions on D are symmetry and
non negativity of each element. It is also natural to assume some basic ordering,
that is that Dii ≤ Dij for all i and j, but this is not used in SOM variants.
Some theoretical results also need Dii = 0 (e.g. [20]), but again this is not a very
strong constraint. Notice that one can be given either the dissimilarity function
d from X 2 to R

+ or directly the matrix D.

2.2 Kernel data

In the kernel data setting, one is given a kernel function k from X 2 to R which
satisfies the following properties:

1. k is symmetric: for all x and y in X , k(x, y) = k(y, x);
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2. k is positive definite: for all m > 0, all observation set (x1, . . . , xm) ∈ Xm

and all coefficient set (α1, . . . , αm) ∈ R
m,
∑m

i=1

∑m

j=1 αiαjk(xi, xj) ≥ 0.

The most important aspect of the kernel setting lays in the Moore-Aronszajn
theorem [3]. It states that a Reproducing Kernel Hilbert Space (RKHS) H can
be associated to X and k through a mapping function φ from X to H such
that 〈φ(x), φ(y)〉H = k(x, y) for all x and y in X . The mapping φ is called the
feature map. It enables one to leverage the Hilbert structure of H in order to
build machine learning algorithms on X indirectly.This can be done in general
without using φ but rather by relying on k only: this is known as the kernel trick
(see e.g. [42]).

Notice that the kernel can be used to define a dissimilarity on X by trans-
porting the Hilbert distance from H. Indeed, it is natural to define dk on X
by

dk(x, y) = 〈φ(x) − φ(y), φ(x) − φ(y)〉H. (1)

Elementary algebraic manipulations show that

dk(x, y) = k(x, x) + k(y, y)− 2k(x, y), (2)

which is an example of the use of the kernel trick to avoid using explicitly φ.
The construction of dk shows that the dissimilarity setting is more general

than the kernel setting. It is always possible to use a kernel as the basis of a
dissimilarity: all the dissimilarity variants of the SOM can used on kernel data.
Therefore, we will focus mainly on dissimilarity algorithms, and then discuss
how they relate to their kernel counterparts.

Notice finally that as in the case of the dissimilarity setting, the kernel can be
given as a function from X to R or as a kernel matrix K = (Kij) = (k(xi, xj)).
In the latter case, K is symmetric and positive definite and is associated to a
dissimilarity matrix DK via equation (2).

2.3 SOM

To contrast its classical setting with the dissimilarity and kernel ones, and to
introduce our notations, we briefly recall the SOM principle and algorithm [28].
A SOM is a low dimensional clustered representation of a data set.

One needs first to specify a low dimensional prior structure, in general a
regular lattice ofK units/neurons positioned in R

2, the (rk)1≤k≤K . The structure
induces a time dependent neighborhood function hkl(t) which measures how
much the prototype/model associated to unit rk should be close to the one
associated to unit rl, at step t of the learning algorithm (from 0 for unrelated
models to 1 for maximally related ones). We will not discuss here the numerous
possible variants for this neighborhood function [28]: if the lattice is made of
points rk in R

2 a classical choice is

hkl(t) = exp

(

−
‖rk − rl‖

2

2σ2(t)

)

,
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where σ increases over time to reduce gradually the influences of the neighbors
during learning.

The SOM attaches to each unit/neuron rk in the prior structure a proto-
type/model in the data space mk. The objective of the SOM algorithm is to
adapt the values of the models in such a way that each data point is as close
as possible to its closest model in the data space (at standard goal in prototype
based clustering). In addition if the closest model for the data point x is mk,
then ml should also be close to x if rk and rl are close in the prior structure. In
other words, proximities in the prior structure should reflect proximities in the
data space and vice versa. The unit/neuron associated to the closest model of
a data point is called the best matching unit (BMU) for this point. The set of
points for which rk is the BMU defines a cluster in the data space, denoted Ck.

This is essentially achieved via two major algorithms (and dozens of variants).
Let us assume that the data space is a classical normed vector space. Then
both algorithms initialize the prototypes (mk)1≤k≤K in an “appropriate way”
and proceed then iteratively. We will not discuss initialization strategies in this
paper.

In the stochastic/online SOM (SSOM), a data point x is selected randomly1

at each iteration t. Then c ∈ {1, . . . ,K} is determined as the index of the best
matching unit, that is

c = arg min
k∈{1,...,K}

‖x−mk(t)‖
2, (3)

and all prototypes are updated via

mk(t+ 1) = mk(t) + ǫ(t)hkc(t)(x −mk(t)), (4)

where ǫ(t) is a learning rate.

In the batch SOM (BSOM), each iteration is made of two steps. In the first
step, the best matching unit for each data point xi is determined as:

ci(t) = arg min
k∈{1,...,K}

‖xi −mk(t)‖
2. (5)

Then all prototypes are updated via a weighted average

mk(t+ 1) =

∑N

i=1 hkci(t)(t)xi
∑N

i=1 hkci(t)(t)
. (6)

Obviously, neither algorithm can be applied as is on non vector data.

1 or data points are looped through.



How Many Dissimilarity/Kernel SOM Variants are Needed? 5

3 The Median SOM

3.1 General principle

It is well known (and obvious) that the prototype update step of the Batch SOM
can be considered as solving an optimization problem, namely

∀ k ∈ {1, . . . ,K}, mk(t+ 1) = argmin
s

N
∑

i=1

hkci(t)(t)‖s− xi‖
2. (7)

This turns the vector space operations involved in equation (6) into an optimiza-
tion problem that uses only the squared Euclidean norm between prototypes
and observations. In an arbitrary space X with a dissimilarity, ‖sk − xi‖

2 can
be replaced by the dissimilarity between sk and xi which turns problem (7) into

∀ k ∈ {1, . . . ,K}, mk(t+ 1) = argmin
s∈X

N
∑

i=1

hkci(t)(t)d(s, xi), (8)

which is a typical generalized median problem.

However, the most general dissimilarity setting only assumes the availability
of dissimilarities between observations not between arbitrary points in X . In fact,
generating new points in X might be difficult for complex data such as texts.
Then the most general solution consists in looking for the optimal prototypes
into the data set rather than in X . The Median SOM [27,29,30] and its variants
[12,13] are based on this principle. The Median SOM consists in iterating two
steps. In the first step, the best matching unit for each data point xi is determined
as

ci(t) = arg min
k∈{1,...,K}

d(xi,mk(t)). (9)

Then all prototypes are updated by solving the generalized median problem

∀ k ∈ {1, . . . ,K}, mk(t+ 1) = argmin
xj

N
∑

i=1

hkci(t)(t)Dij . (10)

Notice that each prototype is a data point which means that in equation (9)
d(xi,mk(t)) is in fact a Dil for some l.

A variant of the Median SOM was proposed in [1]: rather than solving prob-
lem (10), it associates to each unit the generalized median of the corresponding
cluster (in other words, it does not take into account the neighborhood struc-
ture at this point). Then the BMU of a data point is chosen randomly using the
neighborhood structure and the dissimilarities. This means that a data point
can be moved from its natural BMU to a nearby one. As far as we know, this
variant has not been studied in details.
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3.2 Limitations of the Median SOM

The Median SOM has numerous problems. As a batch SOM it is expected to
request more iterations to converge than a potential stochastic version (which
is not possible in the present context, unfortunately). In addition, it will also
exhibit sensitivity to its initial configuration.

There are also problems more specific to the Median SOM. Each iteration
of the algorithm has a rather high computational cost: a naive implementation
leads to a cost of O(N2K + NK2) per iteration, while a more careful one still
costs O(N2 + NK2) [10]. Numerous tricks can be used to reduce the actual
cost per iteration [7,8] but the N2 factor cannot be avoided without introducing
approximations.

Arguably the two main drawbacks of the Median SOM are of a more intrinsic
nature. Firstly, restricting the prototypes to be chosen in the data set has some
very adverse effects. A basic yet important problem comes from collisions in
prototypes [36]: two different units can have the same optimal solution according
to equation (10). This corresponds to massive folding of the two dimensional
representation associated to the SOM and thus to a sub-optimal data summary.
In addition, equation (9) needs a tie breaking rule which will in general increase
the cost of BMU determination (see [30] for an example of such a rule). The
solution proposed in [36] can be used to avoid those problems at a reasonable
computational cost.

A more subtle consequence of the restriction of prototypes to data points is
that no unit can remain empty, apart from collided prototypes. Indeed, the BMU
of a data point that is used as a prototype should be the unit of which it is the
prototype. This means that no interpolation effect can take place in the Median
SOM [43,44] a fact that limits strongly the usefulness of visual representations
such as the U-matrix [45,46]. For some specific data types such as strings, this
can be avoided by introducing ways of generating new data points by some form
of interpolations. This was studied in [43,44] together with a stochastic/online
algorithm.

A generic solution to lift the prototype restriction is provided by the relational
SOM described in Section 4.

3.3 Non metric dissimilarities

The second intrinsic problem of the Median SOM is its reliance on a prototype
based representation of a cluster in the dissimilarity context, while this is only
justified in the Euclidean context. Indeed let us consider that the N data points
(xi)1≤i≤N belong to a Euclidean space. Then for any vector of positive weights
(βi)1≤i≤N , the well known König-Huygens identity states:

N
∑

i=1

βi

∥

∥

∥

∥

∥

∑N

j=1 βjxj

∑N

j=1 βj

− xi

∥

∥

∥

∥

∥

2

=
1

2

1
∑N

i=1 βi

N
∑

i=1

N
∑

j=1

βiβj‖xi − xj‖
2. (11)
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This means that

min
m

N
∑

i=1

βi ‖m− xi‖
2
=

1

2

1
∑N

i=1 βi

N
∑

i=1

N
∑

j=1

βiβj‖xi − xj‖
2. (12)

Applied to the SOM, this means that solving2

(m(t), c(t)) = argmin
m,c

K
∑

k=1

N
∑

i=1

hkci(t)‖mk − xi‖
2, (13)

where m(t) = (m1(t), . . . ,mK(t)) denotes the prototypes and c = (c1, . . . , cn)
denotes the BMU mapping, is equivalent to solving

c(t) = argmin
c

1

2

K
∑

k=1

1
∑N

i=1 hkci(t)

N
∑

i=1

N
∑

j=1

hkci(t)hkcj (t)‖xi − xj‖
2. (14)

This second problem makes clear that the classical SOM is not only based on
quantization but is also optimizing the within pairwise distances in the clusters
defined by the BMU mapping. Here hkci is considered as a form of membership

value of xi to cluster k, which give the “size”
∑N

i=1 hkci to the cluster k. Then
the sum of pairwise distances in each cluster measures the compactness of the
cluster in terms of within variance. As the SOM minimizes the sum of those
quantities, it can be seen as a clustering algorithm3.

However, the König-Huygens identity does not apply to arbitrary dissimi-
larities. In other words, the natural dissimilarity version of problem (14) that
is

c(t) = argmin
c

1

2

K
∑

k=1

1
∑N

i=1 hkci(t)

N
∑

i=1

N
∑

j=1

hkci(t)hkcj (t)d(xi, xj), (15)

is not equivalent to the Median SOM problem given by

(m(t), c(t)) = arg min
m∈{x1,...,xN}K ,c

K
∑

k=1

N
∑

i=1

hkci(t)d(xi,mk). (16)

When the dissimilarity satisfies the triangular inequality this is not a major
problem. By virtue of the triangular inequality, we have for all m

d(xi, xj) ≤ d(xi,m) + d(m,xj), (17)

and therefore for all m

N
∑

i=1

N
∑

j=1

hkci(t)hkcj (t)d(xi, xj) ≤ 2

(

N
∑

i=1

hkci(t)

)

N
∑

j=1

hkcj (t)d(xj ,m), (18)

2 The quantity optimized in equation (13) is the energy defined in [25].
3 This classical analysis mimics the one used to see the k-means algorithm both as a
clustering algorithm and as a quantization algorithm.
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which shows that

1

2
∑N

i=1 hkci(t)

N
∑

i=1

N
∑

j=1

hkci(t)hkcj (t)d(xi, xj) ≤ min
m

N
∑

j=1

hkcj (t)d(xj ,m). (19)

Then the Median SOM is optimizing an upper bound of the cluster oriented qual-
ity criterion for dissimilarities. In practice, this means that a good quantization
will give compact clusters.

However, when the dissimilarity does not satisfy the triangular inequality,
the two criteria are not directly related any more. In fact, one prototype can
be close to a set of data points while those points remain far apart from each
other. Then doing of form of quantization by solving problem (16) is not the
same thing as doing a form of clustering by solving problem (15). By choosing
the prototype based solution, the Median SOM appears to be a quantization
method rather than a clustering one. If the goal is to display prototypes in an
organized way, then this choice make sense (but must be explicit). If the goal is
to display clusters in an organized way, this choice is intrinsically suboptimal. As
pointed out in Section 8, dissimilarity SOMs are not very adapted to prototype
display, which puts in question the interest of the Median SOM in particular
and of the quantization approach in general.

4 The Relational SOM

The quantification of the prototypes induced by restricting them to data points
has quite negative effects described in Section 3.2. The relational approach is a
way to address this problem. It is based on the simple following observation [23].
Let the (xi)1,...,N be N points in a Hilbert space equipped with the inner product

〈., .〉 and let y =
∑N

i=1 αixi for arbitrary real valued coefficients αT = (αi)1,...,N
with

∑N

i=1 αi = 1. Then

〈xi − y, xi − y〉 = (Dα)i −
1

2
αTDα, (20)

where D is the squared distance matrix given by Dij = 〈xi − xj , xi − xj〉. This
means that computing the (squared) distance between a linear combination of
some data points and any of those data points can be done using only the
coefficients of the combination and the (squared) distance matrix between those
points.

4.1 Principle

But as shown by equation (6), prototypes in the classical SOM are exactly linear
combinations of data points whose coefficients sum to one. It is therefore possible
to express the Batch SOM algorithm without using directly the values of the xi,
but rather by keeping the coefficients of the prototypes and using equation (20)
and the squared distance matrix to perform all calculations.
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Then one can simply apply the so called relational version of the algorithm
to an arbitrary dissimilarity matrix as if it were a squared euclidean one. This
is essentially what is done in [22,23] for the c-means (a fuzzy variant of the k-
means) and in [21] for the Batch SOM (and the Batch Neural Gas [11]). Using
the concept of pseudo-Euclidean spaces, it was shown in [20] that this general
approach can be given a rigorous derivation: it amounts to using the original
algorithm (SOM, k-means, etc.) on a pseudo-Euclidean embedding of the data
points.

In practice, the Batch relational SOM proceeds by iterating two steps that
are very similar to the classical Batch SOM steps. The main difference is that
each prototype mk(t) (at iteration t) is given by a vector of RN , αk(t), which
represents the coefficients of the linear combination of the xi in the pseudo-
Euclidean embedding. Then the best matching unit computation from equation
(5) is replaced by

ci(t) = arg min
k∈{1,...,K}

(

(Dαk(t))i −
1

2
αk(t)

TDαk(t)

)

, (21)

while the prototype update becomes

αk(t+ 1)i =
hkci(t)

∑N

l=1 hkcl(t)

. (22)

A stochastic/online variant of this algorithms was proposed in [34]. As for the
classical SOM, it consists in selecting randomly a data point xi, computing its
BMU ci (using equation (21)) and updating all prototypes as follows:

αk(t+ 1)j = αk(t)j + ǫ(t)hkci(t)(δij − αk(t)j), (23)

where δij equals 1 when i = j and 0 in other cases. Notice that is the αk are
initialized so as to sum to one, this is preserved by this update. As shown in
[34], the stochastic variant tends to be less sensitive to the initial values of the
prototypes. However [34] overlooks that both batch and online relational SOM
algorithms share the same computational cost per iteration4 which negates the
traditional computational gain provided by online versions.

4.2 Limitations of the Relational SOM

The Relational SOM solves several problems of the Median SOM. In particular,
it is not subject to the quantization effect induced by constraining the prototypes
to be data points. As a consequence, it exhibits in practice the same interpolation
effects as the classical SOM. The availability of a stochastic version provides also
a simple way to reduce the adverse effects of a bad initialization.

However, the relational SOM is very computationally intensive. Indeed, the
evaluation of all the αk(t)

TDαk(t) costs O(KN2) operations. Neither the dis-
similarity matrix nor the prototype coefficients are sparse and there is no way

4 the cost reported in [34] for the batch relational SOM is incorrect.
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to reduce this costs without introducing approximations. Notice that this cost
is per iteration in both the batch and the stochastic versions of the relational
SOM. This is K times larger than the Median SOM.

This large cost has motivated research on approximation techniques such as
[37]. The most principled approach consists in approximating the calculation of
the matrix product via the Nyström technique [50], as explored in [19].

5 Soft Topographic Mapping for Proximity Data

As pointed out in Section 3.3, if an algorithm relies on prototypes with a general
possibly non metric dissimilarity, it provides only quantization and not clustering.
When organized clusters are looked for, one can try to solve problem (15) directly,
that is without relying on prototypes.

5.1 A deterministic annealing scheme

However problem (15) is combinatorial and highly non convex. In particular,
the absence of prototypes rules out standard alternating optimization schemes.
Following the analysis done in the case of the dissimilarity version of the k-means
in [6,26], Graepel et al. introduce in [17,18] a deterministic annealing approach
to address problem (15). The approach introduces a mean field approximation
which estimates by eik the effects in the criterion of problem (15) of assigning
the data point xi in cluster k. In addition, it computes soft assignments to the
cluster/unit, denoted γik for the membership of xi to cluster k (γik ∈ [0, 1] and
∑K

k=1 γik = 1). The optimal mean field is given by

eik =
K
∑

s=1

hks

N
∑

j=1

bjs

(

d(xi, xj)−
1

2

N
∑

l=1

blsd(xj , xl)

)

, (24)

where the bjs are given by

bjs =

∑K

k=1 γjkhks
∑N

i=1

∑K

k=1 γikhks

. (25)

Soft assignments are updated according to

γik =
exp(−βeik)

∑K

s=1 exp(−βeis)
, (26)

where β is an annealing parameter. It plays the role of an inverse temperature
and is therefore gradually increased at each step of the algorithm.

In practice, the so-called Soft Topographic Mapping for Proximity Data
(STMP) is trained in an iterative batch like procedure. Given an annealing sched-
ule (that is a series of increasing values for β) and initial random values of the
mean field, the algorithm iterates evaluating equation (26), then equation (25)
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and finally equation (24) for a fixed value of β, until convergence. When this
convergence is reached, β is increased and the iterations restart from the current
value of the mean field.

Notice in equation (25) that the neighborhood function is fixed in this ap-
proach, whereas it is evolving with time in most SOM implementations.

5.2 Limitations of the STMP

It is well known that the quality of the results obtained by deterministic an-
nealing are highly dependent on the annealing scheme [35]. It is particularly
important to avoid missing transition phases. Graepel et al. have analyzed tran-
sition phases in the STMP in [18]. As in [35,26], the first critical temperature is
related to a dominant eigenvalue of the dissimilarity matrix. As this is in gen-
eral a dense matrix, the minimal cost of computing the critical temperature is
O(N2). In addition, each internal iteration of the algorithm is dominated by the
update of the mean field according to equation (24). The cost of a full update is
in O(N2K+NK2). The STMP is therefore computationally intensive. It should
be noted however that an approximation of the mean field update that reduces
the cost to O(N2K) is proposed in [18], leading to the same computational cost
as the relational SOM.

In addition, as will appear clearly in Section 7.2, the STMP is based on
prototypes, even they appear only indirectly. Therefore while it tries to optimize
the clustering criterion associated to the SOM, it resorts to a similar quantization
quality proxy as the relational SOM.

6 Kernel SOM

As recalled in Section 2.2, the kernel setting is easier to deal with than the dissim-
ilarity one. Indeed the embedding into a Hilbert space H enables to apply any
classical machine learning method to kernel data by leveraging the Euclidean
structure of H. The kernel trick allows one to implement those methods effi-
ciently.

6.1 The kernel trick for the SOM

In the case of the SOM, the kernel trick is based on the same fundamental
remark that enables the relational SOM (see Section 4.1): in the Batch SOM,
the prototypes are linear combinations of the data points. If the initial values
of the prototypes are linear combinations of the data points (and not random
points), this is also the case for the stochastic/online SOM.

Then assume given a kernel k on X , with its associated Hilbert space H
and mapping φ. Implementing the Batch SOM in H means working on the
mapped data set (φ(xi))1≤i≤N with prototypes mk(t) of the form mk(t) =
∑N

i=1 αki(t)φ(xi). Then equation (5) becomes

ci(t) = arg min
k∈{1,...,K}

‖φ(xi)−mk(t)‖
2
H, (27)
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with

‖φ(xi)−mk(t)‖
2
H =k(xi, xi)− 2

N
∑

j=1

αkj(t)k(xk, xj) (28)

+

N
∑

j=1

N
∑

l=1

αkj(t)αkl(t)k(xj , xl).

Equation (28) is a typical result of the kernel trick: computing the distance
between a data point and a linear combination of the data points can be done
using solely the kernel function (or matrix). To our knowledge, the first use of
the kernel trick in a SOM context was made in [17].

Notice that equation (6) can also been implemented without using explicitly
the mapping φ as one needs only the coefficients of the linear combination which
are given by

αki(t+ 1) =
hkci(t)

∑N

l=1 hkcl(t)

, (29)

exactly as in equation (22). While the earliest kernel SOM (STMK) in [17] is
optimized using deterministic annealing (as the SMTP presented in Section 5),
the kernel trick enables the more traditional online SOM [31] and batch SOM
[5,32,49] derived from the previous equations.

It should be noted for the sake of completeness that another kernel SOM
was proposed in [2]. However, this variant assumes that X is a vector space and
therefore is not applicable to the present setting.

6.2 Limitations of the kernel SOM

As it is built indirectly on a Hilbert space embedding, the kernel SOM does
not suffer from constrained prototypes. The stronger assumptions made on ker-
nels compared to dissimilarities guarantee the equivalence between finding good
prototypes and finding compact clusters. Kernel SOM has also both online and
batch versions.

Then the main limitation of the kernel SOM is its computational cost. In-
deed, as for the relational SOM, evaluating the distances in equation (28) has
a O(KN2) cost. The approximation schemes proposed for the relational SOM
[19,37] can be used for the kernel SOM at the cost of reduced performances in
terms of data representation.

7 Equivalences between SOM variants

It might seem at first that all the variants presented in the previous sections
are quite different, both in terms of goals and algorithms. On the contrary, with
the exception of the Median SOM which is very specific in some aspects, the
variations between the different methods are explained by optimization strategies
rather than by hypothesis on the data.
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7.1 Relational and kernel methods are equivalent

We have already pointed out that relational SOM and kernel SOM share the very
same principle of representing prototypes by a linear combination of the data
points. Both cases use the same coefficient update formulas whose structure
depends only on the type of the algorithm (batch or online).

The connections are even stronger in the sense that given a kernel, the re-
lational SOM algorithm obtained by using the dissimilarity associated to the
kernel is exactly identical to the kernel SOM algorithm. Indeed if K is the kernel
matrix, then the dissimilarity matrix is given by Dij = Kii +Kjj − 2Kij . Then

for all α ∈ R
N such that

∑N

i=1 αi = 1 and for all i ∈ {1, . . . , N}

(Dα)i −
1

2
αTDα =

N
∑

j=1

Dijαj −
1

2

N
∑

j=1

N
∑

l=1

αjαlDjl

=

N
∑

j=1

(Kii +Kjj − 2Kij)αj −
1

2

N
∑

j=1

N
∑

l=1

αjαl(Kjj +Kll − 2Kjl)

Using
∑N

i=1 αi = 1, the first term becomes

N
∑

j=1

(Kii +Kjj − 2Kij)αj = Kii +

N
∑

j=1

Kjjαj − 2

N
∑

j=1

Kijαj .

The same condition on α shows that

N
∑

j=1

N
∑

l=1

αjαlKjj =
N
∑

j=1

Kjjαj ,

and that
N
∑

j=1

N
∑

l=1

αjαlKll =

N
∑

l=1

Kllαl.

Therefore

N
∑

j=1

N
∑

l=1

αjαl(Kjj +Kll − 2Kjl) = 2

N
∑

j=1

Kjjαj − 2

N
∑

j=1

N
∑

l=1

αjαlKjl.

Combining those equations, we end up with

(Dα)i −
1

2
αTDα = Kii − 2

N
∑

j=1

Kijαj +

N
∑

j=1

N
∑

l=1

αjαlKjl. (30)

The second part of this equation is exactly ‖φ(xi)−m‖2H whenm =
∑N

j=1 αjφ(xj)
as recalled in equation (28). Therefore, the best matching unit determination in
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the relational SOM according to equation (21) is exactly equivalent to the BMU
determination in the kernel SOM according to equation (27). This shows the
equivalence between the two algorithms (in both batch and online variants).

This equivalence shows that the batch relational SOM from [21] is a rediscov-
ery of the batch kernel SOM from [32], while the online relational SOM from [34]
is a rediscovery of the online kernel SOM from [31]. Results from [20] show that
those rediscoveries are in fact generalizations of kernel SOM variants as they
extend the Hilbert embedding to the more general pseudo-Euclidean embedding.
In practice, there is no reason to distinguish the kernel SOM from the relational
SOM.

7.2 STMP is a prototype based approach

On the surface, the STMP described in Section 5 looks very different from re-
lational/kernel approaches as it tries to address the combinatorial optimization
problem (15) rather than the different problem (16) associated to the generalized
median. However, as analyzed in details in [20], the STMP differs from the rela-
tional approach only by the use of deterministic annealing, not by the absence
of prototypes.

A careful analysis of equations (24) and (22) clarifies this point. Indeed, let
us consider αs = (bjs)

T
1≤j≤N as the coefficient vector for a linear combination

of the data points xj embedded in the pseudo-Euclidean space associated to the
dissimilarity matrix D. Then

N
∑

j=1

bjs

(

d(xi, xj)−
1

2

N
∑

l=1

blsd(xj , xl)

)

= (Dαs)i −
1

2
αT
s Dαs.

The right hand part is the distance in the pseudo-Euclidean space between the
prototype associated to αs and xi. Then eik in equation (24) is a weighted average
of distances between xi and each of the αs, where the weights are given by the
neighborhood function. As pointed out in [20], this can be seen as a relational
extension of the assignment rule proposed by Heskes and Kappen in [25].

However, rather than using crisp assignments to a best matching unit with
the lowest value of eik, the STMP uses a soft maximum strategy implemented
by equation (26) to obtain assignment probabilities γik. Those are used in turn
to update the coefficients of the prototypes in equation (25).

In fact the three algorithms proposed in [17] are all based on the same de-
terministic annealing scheme, with an initial implementation in R

p (the STVQ)
and two generalization in the Hilbert space associated to a kernel (STMK) and
in the pseudo-Euclidean space associated to a dissimilarity (STMP). The discus-
sion of the previous section shows that the kernel and the dissimilarity variants
are strictly equivalent.

7.3 Summary

We summarizes in the following tables the variants of the SOM discussed in this
paper. Table 1 maps a data type and an optimization strategy to a SOM variant.
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Relational variants include here the kernel case. Table 2 gives the computational
costs of one iteration of the SOM variants.

Data type
R

p data Kernel Dissimilarity

Optimization
strategy

Online online SOM online relational SOM [31,34]
Batch batch SOM batch relational SOM [21,32]
Batch NA NA Median SOM [27]
Deterministic
annealing

STVQ [17] STMK [17] STMP [17]

Table 1. Variants of the SOM

Algorithm Assignment cost Prototype update cost

Batch SOM O(NKp) O(NKp)
Online SOM O(Kp) O(Kp)
Median SOM O(NK) O(N2 +NK2)
Batch relational SOM O(N2K) O(NK)
Online relational SOM O(N2K) O(NK)
STVQ O(NKp +NK2) O(NKp +NK2)
STMK/STMP O(N2K +NK2) O(NK2)

Table 2. Computational complexity of SOM variants for N data points, K units and
in R

p for the classical SOM.

8 Discussion

Even if the kernel approaches are special cases of the relational ones, we have
numerous candidates for dissimilarity processing with the SOM.We discuss those
variants in this section.

8.1 Median SOM

In our opinion, there is almost no reason to use the Median SOM in practice,
except possibly the reduced computational burden compared to the relational
SOM (O(N2) compared to O(N2K) for the dominating terms). Indeed, the
Median SOM suffers from constraining the prototypes to be data points and
gives in general lower performances than the relational/kernel SOM as compared
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to a ground truth or based on the usability of the results (see for instance
[19,34,49]). The lack of interpolation capability is particularly damaging as it
prevents in general to display gaps between natural clusters with u-matrix like
visual representation [45,46].

For large data sets, the factor K increase in the cost of one iteration of
the relational SOM compared to the median SOM could be seen as a strong
argument for the latter. In our opinion, approximation techniques [19,37] are
probably a better choice. This remains however to be tested as to our knowledge
the effects of the Nyström approximation have only been studied extensively for
the relational neural gas and the relational GTM [16,19,40].

8.2 Optimization strategy

To our knowledge, no systematic study of the influence of the optimization strat-
egy has been conducted for SOM variants, even in the case of numerical data. In
this latter case, it is well known that the online/stochastic SOM is less sensitive
to initial conditions than the batch SOM. It is also generally faster to converge
and leads in general to a better overall topology preservation [14]. Similar results
are observed in the dissimilarity case in [34]. It should be noted however that
both analyses use only random initializations while it is well known (see e.g. [28])
that a PCA5 based initialization gives much better results than a random one
in the case of the batch SOM. It is also pointed in [28] that the neighborhood
annealing schedule as some strong effects on topology preservation in the batch
SOM. Therefore, in terms of the final quality of the SOM, it is not completely
obvious that an online solution will provide better results than a batch one.

In addition, the relational setting negates the computational advantage of
the online SOM versus the batch SOM. Indeed in the numerical case, one epoch
of the online SOM (a full presentation of all the data points) has roughly the
same cost as one iteration of the batch SOM. As the online SOM converges
generally with a very small number of epochs, its complete computational cost
is lower than the batch SOM. On the contrary, the cost of the relational SOM is
dominated by the calculation of αTDα in equation (21). In the batch relational
SOM this quantity can be computed one time per prototype and per iteration,
leading to a cost of O(N2K) per iteration (this is overlooked in [34] which reports
erroneously a complexity of O(N3K) per iteration). In the online version, it has
also to be computed for each data point (because of the prototype update that
takes place after each data point presentation). This means that one epoch of
the online relational SOM costs N times more than one iteration of the batch
relational SOM. We think therefore that a careful implementation of the batch
relational SOM should outperform the online version, provided the initialization
is conducted properly.

Comparisons of the online/batch variants with the deterministic annealing
variants is missing, as far as we know. The extensive simulations conducted in

5 PCA initialization is easily adapted to the relational case, as it was for kernel data
[41].
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[20] compare the relational neural gas to the dissimilarity deterministic anneal-
ing clustering of [6,26]. Their conclusion is the one expected from similar com-
parisons done on numerical data [35]: the sophisticated annealing strategy of
deterministic annealing techniques leads in general to better solutions provided
the critical temperatures are properly identified. This comes with a largely in-
creased cost, not really because of the cost per iterations but rather because the
algorithm comprises two loops: an inner loop for a given temperature and an
outer annealing loop. Therefore the total number of iterations is in general of an
order of magnitude higher than with classical batch algorithms (see also [38] for
similar results in the context of a graph specific variant of the SOM principle).
It should be also noted that in all deterministic variants proposed in [17], the
neighborhood function is not adapted during learning. The effects of this choice
on the usability of the final results remain to be studied.

To summarize, our opinion is that one should prefer a careful implementation
of the batch relational SOM, paired with a PCA like algorithm for initialization
and using the Nyström approximation for large data sets. Further experimental
work is needed to validate this choice.

8.3 Clustering versus quantization

As explained in Section 3.3, an algorithm that resorts (directly or indirectly)
on prototypes for an arbitrary dissimilarity does in fact of form of quantization
rather than a form of clustering. To our knowledge, no attempt has been made
to minimize directly the prototype free criterion used in problem (15) and we
can only speculate on this point.

We should first note that in the case of classical clustering, it has been shown
in [9] that optimizing directly the criterion from problem (15) in its k-means
simplified form gives better results than using the relational version of the k-
means. While the computational burden of both approaches are comparable,
the direct optimization of the pairwise dissimilarities criterion is based on a
much more sophisticated algorithm which combines state-of-the-art hierarchical
clustering [33] with multi-level refinement from graph clustering [24].

Assuming such a complex technique could be used to train a SOM like al-
gorithm, one would obtain in the end a set of non empty clusters, organized
according to a lattice in 2 dimensions, something similar to what can be ob-
tained with the Median SOM. While the clusters would have a better quality,
no interpolation between them would be possible, as in the Median SOM.

8.4 How useful are the results?

In our personal opinion, the main interest of the SOM is to provide rich and
yet readable visual representations of complex data [47,48]. Unfortunately, the
visualization possibilities are reduced in the case of dissimilarity data.

The main limitation is that for arbitrary data in an abstract space X , one
cannot assume that an element of X can be easily represented visually. Then even
the Median SOM prototypes (which are data points) cannot be visualized. As the
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prototypes (in all the variants) do not have meaningful coordinates, component
planes cannot be used.

In fact, the only aspects of the results that can be displayed as in the case of
numerical data are dissimilarities between prototypes (in U matrix like displays
[45]) as well as numerical characteristics of the clusters (size, compactness, etc.).
But as pointed out in [46], among others, this type of visualization is interesting
mainly when the SOM uses a large number of units. While this is possible with
the relational SOM, it implies a high computational because of the dominat-
ing O(N2K) term. The case of deterministic annealing versions of the SOM is
even more problematic with the O(NK2) complexity term induced by the soft
memberships.

In some situations, specific data visualization techniques can be built upon
the SOM’s results. For instance by clustering graph nodes via a kernel/dissimilarity
SOM, one can draw a clustered graph representation, as was proposed in [5].
However, it has been shown in this case that specialized models derived from
the SOM [38] or simpler dual approaches based on graph clustering and graph
visualization [39] give in general better final results.

To summarize, our opinion is that the appeal of a generic dissimilarity SOM is
somewhat reduced by the limited visualization opportunity it offers, compared
to the traditional SOM. Further work is needed to explore whether classical
visualization techniques, e.g. brushing and linking [4] could be used to provide
more interesting displays based on the dissimilarity SOM.

9 Conclusion

We have reviewed in this paper the main variants of the SOM that are adapted
to dissimilarity data and to kernel data. Following [20], we have shown that the
variants differ more in terms of their optimisation strategy that in other aspects.
We have recalled in particular that kernel variants are strictly identical to their
relational counterpart. Taking into account computational aspects and known
experimental results, our opinion is that the best solution is the batch relational
SOM coupled with a structured initialization (PCA like) and with the Nyström
approximation for large data sets and thus that we need one dissimilarity/kernel
SOM variant only.

However, as discussed above, the practical usefulness of the dissimilarity SOM
is reduced compared to the numerical SOM as most of the rich visual representa-
tions associated to the SOM of not available for its dissimilarity version. Without
improvement in its visual outputs, it is not completely clear if the dissimilarity
SOM serves a real practical purpose beyond its elegant generality and simplicity.

References

1. Ambroise, C., Govaert, G.: Analyzing dissimilarity matrices via Kohonen maps.
In: Proceedings of 5th Conference of the International Federation of Classification
Societies (IFCS 1996). vol. 2, pp. 96–99. Kobe (Japan) (March 1996)



How Many Dissimilarity/Kernel SOM Variants are Needed? 19

2. Andras, P.: Kernel-Kohonen networks. International Journal of Neural Systems 12,
117–135 (2002)

3. Aronszajn, N.: Theory of reproducing kernels. Transactions of the American Math-
ematical Society 68(3), 337–404 (May 1950)

4. Becker, A., Cleveland, S.: Brushing scatterplots. Technometrics 29(2), 127–142
(1987)

5. Boulet, R., Jouve, B., Rossi, F., Villa, N.: Batch kernel SOM and related Laplacian
methods for social network analysis. Neurocomputing 71(7–9), 1257–1273 (March
2008)

6. Buhmann, J.M., Hofmann, T.: A maximum entropy approach to pairwise data
clustering. In: Proceedings of the International Conference on Pattern Recognition.
vol. II, pp. 207–212. IEEE Computer Society Press, Hebrew University, Jerusalem
(Israel) (1994)

7. Conan-Guez, B., Rossi, F.: Speeding up the dissimilarity self-organizing maps by
branch and bound. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds.)
Computational and Ambient Intelligence (Proceedings of 9th International Work-
Conference on Artificial Neural Networks, IWANN 2007). Lecture Notes in Com-
puter Science, vol. 4507, pp. 203–210. Springer Berlin / Heidelberg, San Sebastián
(Spain) (6 2007)

8. Conan-Guez, B., Rossi, F.: Accélération des cartes auto-organisatrices sur tableau
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