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Abstract – This paper deals with the optimal design of a stand-alone hybrid photovoltaic and 
fuel cell power system without battery storage to supply the electric load demand of the city of 
Brest, Western Brittany in France. The proposed optimal design study is focused on economical 
performances and is mainly based on the loss of the power supply probability concept. The hybrid 
power system optimal design is based on a simulation model developed using HOMER. In this 
context, a practical load demand profile of Brest city is used with real weather data. Copyright © 
2014 Praise Worthy Prize S.r.l. - All rights reserved. 
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Nomenclature 

HOMER = Hybrid Optimization Model 

for Electric Renewables; 

PV   = Photovoltaic; 
FC   = Fuel Cell; 
COE  = cost of energy; 
CC   = Capital Costs; 
NPC  = Net Present Cost; 
TNPC  = Total Net Present Cost; 
O&M  = Operation & Maintenance; 

I. Introduction 

The city of Brest is located in a sheltered position not 
far from the western tip of the Breton peninsula, and the 
western extremity of metropolitan France (Fig. 1). 
Providing electricity to this region is becoming a 
challenging task. Indeed, its energy consumption 
depends on the “regional sidelines” by high-voltage 
transmission lines through high-distance with consequent 
high-line losses, especially during stalling winter peak. In 
order to tackle this constraint, the city of Brest is 
adopting some tracks such as reducing its own 
consumption using other alternative resources (i.e. waste 
incineration power plants), generating savings wherever 
it is possible, or reporting peak periods and encouraging 
consuming less during these periods. Despite these 
solutions, the consumption of the city of Brest is still 
increasing and reaches 5% every year: This yield to urge 
the use of renewable energies. To today the use of 
renewable sources in energy production is still small 
compared to non-renewable energy sources such as fuel 
fossil and nuclear energies (Fig. 2). So renewable energy 
sources must be increased by adopting a hybrid energy 
source schemes to increase the system reliability and 
security [1]. One of the most promising hybridization 

approaches is the combination of PV panels to other 
resource. Indeed, this is a well-developed technology that 
can be used in a large scale [2-7]. In addition, battery 
storage could be needed [8-10]. When the energy storage 
capacity may be limited, the use of supercapacitors could 
be a viable solution [11-12]. Renewable energy sources 
do not provide a constant power, but their 
complementary combination provides more continuous 
electrical output and is often supported by storage 
devices such as batteries to increase the system reliability 
[13-14]. In case of the renewable sources are not able to 
cope with the load demand, they can be hybridized with 
traditional energy sources, such as diesel generators (for 
stand-alone applications) [15-20]. 

For control purposes, different strategies based on 
operating modes and combining technical-economic 
aspects are considered for the energy management of 
stand-alone hybrid power systems [1-2], [21]. 

For the city of Brest, it is proposed a hybrid power 
systems using PV generators hydrogen for energy storage 
purposes. In this case, the hydrogen is produced by an 
electrolyzer powered by the electrical energy excess from 
the renewable energy source. The produced hydrogen 
feeds then a FC system, which will supply the city of 
Brest in high-load demand period. Otherwise, it will be 
used as a secondary source of energy [18-19]. For such 
king of hybrid power systems, the sources can be 
optimally sized with different techniques and then 
selected from commercially available components [1], 
[22-23]. 

In this context, the proposed hybrid power system 
intended to provide electricity for the city of Brest is 
optimally designed using a HOMER-based study using a 
practical load demand profile of Brest city is used with 
real weather data. 

The proposed hybrid power system model, which will 
be implemented in HOMER, is depicted by Fig. 3. 
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Fig. 1. City of Brest and Breton peninsula power grid. 
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Fig. 2. Electricity production in the Breton peninsula. 
 

II. Homer Software 
The HOMER software has been developed by the 

National Renewable Energy Laboratory (NREL) [24]. It 
performs hourly simulations of every possible combination 
of components entered and ranks the systems according to 
user-specified criteria such as cost of energy (COE) or 
Capital Costs (CC). HOMER has been extensively used as 
a sizing and optimization software tool [25]. 

In this study, where the hybrid power system consists 
of PV generators, fuel cells, electrolyzer, and a hydrogen 
tank, HOMER will determine the best feasible power 
system feasible configuration that can cope with the load 
demand. The analysis is based on the estimation of the 
installation cost, the replacement cost, operation and 
maintenance cost, and so on in addition with high 
reliability to satisfy the load demand. 

The optimization process is done after simulating the 
entire possible solutions of hybrid power system 
configurations. HOMER displays then a list of 
configurations sorted based on the Total Net Present Cost 
(TNPC) that can be used to compare different 
configurations from the lowest to the highest TNPC. 

 
 

Fig. 3. Schematic of the proposed PV/FC hybrid system. 



However, TNPC-based system configuration depends on 
the sensitivity variables (i.e. system constraints, 
component prices) chosen by the designer. The 
optimization process is in this context repeated for every 
sensitivity variables selection. 

III. System Description 

The hybrid power system design depends on some 
important sensitivity variables to optimize the system 
cost and the component sizes. Hence, before designing 
the system model, parameters like solar irradiation, 
location, and load demand have to be evaluated. 

III.1. Case Study 

The proposed hybrid power system for the city of 
Brest is tested using a practical load demand profile with 
real weather data: The latitude and longitude for location 
(48,45° N latitude, –4,42° E longitude). The project 
estimated lifetime is about 25 years while the annual 
interest rate is fixed to 6%. 

III.2. Electrical Load Profile 

The city of Brest load demand is illustrated by Figs. 4 
and 5. The city load has been scaled to 16000 kWh/day. 
Seasons scale peak load is taken as 2MW. It should be 
noted that the 2MW annual peak load occurs in January. 
The largest demand occurs during the peak season 
(between December and January) and the lowest demand 
happens during the low season (between July and 
September). 

For the city of Brest, solar radiation data were 
obtained from the NASA Atmospheric Data Center [25]. 
Figure 6 depicts the solar radiation profile over a one-
year period. The annual average solar radiation for this 
area is about 3.39 kWh/m²/day. 

III.3. Solar Resource and PV Generator Data 

Regarding the PV generator, the array slope angle is 
set to 49o and the array azimuth is 0o which is referring to 
the south direction. The lifetime for this PV array system 
is 25 years with a de-rating factor of 70% and a ground 
reflectance is 20%. 

 
 

 
 

Fig. 4. Hourly average load variations in a year for all months. 
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Fig. 5. Daily average load for a complete year. 
  

 
 

Fig. 6. Monthly average daily solar radiation. 
 

The PV plant effect of temperature is considered. The 
clearness index and average the solar radiation are given 
in Table 1. 

 
Table 1. Clearness Index and Average Solar Radiation. 

 

Month 
Clearness index Average radiation 

 (kWh/m2/day) 

Jan. 0.332 0.950 

Feb. 0.378 1.630 

March 0.443 2.890 

April 0.509 4.550 

May 0.532 5.730 

June 0.522 6.040 

July 0.525 5.850 

Aug. 0.516 4.960 

Sept. 0.518 3.800 

Oct. 0.433 2.150 

Nov. 0.390 1.240 

Dec. 0.331 0.810 

IV. Hybrid System Modeling and 
Operational Control Strategy 

IV.1. Hybrid System Modeling 

Even if the city of Brest receives a small amount of 
solar radiation throughout the year as shown by Fig. 6, 
this is enough to generate electric power. A hybrid power 
system that consists of a PV generator with an FC system 
fed by hydrogen is therefore a feasible solution. In 
addition, it should be noted that FCs with hydrogen tank 
are used in off-grid hybrid power systems. 

Figure 7 shows the HOMER model of the studied 
PV/FC hybrid power system. 



 

 
 

Fig. 7. PV-FC hybrid power system. 
 

The optimization process consists in determining the 
optimal value of a so-called decision variable chosen by 
the designer and over which he has optimal control and 
for which HOMER can consider multiple possible values 
in its optimization process. In this study, decision 
variables include: 

– The PV array size; 
– The FC size; 
– The DC/AC converter size; 
– The electrolyzer and hydrogen storage tank sizes. 
The annual electrical load must be met by the hybrid 

power system with a 100% rate. The considered annual 
real interest rate is 0.2%. The real interest rate is equal to 
the nominal interest rate minus the inflation rate. The 
project lifetime is 25 years. 

The model constraints include: 
– Maximum annual capacity shortage is 0%; 
– Operating reserve is considered to be 10% of the 

hourly load. 
HOMER input data are given by Tables 2 and 3 [26-

28]. 

IV.2. Operational Control Strategy 

The operational control strategy (power management) 
is summarized by the following steps: 

– In normal operation, the PV generator supplies the 
load demand. The power excess will be used to 
feed the electrolyzer for hydrogen production and 
storage in the tank. If the hydrogen tank is full, the 
power will be diverted to a dump load. 

 

Table 2. Input Data on Option Costs. 
 

Options Capital cost Replacement 
cost 

O&M cost 

PV 50,000 $/100kW 50,000 $ 5 $/yr 

Fuel Cell 3,000 $/5kW 2,500 $ 0.08 $/h/kW 

Converter 2,000 $/50kW 200 $ 100 O&M 
$/yr 

Electrolyzer 1,000 $/10kW 100 $ 10 $/yr 

Hydrogen 1,000 $/2,000kg 100 $ 10 $/yr 

Table 3. Input Data on Option Sizing and Other Parameters. 
 

Options 
Options on size 

and unit numbers 
Life Other 

information 

PV 
0, 3,000, 4,200, 

4,300, 4,500, 5,000, 
6,000, 8,000kW 

25 yrs De-rating 
factor 75% 

Fuel Cell 
0, 2,000, 2,100,  

2,200 kW 
40,000 

hrs 
Min. load 
ratio 1% 

Converter 0, 2,000, 2,050, 
2,100kW 

20yrs 
Inverter 

efficiency 
95% 

Electrolyzer 
0, 3,400, 3,500,  

3,600, 3,700kW 
15yrs 

Efficiency 
80% 

Hydrogen 0, 955,000, 955,500, 
955,600, 956,000 kg 

20 yrs Initial tank 
level 10% 

 
– If the PV generator power is less than the load 

demand, FCs will generate the remaining power to 
supply the load demand. FCs should fully supply 
the load demand in case of no radiation. 

V. Optimization Results 
The HOMER-based optimization of the PV/FC hybrid 

system using the TNPC is summarized by Table 4. The 
achieved configuration should supply power to the city 
of Brest and is able of meeting its load demand 
continuously throughout the year. 

The optimal configuration is found after carrying-out 
several simulations with a 3.39 kWh/m²/day solar 
radiation and an annual average clearness index of 0.452, 
and considering different PV, FC, electrolyzer, hydrogen 
tank, and converter capacities: The PV capacity has been 
allowed to vary from 0 to 8000kW, the FC power has 
been considered to change from 0 to 2200kW, the 
electrolyzer and the converter capacities have been 
allowed to vary from 0 to 2200kW, the hydrogen storage 
capacity has been allowed up to 956000kg. In this 
context, a load-following control strategy was used. 

The achieved hybrid power system TNPC is 
8,942,636$ while its CC and COE are 4,197,750$, 0.120 
$/kWh, respectively for one year. Figure 8, Tables 5 and 
6 summarize the proposed power system different costs. 
In terms of power, Fig. 9 shows the monthly average 
power production of each renewable source. 

 
Table 4. Optimization Results of the Hybrid PV-FC Model. 

 

PV (kW) 4200 

FC (kW) 2000 

Converter (kW) 2000 

Electrolyzer (kW) 3400 

Hydrogen tank (kg) 955000 

Initial Capital Cost ($) 4,197,750 

TNPC ($) 8,942,636 

COE ($/kWh) 0.120 

Operating cost ($/yr) 371,177 



 
 

Fig. 8. Cost summary of the PV/FC hybrid system. 
 

Table 5. Net Present Costs of the Hybrid System. 
 

Comp. 
Capital Replace. O&M Salvage Total 

($) ($) ($) ($) ($) 

PV 2,100,000 0 2,685 0 2,102,685 

Fuel Cell 1,200,000 1,859,515 2,856,11 -148,24 5,767,379 

Converter 80,000 2,494 51,133 -1,398 132,230 

Electrol. 340,000 14,187 43,463 -2,641 395,010 

H2 Tank 477,500 14,889 61,041 -8,344 545,085 

Other 250 0 0 0 250 

System 4,197,750 1,891,085 3,014,43 -160,62 8,942,64 

 
Table 6. Annualized Costs of the Hybrid System. 

 

Component 
Capital Replace. O&M Salvage Total 

($/yr) ($/yr) ($/yr) ($/yr) ($/yr) 

PV 164,276 0 210 0 164,486 

Fuel Cell 93,872 145,464 223,424 -11,597 451,163 

Converter 6,258 195 4,000 -109 10,344 

Electrol. 26,597 1,110 3,400 -207 30,900 

H2 Tank 37,353 1,165 4,775 -653 42,640 

Other 20 0 0 0 20 

System 328,376 147,933 235,809 -12,565 699,553 

 

 
 

Fig. 9. Monthly average electric production. 
 

In addition, Tables 7 and 8 give the annual electric 
energy production and consumption, respectively. In 
addition, Table 9 gives the hybrid power system annual 
emissions. 

Finally, Figs. 10 and 11, which show the annual 
operation output of the PV and the FC generator, 
respectively, are given to illustrate the operational control 
strategy according to the city of Brest load demand and 
weather data. 

Table 7. Annual Electric Energy Production of the Hybrid System. 
 

Component Production(kWh/yr) Fraction 

PV array 4,442,947 52% 

Fuel Cell 4,070,915 48% 

Total 8,513,862 100% 

 
Table 8. Annual Electric Energy Consumption. 

 

Load Consumption (kWh/yr) Fraction 

AC primary load 5,839,835 71% 

Electrolyzer load 2,366,666 29% 

Total 8,206,500 100% 

 
Table 9. Annual Emissions of the Hybrid System. 

 

Pollutant Emissions (kg/yr) 

Carbon dioxide -1,390 

Carbon monoxide 885 

Unburned hydrocarbons 98 
Particulate matter 66.7 

Sulfur dioxide 0 
Nitrogen oxides 7,893 

 

 
 

Fig. 10. Annual PV generator operation. 
 

 
 

Fig. 11. Annual fuel cell generator operation. 

VI. Conclusion 

This paper dealt with the optimal design of a stand-
alone hybrid PV/FC power system without battery 
storage to supply the electric load demand of the city of 
Brest, Western Brittany in France. The proposed optimal 
design study was focused on economical performance 
and was mainly based on the loss of the power supply 
probability concept. 

The HOMER-based optimization study using the total 
net present cost has clearly shown that the proposed 
hybrid power system and in particular fuel cells are a 
viable alternative to diesel generators as a non-polluting 
reliable energy source with a reduced total cost of 
maintenance. It has also been shown that a fuel cell 
generator could efficiently complement a fluctuating 
renewable source as solar energy to satisfy growing 
loads. 
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