
HAL Id: hal-01017350
https://hal.science/hal-01017350v1

Preprint submitted on 19 Jan 2016 (v1), last revised 5 Feb 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Homotopy classification of ribbon tubes and welded
string links

Benjamin Audoux, Paolo Bellingeri, Jean-Baptiste Meilhan, Emmanuel
Wagner

To cite this version:
Benjamin Audoux, Paolo Bellingeri, Jean-Baptiste Meilhan, Emmanuel Wagner. Homotopy classifi-
cation of ribbon tubes and welded string links. 2014. �hal-01017350v1�

https://hal.science/hal-01017350v1
https://hal.archives-ouvertes.fr


HOMOTOPY CLASSIFICATION OF RIBBON TUBES AND WELDED STRING LINKS

BENJAMIN AUDOUX, PAOLO BELLINGERI, JEAN-BAPTISTE MEILHAN, AND EMMANUEL WAGNER

Abstract. Ribbon 2-knotted objects are locally flat embeddings of surfaces in 4-space which bound immersed
3-manifolds with only ribbon singularities. They appear as topological realizations of welded knotted objects,
which is a natural quotient of virtual knot theory. In this paper we consider ribbon tubes and ribbon torus-links,
which are natural analogues of string links and links, respectively. We show how ribbon tubes naturally act on the
reduced free group, and how this action classifies ribbon tubes up to link-homotopy, that is when allowing each
component to cross itself. At the combinatorial level, this provides a classification of welded string links up to
self-virtualization. This generalizes a result of Habegger and Lin on usual string links, and the above-mentioned
action on the reduced free group can be refined to a general “virtual extension” of Milnor invariants. As an
application, we obtain a classification of ribbon torus-links up to link-homotopy.

Dedicated to Eléonore, Lise, Helena and Siloé.

Introduction

The theory of 2-knots, i.e. locally flat embeddings of the 2-sphere in 4-space, takes its origins in the mid-
twenties from the work of Artin [1]. However, the systematic study of these objects only really began in the
early sixties, notably through the work of Kervaire, Fox and Milnor [16, 26, 27], but also in a series of papers
from Kansai area, Japan, partially referenced below.1 From this early stage, the class of ribbon 2-knots was
given a particular attention. Roughly speaking, a 2-knot is ribbon if it bounds a locally flat immersed 3-ball
whose singular set is a finite number of ribbon disks. Introduced by T. Yajima [45] under the name of simply
knotted 2-spheres, they were extensively studied by T. Yanagawa in [47, 48, 49]. Ribbon 2-knots admit
natural generalizations to ribbon 2-knotted objects, such as links and tangles. One particularly nice feature
of these objects is that they admit a diagrammatic representation which allows an explicit presentation of the
associated knot groups, via a Wirtinger-type algorithm.

This diagrammatic representation also allows to use ribbon 2-knotted objects as a (partial) topological
realization of welded knot theory. Welded knots are a natural quotient of virtual knots, by the so-called
Over Commute relation, which is one of the two forbidden moves in virtual knot theory. What makes this
Over Commute relation natural is that the virtual knot group, and hence any virtual knot invariant derived
from it, factors through it. These welded knotted objects first appeared in a work of Fenn-Rimanyi-Rourke
in the more algebraic context of braids [13]. Although virtual knot theory can be realized topologically as
the theory of knots in thickened surfaces modulo handle stabilization [9, 32], this is no longer true for the
welded quotient. However T. Yajima [45], showed that inflating classical diagrams defines a map, called the
Tube map, which sends knots onto ribbon torus-knots, an analogue of ribbon 2-knots involving embedded
tori. This map has been generalized by S. Satoh [40] to a surjective map from the welded diagrammatics.
But this map fails to be one-to-one, and its kernel is not fully understood yet. Ribbon knotted objects in
dimension 4 are therefore closely related to both 3-dimensional topology and welded theory.

In the present paper, we consider two classes of ribbon knotted objects with several components: rib-
bon tubes and ribbon torus links. They are the natural analogues in the ribbon context of string links and
links, respectively. As such, the latter ones can be obtained from the former by a natural braid-type closure
operation.

We give in Theorem 2.35 the classification of ribbon torus links up to link-homotopy, that is, up to
homotopies in which different components remain distinct. This theorem should be compared, on one hand,

Date: October 27, 2015.
1See Suzuki’s comprehensive survey [42] for a much more complete bibliography on the subject.
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with the link-homotopy classification of links by Habegger and Lin [19], and on the other hand, with the
result of Bartels and Teichner proving the triviality of 2-links up to link-homotopy [6]. The dichotomy
between these two results is striking, and Theorem 2.35 is closer in spirit to the one of Habegger and Lin; in
particular, ribbon torus links are far from being always link-homotopically trivial.

The problem of link-homotopy classification in higher dimension, intiated in [14, 34], has developed in
various direction, for instance with the construction of homotopy invariants (see e.g. [29, 33, 28, 34]), or
towards the relationship with link concordance (e.g. [11]). Vanishing results of homotopy invariants for
embeddings [11, 34] have led, on one hand, to consider immersions, and on the other hand, to the result of
Bartels and Teichner for spheres [6]. This also naturally connects to the general study of embedded surfaces
in 4-space, which is a well-developed subject, see e.g. [10]. Our result suggests that embedded tori in four
space form a very particular but interesting case of study, which appears as another natural generalization of
1-dimensional links (as embedded 2-spheres do).

The proof of the above-mentioned Theorem 2.35 follows closely the work of Habegger and Lin [20]. As
such, it involves naturally ribbon tubes and their classification up to link-homotopy, that we now state.

Theorem. (Theorem 2.33) There is a group isomorphism between ribbon tubes up to link-homotopy and the
group of basis-conjugating automorphisms of the reduced free group.

This theorem calls for several comments, which we develop in the next three paragraphs.
Firstly, this theorem says that ribbon tubes up to link-homotopy form a group, in fact the quotient of the

welded pure braid group by self-virtualization. Actually, our main results on ribbon tubes are obtained, via
the Tube map, as consequences of similar statements for welded string links; see Theorems 3.10 and 3.11.
In this context, the welded diagrammatics gives a faithful description of ribbon tubes, and our results can be
thus seen as applications of virtual knot theory to the concrete study of topological objects.

Secondly, the classifying invariant underlying the theorem is a 4-dimensional version of Milnor numbers.
Through the Tube map, we obtain a general and topologically grounded extension of Milnor invariants
to virtual/welded objects, which should be compared with several previous virtual extensions of Milnor
invariants proposed in [12, 30, 31].

Thirdly, since usual string links sit naturally in the welded string links monoid, the above theorem is a
generalization of the link-homotopy classification of string links of Habegger and Lin [19]. In particular
our 4-dimensional Milnor invariants have the natural feature that they coincide with the classical ones for
usual string links through the Tube map. However we emphasize here that our proof of Theorem 2.33 is
completely independent from the one of [19].

Our link-homotopy classification results for ribbon torus-links and ribbon tubes lead to two natural ques-
tions. The first one is that of the classification in higher dimension (for instance, for 3-dimensional ribbon
tori in 5-space); the algebraic counterpart of Theorem 2.33 above suggests that the statement would remain
true for codimension two tori in higher dimension. The second question addresses the general case of tori in
four space, by removing the ribbon assumption; this is a natural question which seems to us worth studying.

The paper is organized as follows. We begin by setting some notation in Section 1. Section 2 is devoted to
the topological aspects of this paper. We introduce ribbon tubes, broken surface diagrams and link-homotopy
in our context, and provide various results on these notions. Section 3 focuses on the diagrammatic aspects
of the paper; it addresses welded string links and pure braids and their connections with ribbon tubes and
configuration spaces. The main tool for proving most of the results of the present paper is the theory of
Gauss diagrams, which is reviewed in details in Section 4. The main proofs of the paper are given there.
Finally, in Section 5, we define Milnor invariants for ribbon tubes, and show how they provide a natural and
general extension of Milnor invariant to virtual knot theory.

Acknowledgments. This work was initiated by an inspiring series of lectures given by Dror Bar-Natan at
a workshop organized in Caen in June 2012. The authors are grateful to him for introducing his work on
usual/virtual/welded knotted objects, and for countless fruitful discussions. We also warmly thank Akira Ya-
suhara, Ester Dalvit and Arnaud Mortier for stimulating comments and conversations during the preparation
of this paper. This work is supported by the French ANR research project “VasKho” ANR-11-JS01-00201.
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1. General settings and notation

Unless otherwise specified, we set n to be a non negative integer, once for all.

We begin with some topological notation and setting.
Let I be the unit closed interval. Let ~1, n� be the set of integer between 1 and n. We fix n distinct

points {pi}i∈~1,n� in I. For every i ∈ ~1, n�, we choose a disk Di in the interior of the 2–ball B2 = I × I
which contains the point pi in its interior, seen in

{
1
2

}
× I. We furthermore require that the disks Di, for

i ∈ ~1, n�, are pairwise disjoint. We denote by Ci := ∂Di the oriented boundary of Di. We consider the
3–ball B3 := B2 × I and the 4–ball B4 = B3 × I. For m a positive integer and for every submanifold
X ⊂ Bm � Bm−1 × I, we set the notation

• ∂0X = X ∩
(
Bm−1 × {0}

)
;

• ∂1X = X ∩
(
Bm−1 × {1}

)
;

• ∂∗X = ∂X \ (∂0X t ∂1X);
•
∗

X = X \
(
∂∗X ∪ ∂(∂0X) ∪ ∂(∂1X)

)
.

By a tubular neighborhood of X, we will mean an open set N such that N ∩ B̊m is a tubular neighborhood of
X̊ in B̊m and ∂εN is a tubular neighborhood of ∂εX in ∂εBm for both ε = 0 and 1.

In the following, an immersion Y ⊂ X shall be called locally flat if and only if it is locally homeomorphic
to a linear subspace Rk in Rm for some positive integers k ≤ m, except on ∂X and/or ∂Y , where one of the
R–summand should be replaced by R+. An intersection Y1 ∩ Y2 ⊂ X shall be called flatly transverse if and
only if it is locally homeomorphic to the intersection of two linear subspaces Rk1 and Rk2 in Rm for some
positive integers k1, k2 ≤ m, except on ∂X, ∂Y1 and/or ∂Y2, where one of theR–summand should be replaced
by R+.

Throughout this paper, and for various types of objects, diagrammatical or topological, we will consider
local moves. A local move is a transformation that changes the object only inside a ball of the appropriate
dimension. By convention, we will represent only the ball where the move occurs, and the reader should
keep in mind that there is a non represented part, which is identical for each side of the move.

We also define some algebraic notation which will be useful throughout the paper. Let G be a group and
a, b ∈ G two of its elements. We denote by

• ab := b−1ab the conjugate of a by b;
• [a; b] := a−1b−1ab the commutator of a and b;
• ΓkG, for k ∈ N∗, the kth term of the lower central serie of G inductively defined by Γk+1G :=

[
G; ΓkG

]

and Γ1G = G;

and, if G is normally generated by elements g1, . . . , gp, we further denote by

• RG := G
/{

[gi; gg
i ]
∣∣ i ∈ ~1, p�, g ∈ G

} the reduced version of G, which is the smallest quotient
where each generator commutes with all its conjugates;

• AutC(G) :=
{

f ∈ Aut(G)
∣∣ ∀i ∈ ~1, p�,∃g ∈ G, f (gi) = gg

i

}
, the group of conjugating automor-

phisms of G.

Moreover, the free group on n generators is denoted by Fn. Unless otherwise specified, generators of Fn will
be denoted by x1, . . . , xn. By abuse of notation, same notation will be kept for their images under quotients
of Fn. More generally, names of maps and of elements will be kept unchanged when considering quotients.

2. Ribbon tubes

This section is devoted to the topological counterpart of the paper. We first define the considered objects,
namely ribbon tubes, and then classify them up to link-homotopy, in terms of automorphisms of the reduced
free group.

2.1. Ribbon tubes and their homology. In this section, we identify B2 ↪→ B3 with B2 ×
{

1
2

}
, so that the

disks {Di}i∈~1,n� are canonically seen in the interior of B3.
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2.1.1. Definitions.

Definition 2.1. A ribbon tube is a locally flat embedding T = t
i∈~1,n�

Ai of n disjoint copies of the oriented

annulus S 1 × I in
∗

B4 such that
• ∂Ai = Ci × {0, 1} for all i ∈ ~1, n� and the orientation induced by Ai on ∂Ai coincides with that of Ci;
• there exist n locally flat immersed 3–balls ∪

i∈~1,n�
Bi such that

– ∂∗Bi = Åi for all i ∈ ~1, n�;
– ∂εBi = Di × {ε} for all i ∈ ~1, n� and ε ∈ {0, 1};
– the singular set of

n
∪
i=1

Bi is a disjoint union of so-called ribbon singularities, i.e. flatly transverse

disks whose preimages are two disks, one in
n
∪
i=1

B̊i and the other with interior in
n
∪
i=1

B̊i, and with

boundary essentially embedded in
n
t
i=1
∂∗Bi =

n
t
i=1

Åi.

We denote by rTn the set of ribbon tubes up to isotopy fixing the boundary circles. It is naturally endowed
with a monoidal structure by the stacking product T • T ′ := T ∪

∂1T=∂0T ′
T ′, and reparametrization, and with

unit element the trivial ribbon tube 1n := t
i∈~1,n�

Ci × I.

Note that this notion of ribbon singularity is a 4–dimensional analogue of the classical notion of ribbon
singularity introduced by R. Fox in [17]. Similar ribbon knotted objects were studied, for instance, in [46],
[47] and [24], and a survey can be found in [42].

Note that the orientation of the I–factor in S 1 × I induces an order on essential curves embedded in a tube
component, since they are simultaneously homotopic to S 1 × {t} for some t ∈ I; we will refer to this order as
the “co–orientation order”. There is also a second, independent, surface orientation on each tube, which we
will not use. The reader is referred to Section 3.4 of [4] for a more detailed discussion.

Remark 2.2. There are two natural ways to close a ribbon tube T ∈ rTn into a closed (ribbon) knotted surface
in 4–space. First, by gluing the disks t

i∈~1,n�
Di × {0, 1} which bound ∂0T and ∂1T , and gluing a 4–ball along

the boundary of B4, one obtains an n-component ribbon 2–link [45], which we shall call the disk-closure of
T . Second, by gluing a copy of the trivial ribbon tube 1n along T , identifying the pair (B3 × {0}, ∂0T ) with
(B3 × {1}, ∂11n) and (B3 × {1}, ∂1T ) with (B3 × {0}, ∂01n), and taking a standard embedding of the resulting
S 3 × S 1 in S 4, one obtains an n-component ribbon torus–link [40], which we shall call the tube-closure of
T . This is a higher dimensional analogue of the usual braid closure operation.

Let us mention here a particular portion of ribbon tube, called wen in the literature, that may appear in
general, and which we shall encounter in the rest of this paper. Consider an oriented euclidian circle in three-
space, and an additional dimension given by time. While time is running, let the circle make a half-turn;
this path in 4–space is a wen. One can also think of a wen as an embedding in 4–space of a Klein bottle
cut along a meridional circle. There are several topological types of wens, but it was shown in [24] that
there are all isotopic in 4–space, so that we can speak of a wen unambiguously. Note that a wen is a surface
embedded in 4–space with two boundary components, which do not have the same orientation as is required
in the previous definition. Hence a wen is not an element of rT1, but the square of a wen is. It turns out that
the square of a wen is isotopic to the identity (see [24]), a fact which will be used in some proofs of this
section. For a more detailed treatment of wens, see for instance [24], [3, Sec. 2.5.4] and [4, Sec. 4.5].

Definition 2.3. An element of rTn is said to be monotone if it has a representative which is flatly transverse
to the lamination ∪

t∈I
B3 × {t} of B4.

We denote by rPn the subset of rTn whose elements are monotone.

Proposition 2.4. The set rPn is a group for the stacking product.

Proof. The product of two monotone elements is obviously monotone, and an inverse T−1 for a monotone
ribbon tube T is given by T−1 ∩

(
B3 × {t}

)
:= T ∩

(
B3 × {1 − t}

)
for each t ∈ I. �

Remark 2.5. It is worth noting here that two monotone ribbon tubes which are equivalent in rTn are always
related by a monotone isotopy, i.e. by an isotopy moving only through monotone objects. This is shown in
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Remark 2.25. As a consequence, rPn is equal to the group defined as the quotient of monotone ribbon tubes
by monotone isotopies.

Remark 2.6. The monotony condition enables I to be considered as a time parameter and the flat transver-
sality forces T ∩

(
B3 × {t}

)
to be n disjoint circles for all t ∈ I. A monotone ribbon tube can hence be seen as

an element of the fundamental group of the configuration space of n circles in 3–space, that we will denote
by PRn according to [7]. But, since the orientation of ∂T is prescribed by the one of t

i∈~1,n�
Ci, these elements

are actually in the kernel of the map PRn → Zn
2 constructed in the proof of Proposition 2.2 from [7]. The

group rPn is therefore isomorphic to the fundamental group of the configuration space of n circles in 3–space
lying in parallel planes, denoted by PURn in [7]. This fact can be reinterpreted as seeing monotone ribbon
tubes as motions of horizontal rings intermingled with wens. Such wens can be pushed above and since
the starting and final orientations for a given circle match, there is an even number of wens and they cancel
pairwise.

2.1.2. Homology groups. Let T be a ribbon tube with tube components t
i∈~1,n�

Ai.

Since T is locally flat in B4, there is a unique way, up to isotopy, to consider, for all i ∈ ~1, n�, disjoint
tubular neighborhoods N(Ai) � D2 × S 1 × I for Ai, with Ai = {0} × S 1 × I ⊂ N(Ai). We denote by
N(T ) := t

i∈~1,n�
N(Ai) a reunion of such tubular neigborhoods and by W = B4 \

∗

N(T ) the complement of its

interior in B4.

Definition 2.7. For every i ∈ ~1, n�,
• the ith homological meridian ci of T is the homology class in H1(W) of ∂D2 × {s} × {t} ⊂ ∂N(Ai) for

any (s, t) ∈ S 1 × I;
• the ith homological meridional torus τi of T is the homology class in H2(W) of ∂D2 × S 1 × {t} ⊂
∂N(Ai) for any t ∈ I.

As a direct application of the Mayer–Vietoris exact sequence, we obtain:

Proposition 2.8. The homology groups of W are H0(W) = Z, H1(W) = Zn = Z
〈
ci
∣∣ i ∈ ~1, n�

〉
, H2(W) =

Zn = Z
〈
τi
∣∣ i ∈ ~1, n�

〉
, H3(W) = Z and Hk(W) = 0 for k ≥ 4.

2.2. Broken surface diagrams. Links in 3–space can be described using diagrams, which are their generic
projection onto a 2–dimensional plane with extra decoration encoding the 3–dimensional information. Sim-
ilarly, it turns out that ribbon knotted objects, which are surfaces in 4–space, can be described using their
generic projection onto a 3–space; this leads to the following notion of broken surface diagram.

Definition 2.9. A broken surface diagram is a locally flat immersion S of n oriented annuli t
i∈~1,n�

Ai in
∗

B3

such that
• ∂Ai = Ci × {0, 1} for all i ∈ ~1, n� and the orientation induced by Ai on ∂Ai coincides with that of Ci;
• the set Σ(S ) of connected components of singular points in S consists of flatly transverse circles in

n
∪
i=1

Åi.

Moreover, for each element of Σ(S ), a local ordering is given on the two circle preimages. By convention,

this ordering is specified on pictures by erasing a small neighborhood in
n
∪
i=1

Åi of the lowest preimage (see

Figure 1). Note that this is the same convention which is used for usual knot diagrams.

Definition 2.10. A broken surface diagram S is said to be symmetric if and only if,

(1) for each of element of Σ(S ), one of the preimages is essential in
n
∪
i=1

Ai and the other is not;

(2) there is a pairing Σ(S ) =: t
r
{cr

1, c
r
2} such that, for each r, the essential preimages of cr

1 and cr
2

i. are respectively lower and higher than their non essential counterparts;

ii. bound an annulus in
n
∪
i=1

Åi;

iii. this annulus avoids Σ(S ).
As a consequence of the remark below, a symmetric broken surface diagram looks locally like in Figure 2.
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:
dark

preimage <
light

preimage
66

((

:
light

preimage <
dark

preimage

Figure 1. Local pictures for a singular circle in a broken surface diagram

outside annuli

inside annulus

Figure 2. A local picture for paired singular circles in symmetric broken surface diagrams

Remark 2.11. For a symmetric broken surface diagram S , the essential preimages of Σ(S ) cut the annuli of
S into smaller annular pieces. Moreover, condition (1) above implies that there is a well defined notion of
inside/outside for each annulus of S . Then, it follows from condition (2ii.) that the annular pieces between
two paired essential preimages are exactly the portions of S which are inside S . Accordingly, we called these
annular pieces inside annuli, and the other pieces outside annuli (see Figure 2). Condition (2iii.) implies
furthermore that both boundary components of an inside annulus are non essential in a same given outside
annulus.

Let T be a ribbon tube, and consider a projection B4 → B3 which is generic with respect to T . Then
the image of T in B3 has singular locus a union of double points arranged in flatly transverse circles, and
for each double point, the preimages are naturally ordered by their positions on the projection rays. This
suggests that broken surface diagrams can be thought of as 3–dimensional representations of ribbon tubes.
This is indeed the case, as stated in the next result, which is essentially due to Yanagawa.

Lemma 2.12. [47] Any generic projection of a ribbon tube from B4 into B3 is a broken surface diagram.
Conversely any broken surface diagram is the projection of a unique ribbon tube.

Proof. Yanagawa proves that for locally flat embeddings of 2 spheres in R4, there is an equivalence between
the property of being ribbon (property R(4) in [47]) and the property of admitting a projection onto an
immersion whose only singular points are transverse double points (property R(3) in [47]). The proof of
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the equivalence passes through the equivalence with a third notion, which is the fusion of a trivial 2–link
(property F in [47]). Lemma 4.3 in [47] proves that R(4) and F are equivalent. Corollary 3.3 in [47] states
that F implies R(3) and Lemma 3.4 states the converse implication. All the arguments are local and apply to
the case of ribbon tubes as well. �

More specifically, we have the following.

Lemma 2.13. [46, 24] Any ribbon tube can be represented by a symmetric broken surface diagram.

Proof. By the previous lemma, any ribbon tube T can be represented by a broken surface diagram S . Now
we prove that S can be transformed into a symmetric broken surface diagram which still represents the
same ribbon tube. For this, we consider the disk–closure S of T as defined in Remark 2.2. We obtain a
ribbon diagram for an n–component ribbon 2-link. Now by Theorem 5.2 in [24], this diagram is equivalent
to a diagram obtained by closing a symmetric broken surface diagram. This equivalence is generated by
local moves, which we may assume to avoid a neighborhood of the closing disks except possibly for a
finite number of moves which consist in discarding some wens accross closure disks; we do not perform
these latter moves, and leave such wens near the boundary circles instead. We obtain in this way a new
broken surface diagram which describes a ribbon tube isotopic to T , and it only remains to get rid of all

residual wens. Following again [24], all wens can be pushed down near the bottom circles
n
∪
i=1

Ci × {0}. The

orientations of the two boundary circles of a wen are opposite, and the orientation on ∂T induced by T must
agree with that of t

i∈~1,n�
Ci, so there are an even number of wens near each bottom circle, and they cancel

pairwise. There is thus no more wen and the resulting broken surface diagram for T is symmetric. �

Remark 2.14. Since we are only interested in broken surface diagrams which represent ribbon tubes, the
definition given in this paper is watered down compared to what is commonly used in the literature. Let
us recall that in general, a generic projection of an embedded surface in 4–space onto a 3–space has three
types of singularities: double points, triple points and branching points (see, for instance, [10], [47]). In our
context, only the first type does occur.

Remark 2.15. If two symmetric broken surface diagrams differ by one of the “Reidemeister” (RI,RII,RIII)
or “virtual” (V) moves shown in Figure 3, then the associated ribbon tubes are isotopic. Indeed, both sides

RI: o / RII: o /

RIII: o / V: o /

Figure 3. Reidemeister and virtual moves for broken diagrams

of virtual and Reidemeister RII & RIII moves can be locally modelized as occurring in the projection of
monotone ribbon tubes. Then, one can use the approach mentioned in Remark 2.6 to prove the statement.
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Reidemeister move RI is more tricky but can, for example, be checked using Roseman moves defined in [39].
Another point of view can also be found in [2]. Nevertheless, it is still unknown whether the correspondence
between ribbon tubes and symmetric broken surface diagrams up to Reidemeister and virtual moves is one-
to-one; see e.g. [3, Sec. 3.1.1] or [4, Sec. 3.1]. This discussion is the key to the relation between ribbon
tubes and the welded string links defined in Section 3. However, it follows from Corollary 4.34 that this
correspondence is one-to-one up to the link-homotopy relation which is defined in the next section.

2.2.1. Fundamental group. Let T be a ribbon tube with tube components t
i∈~1,n�

Ai and define N(T ) :=

t
i∈~1,n�

N(Ai) and W as in Section 2.1.2. We also consider a global parametrization (x, y, z, t) of B4, which is

compatible with B4 � B3 × I � B2 × I × I near ∂0B4 and ∂1B4, and such that the projection along z maps T
onto a symmetric broken surface diagram S . We also fix a base point e := (x0, y0, z0, t0) with z0 greater than
the highest z–value taken on N(T ).

Notation 2.16. We set π1(T ) := π1(W) with base point e.

2.2.1.1. Elements of the fundamental group. For every point a := (xa, ya, za, ta) ∈ T , we define ma ∈ π1(T ),
the meridian around a, as τ−1

a γaτa where

• τa is the straight path from e to ã := (xa, ya, z0, ta);
• γa is the loop in W, unique up to isotopy, based at ã and which enlaces positively T around a.

In particular, we define:

Notation 2.17. For each i ∈ ~1, n� and ε ∈ {0, 1}, we denote by mε
i the meridian in π1(T ) defined as maεi for

any aεi ∈ Ci × {ε}. If ε = 0, we call it a bottom meridian, and if ε = 1, we call it a top meridian; see the
left-hand side of Figure 4 for an example of a bottom meridian.

Note that, for any ε ∈ {0, 1} and any choice of aεi , the fundamental group of ∂εW based at (x0, y0, z0, ε)
can be identified with the free group Fn =

〈
mε

i

∣∣ i ∈ ~1, n�
〉
.

B3 × {0}

B3 × {1}

γa0
i

e

τa0
i

λi

B3 × {0}

B3 × {1}

c1i

c0i

m0
i ’s

e

meridian m0
i longitude λi

Figure 4. Examples of meridians and longitude

Now, we define the notion of longitude for T as follows. First, we fix two points e0
i ∈ ∂0N(Ai) and

e1
i ∈ ∂1N(Ai) on each extremity of the boundary of the tubular neighborhood of Ai. A longitude for Ai is

defined as the isotopy class of an arc on ∂N(Ai) running from e0
i to e1

i . Since N(Ai) is homeomorphic to
D2 × S 1 × I, we can note that

∂N(Ai) =
(
S 1 × S 1 × I

)
∪
(
D2 × S 1 × {0}

)
∪
(
D2 × S 1 × {1}

)
,
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so that the choice of a longitude for Ai is a priori specified by two coordinates, one for each of the two
S 1–factors in S 1 × S 1 × I. On one hand, the first S 1–factor is generated by the meridian mi, so that the first
coordinate is given by the linking number with the tube component Ai. It can be easily checked, on the other
hand, that two choices of longitude for Ai which only differ by their coordinate in the second S 1–factor are
actually isotopic in W.

Definition 2.18. For each i ∈ ~1, n�, an ith longitude of T is the isotopy class of an arc on ∂N(Ai), running
from e0

i to e1
i , and closed into a loop with an arc c0

i ∪ c1
i defined as follows. For ε ∈ {0, 1}, we denote by ẽεi

the point above eεi with z–cordinate z0; then cεi is the broken line between e, ẽεi and eεi .

This definition is illustrated on the right-hand side of Figure 4.

Remark 2.19. As explained above, any two choices of an ith longitude differ by a power of mi, which is
detected by the linking number with the tube component Ai. In particular, there is thus a preferred ith

longitude, which is defined as having linking number zero with Ai. We shall not make use of this fact here,
but in Section 5 at the end of this paper.

2.2.1.2. Wirtinger presentation. In the following, we give a presentation for π1(T ) in terms of broken surface
diagrams.

Let S be a symmetric broken surface diagram representing T . According to the notation set in Remark
2.11, we denote by Out(S ) the set of outside annuli of S and by In(S ) the set of inside annuli. For each
β ∈ In(S ), we define

• α0
β ∈ Out(S ) the outside annulus which contains ∂β;

• Cβ the connected component of β∩α0
β which is closer to ∂0T , according to the co–orientation order

defined after Definition 2.1;
• α−β ∈ Out(S ) the outside annulus which has Cβ as a boundary component;
• α+

β ∈ Out(S ) the outside annulus which has
(
β ∩ α0

β

)
\Cβ as a boundary component;

• εβ = 1 if according to the local ordering, the preimage of Cβ in β is higher than the preimage in α0
β,

and εβ = −1 otherwise.

See Figure 5 for an illustration.

α0
β

α−
β

α+
β

∂1S

β

� // +1

∂1S

� // −1

Figure 5. Signs associated to inside annuli

Proposition 2.20. [45, 47] Let T be a ribbon tube and S any broken surface representing it, then

π1(T ) �
〈
Out(S )

∣∣ α+
β = (α−β )(α0

β)εβ for all β ∈ In(S )
〉
.

In this isomorphism, α ∈ Out(S ) is sent to ma, where a is any point on α close to ∂α.

Proof. By considering, in B4, the union of the projection rays from T ⊂ B4 to S ⊂ B3 = ∂0B4, the result
follows from standard techniques (see e.g. the proof of Theorem 3.4 in [8]). �

Corollary 2.21. The group π1(T ) is generated by elements {ma}a∈T , and moreover, if a ∈ Ai for some
i ∈ ~1, n�, then ma is a conjugate of mε

i for both ε = 0 or 1.
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2.2.1.3. Reduced fundamental group. In this section, we define and describe a reduced notion of fundamen-
tal group for T . Indeed, Corollary 2.21 states that π1(T ) is normally generated by meridians mε

1, · · · ,m
ε
n for

either ε = 0 or 1. Moreover, since top meridians are also conjugates of the bottom meridians and vice versa,
we can define the following without ambiguity:

Definition 2.22. The reduced fundamental group of T is defined as Rπ1(T ), the reduced version of π1(T )
seen as normally generated by either bottom meridians or top meridians.
For convenience , we also denote Rπ1(∂εW) by Rπ1(∂εT ), for ε ∈ {0, 1}.

It is a consequence of the description of H∗(W) given in Propostion 2.8 that, for ε ∈ {0, 1}, the inclusion
ιε : ∂εW ↪→ W induces isomorphisms at the H1 and H2 levels. Stallings theorem, i.e. Theorem 5.1 in [41],
then implies that

(ιε)k : π1(∂εW)
/
Γkπ1(∂εW)

'
−−−−−→ π1(T )

/
Γkπ1(T )

are isomorphisms for every k ∈ N∗. But π1(∂εW) is the free group Fn generated by meridians mε
1, · · · ,m

ε
n. It

follows from Habegger-Lin’s Lemma 1.3 in [19] that for k ≥ n, R
(

Fn
/
ΓkFn

)
� RFn. As a consequence:

Proposition 2.23. The inclusions ι0 and ι1 induce isomorphisms

RFn � Rπ1(∂0T )
'

−−−−−→
ι∗0

Rπ1(T )
'

←−−−−−
ι∗1

Rπ1(∂1T ) � RFn.

Using the isomorphisms of Proposition 2.23, we define, for every ribbon tube T , a map ϕT : RFn → RFn

by ϕT := ι∗0
−1 ◦ ι∗1. This can be seen as reading the top meridians as products of the bottom ones. It is

straightforwardly checked that ϕT•T ′ = ϕT ◦ϕT ′ and this action on RFn is obviously invariant under isotopies
of ribbon tubes.

It follows from Corollary 2.21 that:

Proposition 2.24. For every ribbon tube T , ϕT is an element of AutC(RFn), the group of conjugating auto-
morphisms. More precisely, the action of T ∈ rTn on RFn is given by conjugation of each xi, for i ∈ ~1, n�,
by the image through ι∗0 of an ith longitude of T .

Note that, in the reduced free group, this conjugation does not depend on the choice of a ith longitude.

Remark 2.25. If the ribbon tube T is monotone, then the inclusions ιε, for both ε ∈ {0, 1}, actually induce
isomorphisms π1(∂εW) = Fn � π1(T ), so that T defines an action in AutC(Fn) which is left invariant by any
(possibly non-monotone) isotopy. Theorem 2.6 of [3] shows that this induces an isomorphism between the
group of monotone ribbon tubes up to monotone isotopies and AutC(Fn), since this group is isomorphic to
the group PURn defined in [7] (as noticed in Remark 2.6). It follows that if two monotone ribbon tubes
are equivalent in rTn, then they induces the same action on Fn and hence are isotopic through a monotone
isotopy. Put differently, we have that the group PURn injects in rTn.

2.3. Classification of ribbon tubes up to link-homotopy. We now give a classification result for ribbon
tubes, up to link-homotopy, in terms of their induced action on the reduced free group.

2.3.1. Link-homotopy.

Definition 2.26. A singular ribbon tube is a locally flat immersion T of n annuli t
i∈~1,n�

Ai in
∗

B4 such that

• ∂Ai = Ci × {0, 1} for all i ∈ ~1, n� and the orientation induced by Ai on ∂Ai coincides with that of Ci;
• the singular set of T is a single flatly transverse circle, called singular loop, whose preimages are

two circles embedded in
n
∪
i=1

Åi, an essential and a non essential one.

• there exist n locally flat immersed 3–balls ∪
i∈~1,n�

Bi such that

– ∂∗Bi = Åi and ∂εBi = Di × {ε} for all i ∈ ~1, n� and ε ∈ {0, 1};
– the singular set of

n
∪
i=1

Bi is a disjoint union of flatly transverse disks, all of them being ribbon

singularities but one, whose preimages are two disks bounded by the preimages of the singular

loop, one in
n
∪
i=1
∂∗Bi and the other with interior in

n
∪
i=1

B̊i.
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We say that a singular ribbon tube is self-singular if and only if both preimages of the singular loop belong
to the same tube component.

Definition 2.27. Two ribbon tubes T1 and T2 are said to be link-homotopic if and only if there is a 1–
parameter family of regular and self-singular ribbon tubes from T1 to T2 passing through a finite number of
self-singular ribbon tubes.
We denote by rTh

n the quotient of rTn by the link-homotopy equivalence, which is compatible with the
monoidal structure of rTn. Furthermore, we denote by rPh

n the image of rPn in rTh
n.

Proposition 2.28. [24] The homotopy equivalence is generated by circle crossing changes, which are the
operations in B4 induced by the local move shown in Figure 6, which switches the local ordering on the
preimages of a given singular circle.
The link-homotopy equivalence is generated by self-circle crossing changes, where it is furthermore required
that both preimages are on the same tube component.

←→

Figure 6. A circle crossing change at the level of broken surface diagrams

Note that a circle crossing change can be seen as a local move among symmetric broken surface diagrams.
Indeed, although applying a circle crossing change yields a surface diagram which is no longer symmetric
(see the middle of Figure 7), the resulting “paired essential preimages with same ordering” corresponds to a
piece of tube passing entirely above or below another piece of tube. There is thus no obstruction in B4 for
pushing these two pieces of tube apart, so that their projections don’t meet anymore (see the right-hand side
of Figure 7).

'vv
66

hh
(( '

Figure 7. A circle crossing change at the symmetric broken surface diagram level

We now state one of the main results of this paper.

Theorem 2.29. Every ribbon tube is link-homotopic to a monotone ribbon tube.

Proof. Using the surjectivity of the Tube map defined in Section 4.5, this is a direct consequence of Theorem
4.12. �
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Corollary 2.30. The set rTh
n is a group for the stacking product.

Remark 2.31. Theorem 2.29 can be regarded as a higher-dimensional analogue of Habegger-Lin’s result,
stating that any string link is link-homotopic to a pure braid [19].

2.3.2. Actions on the reduced free group and link-homotopy. In Subsection 2.2.1.3, a conjugating automor-
phism ϕT was associated to any ribbon tube T . It turns out that this automorphism ϕT is invariant under
link-homotopy.

Proposition 2.32. If T0 and T1 are two link-homotopic ribbon tubes, then ϕT = ϕT ′ .

Proof. This is a consequence of Lemma 4.20 and the surjectivity of the Tube map defined in Section 4.5.
However, this result can be given a more topological proof that we will sketch here.

It is sufficient to prove the proposition in the case of a link-homotopy H passing through a unique singular
ribbon tube. We denote then by A the annulus which contains the unique singular loop and by δ0 the disk in
A which is bounded by this singular loop. By abuse of notation, we will also denote by A the annulus in T0,
in T1 and in any ribbon tube in-between, which are the deformations of A by H. Moreover, we can assume
that the resolution of δ0 in T0 creates a ribbon singularity, as on the left-hand side of Figure 7, whereas it
doesn’t in T1, as on the right-hand side of the figure.

Following the proof of Lemma 1.6 in [19],2 we consider the complement WH of a tubular neighborhood of
H in B5 � B4×I, where I represents the 1–parameter of the link-homotopy. The inclusions ι0 : ∂0WH ↪→ WH

and ι1 : ∂1WH ↪→ WH induce the following commutative diagram:

(1)

Rπ1(∂0T0) ' //

=

Rπ1(∂0W) = Rπ1(T0)

��

Rπ1(∂1T0)'oo

=

RFn // Rπ(H) RFnoo

Rπ1(∂0T1) ' //

=

Rπ1(∂1W) = Rπ1(T1)

OO

Rπ1(∂1T1)'oo

=

,

where Rπ1(H) := π1(WH)
/
Ω with Ω the normal subgroup generated by all commutators [m; mg], m being

any bottom meridian of T0 and g any element of π1(WH). Note that, since top and bottom meridians of T0
and T1 are equal in π1(WH), and since top meridians are conjugate of the bottom ones, both vertical maps to
Rπ(H) in (1) are well defined.

Let B∗ ⊂ B̊4 be a 4–ball so that
• B∗ := B∗ × I ⊂ B5 contains δ0;
• H is trivial outside B∗;
• ∂B∗ ∩ H is the disjoint union of 4 thickened circles C1 × I, C2 × I, C3 × I and C4 × I where C1, C2,

C3 and C4 are four essential curves in A, numbered according to the co–orientation order.
Up to symmetry, we can assume that δ0 is totally embedded in α1, the annulus in A which is cobounded by
C1 and C2, rather than in α2, the annulus in A which is cobounded by C3 and C4.

Now, we denote by Z := WH \ B∗ the complement of H outside B∗ and by mi, for i ∈ {1, 2, 3, 4}, the
meridian in π1(WH) which enlaces positively Ci × I.

We claim that:
(1) π1(∂0WH) = π1(Z)

/{
m2 = m1; m4 = mm±1

1
3

};

(2) π1(∂1WH) = π1(Z)
/{

m2 = m1; m4 = m3
};

(3) π1(WH) = π1(Z)
/{

m2 = m1; m4 = m3; m1m3 = m3m4
}.

Using the Seifert–Van Kampen theorem and the Wirtinger presentation for the ribbon tube ∂0H ∩ B∗ and
∂1H ∩ B∗, the first two assertions are rather clear since filling Z with

(
∂0H ∩ B∗

)
× I or

(
∂1H ∩ B∗

)
× I gives

a thickening of, respectively, ∂0WH and ∂1WH .

2 As it was already the case in [19], Stallings theorem cannot be used here since H2(WH) has an extra summand. Habegger and Lin
retraction argument couldn’t either be used in our context.
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Now, we focus our attention on WH ∩ B∗. Using standard techniques, borrowed e.g. from the proof
of Theorem 3.4 in [8], it is easily seen that π1(WH ∩ B∗) is generated by m1 and m2 and that m2 = m1
and m4 = m3. We consider a point of ∂δ0 and a 4–ball b around it which is transverse to δ0. The ball b
intersects α1 and α2 along two transverse disks and b can be seen as the product of these two disks. This
product decomposition of b provides a Heegaard splitting of ∂b = S 3 into two solid torus whose cores are
∂b ∩ α1 and ∂b ∩ α2, and whose meridians are m1 and m3. But these cores enlace as an Hopf link and since
π1(Hopf link) � Z2, m1 and m3 commute. Finally, using the Mayer–Vietoris exact sequence for WH ∩ B∗
seen as

(
B∗ \N1

)
∩
(
B∗ \N2

)
where N1 and N2 are tubular neighborhoods of, respectively, α1 × I and α2 × I,

one can compute that the abelianization H1(WH ∩ B∗) of π1(WH ∩ B∗) is Z2, so no other relation can hold in
π1(WH ∩ B∗). By use of the Seifert–Van Kampen theorem, this proves statement (3).

Now, since m1, m2, m3 and m4 are all conjugates of the top meridian of A, they commute in the reduced
group, and it follows that Rπ1(∂0WH) � Rπ1(∂1WH) � Rπ1(WH) � R

(
π1(Z)

/{
m2 = m1; m4 = m3

}). All the
maps in the diagram (1) are hence isomorphisms and since ϕT0 and ϕT1 are, respectively, the upper and lower
lines of (1), they are equal. �

We can now give the main result of the paper.

Theorem 2.33. The map ϕ : rTh
n −→ AutC(RFn), sending T to ϕT is an isomorphism.

As pointed out in Section 4.5, this is a consequence of Theorem 4.17.

2.4. Classification of ribbon torus-links up to link-homotopy. In [20] a structure theorem was given for
certain “concordance-type” equivalence relations on links. Here we give an analogous structure theorem in
the higher dimensional case. Actually, we follow the reformulation given in [22], which was in fact implicit
in the proof of [20].

We consider n-component ribbon torus-links, that is, locally flat embeddings of n disjoint tori in S 4 which
bound locally flat immersed solid tori whose singular set is a finite number of ribbon disks. Denote by rLn

the set of n-component ribbon torus-links up to isotopy. The tube-closure operation defined in Remark
2.2 induces a natural closure map ˆ : rTn → rLn, which is easily seen to be surjective. Indeed, given
an n-component ribbon torus-link, it is always possible up to isotopy to find a 3-ball intersecting the n
components transversally exactly once, along an essential circle, so that cutting the ribbon torus-link along
this ball provides a preimage for the closure operation. We shall refer to such a ball as a “base-ball”.

Consider an equivalence relation E on the union, for all n ∈ N∗, of the sets rTn and rLn. We will denote
by E(x) the E-equivalence class of a ribbon tube or torus-link x, and we also denote by E the map which
sends a ribbon knotted object to its equivalence class. We denote respectively by ErTn and ErLn the set of
E-equivalence classes of ribbon tubes and ribbon torus-links.

The Habegger-Lin Classification Scheme relies on the following set of axioms:
(1) The equivalence relation E is local, i.e. for all L1, L2 ∈ rTn such that E(L1) = E(L2), and for all

T1,T2 ∈ rT2n such that E(T1) = E(T2), we have
(i) E(L̂1) = E(L̂2),

(ii) E(1n ⊗ L1) = E(1n ⊗ L2), where ⊗ denotes the horizontal juxtaposition,
(iii) E(L1 C T1) = E(L2 C T2) and E(T1 B L1) = E(T2 B L2), where the left action C and right action
B of rT2n on rTn are defined in Figure 8.

T   L =

T

L

;

T

L

L   T =

Figure 8. Schematical representations of the left and right actions of T ∈ rT2n on L ∈ rTn
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(2) For all L ∈ rTn, there is a string link L′, such that E(L · L′) = E(1n).
(2′) For all L ∈ rTn, E(L · L) = E(1n), where L denotes the image of L under the hyperplane reflexion

about B3 × { 12 }.
(3) The equivalence relation E on ribbon torus-links is generated by isotopy of ribbon torus-links and

the equivalence relation E on ribbon tubes: If L and L′ are two ribbon torus-links such that E(L) =

E(L′), then there is a finite sequence L1, . . . , Lm of ribbon tubes such that L is isotopic to L̂1, L′ is
isotopic to L̂m, and for all i (1 ≤ i < m), either E(Li) = E(Li+1) or L̂i is isotopic to L̂i+1.

Let E be a local equivalence relation. Denote respectively by ES R
n and ES L

n the right and left stabilizers
of the trivial ribbon tube in ErTn. One can easily check that ES R

n and ES L
n are both submonoid of rT2n.

Furthermore, the closure operation induces a map ˆ : ErTn → ErLn which passes to the quotient by ES R
n

(resp. ES L
n ).

Now, assume in addition that the equivalence relation E satisfies Axiom (2). Then clearly the monoid
ErTn is a group, and both ES R

n and ES L
n are subgroups of ErT2n. If the stronger Axiom (2′) holds, then we

actually have ES R
n = ES L

n .

Theorem 2.34 (Structure Theorem for ribbon torus-links).
• Let E be a local equivalence relation satisfying axiom (2). Then, for ∗ = R or L, the quotient map

rTn −→ ErTn
/
ES ∗n

factors through the closure map, i.e., we have a ribbon torus-link invariant

Ẽ : rLn −→ ErTn
/
ES ∗n.

such that the composite map to ErLn is E.
• Furthermore, if Axiom (3) also holds, then we have a bijection

ErTn
/
ES ∗n = ErLn.

This structure theorem is shown by applying verbatim the arguments of [20], as reformulated in Theorem
3.2 of [22]. Indeed, although these papers only deal with classical knotted objects, the proof is purely
combinatorial and algebraic, and involves no topological argument except for [20, Prop. 2.1], whose ribbon
tube analogue can actually be shown by a straightforward adaptation of Habegger and Lin’s arguments.

We have the following classification result for ribbon torus-links up to link-homotopy.

Theorem 2.35. The link-homotopy relation on ribbon tubes satisfies Axioms (1), (2′) and (3) above. Conse-
quently, we have a bijection

rTh
n
/
S +

n
= rLh

n,

where rLh
n is the set of link-homotopy classes of ribbon torus-links and S +

n denotes the stabilizer of the trivial
ribbon tube in rTh

n with respect to the right (or left) action of rT2n on rTn defined in Figure 8.

Proof. The fact that the link-homotopy relation is local (Axiom (1)) is evident. Axiom (2′) holds as a
consequence of Theorem 2.29 and the group structure on monotone ribbon tubes as described in the proof
of Proposition 2.4. To see that Axiom (3) holds, suppose that the ribbon torus-link L′ is obtained from L
by applying circle crossing changes at a given set S of self-crossing circles. Let L be the tube-closure of
a ribbon tube L1. As sketched at the beginning of this section, L1 is specified by the choice of a base-ball
intersecting each component of L exactly once, and we may assume that this ball is disjoint from S . Thus
L′ is the tube-closure of a ribbon-tube L2, obtained from L1 by successive circle crossing changes at each of
the circles in the set S . This shows that link-homotopy for ribbon torus-links is implied by link-homotopy
for ribbon tubes and isotopy, hence concludes the proof. �

3. Welded string links

In this section, we introduce two classes of diagrammatic objects, welded string links and welded pure
braids, and we explain how they are related to the topological objects of the previous section. In particular,
we give a classification result for welded string links up to self-virtualization.
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3.1. Definitions.

Definition 3.1. An n-component virtual string link diagram is a locally flat immersion L of n intervals
t

i∈~1,n�
Ii in

∗

B2, called strands, such that

• each strand Ii has boundary ∂Ii = {pi}× {0, 1} and is oriented from {pi}× {0} to {pi}× {1} (i ∈ ~1, n�);
• the singular set Σ(L) of L is a finite set of flatly transverse points.

Moreover, for each element of Σ(L), a partial ordering is given on the two preimages. If the preimages
are comparable, the double point is called a classical crossing, if not, it is called a virtual crossing. By

convention, this ordering is specified on pictures by erasing a small neighborhood in
n
∪
i=1

åi of the lowest

preimage of classical crossings, and by circling the virtual one (see Figure 9).
A classical crossing is said to be positive if and only if the basis made of the tangent vectors of the highest
and lowest preimages is positive. Otherwise, it is negative (see Figure 9).
Up to isotopy, the set of virtual string link diagrams is naturally endowed with a monoidal structure by the
stacking product L • L′ := L ∪

∂1L=∂0L′
L′, and with unit element the trivial diagram ∪

i∈~1,n�
pi × I.

: positive
33

++

: negative

virtual classical

Figure 9. Virtual and classical crossings

Definition 3.2. A virtual string link diagram is said to be monotone if it is flatly transverse to the lamination
∪
t∈I

I × {t} of B2.

Definition 3.3. Two virtual string link diagrams are equivalent if they are related by a finite sequence of
the moves, called generalized Reidemeister moves, represented in Figure 10. There, all lines are pieces of
strands which may belong to the same strand or not, and can have any orientation.
We denote by vSLn the quotient of n-component virtual string link diagrams up to isotopy and Reidemeister
moves, which is compatible with the stacking product. We call its elements n-component virtual string links.

Virtual string links are interesting objects on their own, but since we are motivated in the first place by
applications to ribbon tubes, we will focus on the following quotient.

Definition 3.4. We define the Over Commute (OC) move as

OC : ←→ .

We denote by wSLn := vSLn
/
OC the quotient of vSLn up to OC moves, which is compatible with the

stacking product. We call its elements n-component welded string links.
We denote by wPn the subset of wSLn whose elements admit a monotone representative.

Warnings 3.5.
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RI : ↔ ↔ RII : ↔

RIIIa : ↔ RIIIb : ↔

classical Reidemeister moves

vRI : ↔ vRII : ↔ vRIII : ↔

virtual Reidemeister moves

mRIIIa : ↔ mRIIIb : ↔

mixed Reidemeister moves

Figure 10. Generalized Reidemeister moves on diagrams

• The following Under Commute (UC) move

UC : ←→× ,

was forbidden in the virtual context and is still forbidden in the welded context.
• Virtual and welded notions do not coincide, even for n = 1, where we get respectively the notion of

virtual and welded long knots (see [3]).

Similarly to the ribbon tube case, it is straightforwardly checked that

Proposition 3.6. The set wPn is a group for the stacking product.

Remark 3.7. Note that if two monotone virtual string link diagrams are equivalent in wSLn, then they are
related by a monotone transformation, that is by a sequence of isotopies, generalized Reidemeister and
OC moves which remain within the set of monotone virtual string links. Indeed, it is a consequence of
Remark 4.24 and Proposition 4.30 that any element of wPn induces an action in AutC(Fn).3 But AutC(Fn) is
isomorphic to the group PURn, according to Theorem 2.6 of [3], and a presentation of the latter is given by
monotone virtual string links up to monotone transformations [7]. Since two equivalent monotone welded
string links induce the same action on Fn, they are related by a monotone transformation (this is the same
argument as in Remark 2.25). It follows that wPn is isomorphic to the welded pure braid group studied, for
instance, in [3]. In other words, we have observed that the welded pure braid group injects into wSLn. On
that account, we will freely call welded pure braids the elements of wPn.

3This fact can also be checked directly, by a straightforward adaptation of Rem. 4.24 and Prop. 4.30 to welded string links.



HOMOTOPY CLASSIFICATION OF RIBBON TUBES AND WELDED STRING LINKS 17

a

b

ba

b

ba
−1

a

Figure 11. Local relations for π1(L)

Remark 3.8. The subset of vSLn whose elements admit a monotone representative is, of course, also defined.
It is a group for the stacking product, which maps surjectively onto the virtual pure braid group, introduced
in [5]. However, the injectivity of this map remains an open question. Indeed, unlike in the welded case
addressed in Remark 3.7 above, it is still unknown whether a sequence of isotopies and generalized Reide-
meister moves can always be modified into a monotone transformation.

Definition 3.9. Two virtual string link diagrams are related by a self-virtualization if one can be obtained
from the other by turning a classical self-crossing (i.e. a classical crossing where the two preimages belong to
the same component) into a virtual one. We call v–equivalence the equivalence relation on wSLn generated
by self-virtualization.
We denote by wSLv

n the quotient of wSLn under v–equivalence, which is compatible with the stacking
product. We also denote by wPv

n ⊂ wSLv
n the subset of elements having a monotone representative.

As we will see in Section 4.5, we have the following result as a straightforward consequences of Theorem
4.12.

Theorem 3.10. Every welded string link is monotone up to self-virtualization.

Furthermore, Theorem 4.17 implies immediately the following classification result for welded string links
up to self-virtualization.

Theorem 3.11. wSLv
n � wPv

n � AutC(RFn) as monoids.

3.2. Fundamental group for welded string link. Let L be a virtual string link diagram.
Any strand of L is cut into smaller pieces by the classical crossings. More precisely, we call overstrand,

any piece of strand of L whose boundary elements are both either a strand endpoint or the lowest preimage
of a classical crossing, and such that it contains no other lowest preimage of any classical crossing in its
interior. Note that any highest preimage of a classical crossing is contained in an overstrand. We denote by
Over(L) and Cross(L) the sets of, respectively, overstrands of L and classical crossings of L.

We orient all strands from ∂0L to ∂1L. To any c ∈ Cross(L), we associate
• εc the sign of c;
• s0

c the overstrand containing the highest preimage of c;
• s−c the overstrand whose exiting boundary component is the lowest preimage of c;
• s+

c the overstrand whose entering boundary component is the lowest preimage of c.

Definition 3.12. We define the fundamental group of L as π1(L) :=
〈
Over(L) | s+

c = (s−c )(s0
c )εc for all c ∈

Cross(L)
〉
. See Figure 11 for an illustration.

It is well-known that, up to isomorphism, the group associated to a virtual string link diagram is invariant
under classical Reidemeister moves. Kauffman proved that virtual and mixed Reidemeister moves do not
change the group presentation [25]. It turns out that the ‘virtual knot group’ is also invariant under Over
Commute, and is thus a welded invariant, i.e. is well defined on wSLn [25, 40].

3.3. Relations with ribbon tubes. It was shown in Section 2.2 that 4–dimensional ribbon tubes can be
described by 3–dimensional objects, namely symmetric broken surface diagrams. Following [40] and [45],
it is also possible to describe ribbon tubes using 2–dimensional welded string links.

Indeed, let L be a welded string link diagram. One can associate a symmetric broken surface diagram
by embedding B2 into B3 as B2 ×

{
1
2

}
and considering ∂∗N(L), where N(L) is a tubular neighborhood of L

in B3 so that ∂εN(L) = t
i∈~1,n�

Di × {ε} for ε ∈ {0, 1}. We then obtain a union of 4–punctured spheres, one
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for each crossing. Then, according to the partial order on the associated crossing, we modify each sphere as
shown in Figure 12. The result is a symmetric broken surface diagram, to which we can associate a ribbon
tube Tube(L).

oo

44

**

Figure 12. Inflating classical and virtual crossings

There is a one-to-one correspondence between overstrands of L and the outside annuli of the associated
symmetric broken surface diagram S , and another one-to one correspondence between classical crossings of
L and inside annuli of S . Moreover, signs associated to crossing in the definition of π1(L) also corresponds
to signs associated to inside annuli in the Wirtinger presentation of π1

(
Tube(L)

)
. It follows

Proposition 3.13 ([40, 45]). For every welded string link diagram L, π1
(
Tube(L)

)
� π1(L).

But the Tube map is more than a tool to compute fundamental groups. Indeed, it provides a way to encode
ribbon tubes. This has been pointed out by Satoh, but some key ideas already appeared in early works [45]
of Yajima.

Proposition 3.14 ([40]). The map Tube : wSLn → rTn is well defined and surjective.

Proof. It is easily seen that classical Reidemeister moves on welded diagrams corresponds to Reidemeister
moves on symmetric broken surfaces defined in Remark 2.15 diagrams, and that virtual and mixed Reide-
meister moves, as well as OC, preserves the associated broken surface diagram. It follows from Remark
2.15 that Tube is well defined on wSLn.

Now, given a symmetric broken surface diagram S , one can contract it on its core and obtain a singular
classical string link. Let D be a diagram for this singular string link. By turning the classical crossings of D
into virtual ones and its singular crossings into classical with signs corresponding to the initial local ordering
on S , we obtain a welded string link diagram which is sent to S by the above process. Note however that
some inside annuli of S may have to be turned around so that the sign rule given in Figure 12 can be reversed,
as illustrated in Figure 13. Surjectivity of the Tube map follows then from Lemma 2.13. �

Remark 3.15. The injectivity of the Tube map is still an open question; see [3, 4].4 However, Brendle and
Hatcher proved in [7] that it is an isomorphism when restricting to monotone objects on both sides. This can
be compared with the following proposition, although it is a not a consequence of Brendle–Hatcher’s result
since link-homotopy is inherently a non-monotone transformation.

Proposition 3.16. The map Tube : wSLv
n → rTh

n is a well defined group isomorphism.

4In the knot case, the Tube map is known to have nontrivial kernel; see for example [23].
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' −→

Figure 13. Turning inside annuli around

Proof. It is easily seen that a self-virtualization corresponds to a self-circle crossing change, see Figure 7. It
is a surjective group homomorphism by Proposition 3.14. Injectivity is immediate after Corollary 4.34 and
Proposition 4.30. �

4. Gauss diagrams

Our main tools for the study of ribbon tubes and welded knotted objects is the theory of Gauss diagrams
[15, 18, 38].

4.1. Definitions.

Definition 4.1. A Gauss diagram is a set of signed and oriented (thin) arrows between points of n ordered
and oriented vertical (thick) strands, up to isotopy of the underlying strands. Endpoints of arrows are called
ends and are divided in two parts, heads and tails, defined by the orientation of the arrow (which goes by
convention from the tail to the head).

This definition is illustrated on the left-hand side of Figure 20.
For all i ∈ ~1, n�, we will denote the ith strand by Ii. An arrow is said to be connected to a strand if it has

an end on this strand. An arrow having both ends on the same strand is called a self-arrow.
There is a natural stacking product operation, denoted by •, for Gauss diagrams defined by gluing the top

endpoints of the strands of the first summand to the bottom endpoints of the strands of the second.

Definition 4.2. A Gauss diagram is said to be horizontal if all of its arrows are horizontal.

Remark 4.3. An alternative definition for a Gauss diagram G being horizontal would be to ask for a global
order on the set of its arrows such that if two arrows a1 and a2 with a1 ≤ a2 have ends e1 and e2 on a
same strand, then e1 is below e2 on this strand. Note in particular that it forbids self-arrows. In the proof of
Theorem 4.12, we shall refer to this global order.

Definition 4.4. Two Gauss diagrams are equivalent if they are related by a finite sequence of the following
moves, called Reidemeister moves:

R1 : ↔ ε R2 : ↔
ε

−ε

R3 : ε2

ε3

ε1

↔

ε1

ε3

ε2

Here, all vertical lines are pieces of strands which may belong to the same strand or not, and can be oriented
upward or downward; each ε∗, for ∗ ∈ {∅, 1, 2, 3}, is either 1 or −1. Moreover, there is an additional condition
for applying move R3: it is required that τ1ε1 = τ2ε2 = τ3ε3, where τi = 1 if the ith strand (from left to right)
is oriented upwards, and −1 otherwise.

We denote by GDn the quotient of Gauss diagrams up to isotopy and Reidemeister moves, which is
compatible with the stacking product.
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C3
1 :

ε

η

−−−→
R2

η

−ε

ε

ε −−−→
R3

−ε

ε

ε

η

−−−→
TC

−ε

ε

η

ε

C3
2 :

ε

η

−−−→
TC

η

ε

C3
3 :

ε

η

−−−→
C3

1

−η

ε

η

η

−−−→
C3

1

−ε

ε

−η

η

η

ε

Figure 14. The C3 moves on welded Gauss diagrams

For the study of ribbon tubes and welded string links, we consider the following quotient of Gauss dia-
grams.

Definition 4.5. We define the Tail Commute (TC) move as

TC :
ε

η
←→

η

ε
,

where ε, η ∈ {±1}. We denote by wGDn := GDn
/
TC the quotient of GDn by relation TC, which is compatible

with the stacking product. We call its elements welded Gauss diagrams. We also denote by wGPn ⊂ wGDn

the subset of elements which have a horizontal representative.

Remark 4.6. In the welded case, that is when quotiented by TC, the condition τ1ε1 = τ2ε2 = τ3ε3 of move
R3 can be simplified to ε2ε3 = τ2τ3. In other words, the signs of the two arrows which have their tails on
the same strand should agree if and only if the two others strands have parallel orientations.

The following can be easily checked.

Proposition 4.7. The set wGPn is a group for the stacking product.

Definition 4.8. Two Gauss diagrams are related by a self-arrow move, denoted by SA, if one can be obtained
from the other by removing a self-arrow.
We denote by wGDa

n the quotient of wGDn by SA, which is compatible with the stacking product. We also
denote by wGPa

n ⊂ wGDa
n the subset of elements which has a horizontal representative.

Two elements of wGDn are said to be a–equivalent if they are sent to the same element in wGDa
n.

4.2. Commutation of arrows. In this section, we address the notion of commutation of arrows, which
means swapping the relative position of two adjacent arrow ends on a strand. The Tail Commute move is a
special case of such a commutation, when both ends are tails.

More generally, and even in the non welded case, commutations of arrows can always be performed at the
cost of some additional surrounding arrows. In the welded case, these additional arrows can be conveniently
positioned, as shown below:

Definition 4.9. The C3 moves are local moves on Gauss diagrams defined in three versions, shown in Figure
14. There, ε and η are either 1 or −1, all strands are assumed to be simultaneously upward or downward
oriented, and non oriented arrows can have either orientation.

The C3 moves can be seen as pushing one arrow accross another, at the cost of several additional arrows
located below the pushed one. Note that C3 moves are supported by three pieces of strands, which may or
may not belong to the same components.
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−

+

−−−→
SA

−

+ −
−−−→

R3

+

−

− −−−→
SA

+

−

Figure 15. Example of a C2 move

By iterated C3 moves, one has the following general commutation rule:

Corollary 4.10. In wGDn, commuting an arrow with a bunch of adjacent arrows all connected to a far away
strand is achieved at the cost of additional arrows connected to the far away strand, as shown below:

ε

−→

ε

where denotes a bunch of arrows (not necessarily with the same number of arrows), ε is either 1 or

−1, and all orientations are arbitrary.

Proof. If the two strands are simultaneously upward or downward, it is a direct applications of the C3 moves
as described in Figure 14, where the far away strand is the rightmost one. If not, the final step of moves C3

1
and C3

3 have to be changed consequently. �

When working up to SA, and dealing with arrows whose ends are on the same two strands, a genuine
commutation result holds (without additional arrows), even in the non welded case. We shall refer to such a
commutation as a C2 move.

Proposition 4.11. Up to self-arrow moves, two arrows with adjacent ends can commute whenever the other
two ends are on the same strand.

Proof. The strategy is to add a self arrow on the strand which does not support the adjacent ends, so that
a R3 move involving the three arrows can be performed, and finally to remove the self-arrow. See Figure
15 for an example. Nonetheless, the self-arrow has to be choosen so that the R3 move is valid. This means
that the global position of the three arrows should be as in the definition of an R3 move (Def. 4.4), and the
condition τ1ε1 = τ2ε2 = τ3ε3 should hold. However, we have a complete freedom in choosing the self–
arrow: orientation, sign, and relative position to the adjacent arrow ends. The choice of orientation ensures
that the arrows are in position of a R3 move, while the sign and positions give independant control on τ1ε1,
τ2ε2 and τ3ε3. �

4.3. Reduction of welded Gauss diagrams to horizontal Gauss diagrams. The main result of this section
is the following

Theorem 4.12. Every welded Gauss diagram is a–equivalent to a horizontal Gauss diagram. Equivalently,
the natural inclusion wGPa

n ↪→ wGDa
n is onto, that is wGPa

n � wGDa
n.

Proof. We prove the statement by induction on n. For n = 1 the statement is trivial since wGDa
1 is reduced

to one element.
Now, we assume that the result is true for n ∈ N and we consider G ∈ wGDn+1. We choose a strand I

of G and we call I–arrow the arrows connected to I. We denote by G Î the Gauss diagram obtained from G
by removing the strand I, that is, by removing all I–arrows and forgetting I. The welded Gauss diagram G Î
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is then a diagram on n strands, and by the induction hypothesis, there is a finite sequence S of moves R1,
R2, R3, TC and SA which transforms G Î into a horizontal Gauss diagram B. Now, this sequence cannot be
directly performed on T , since most moves require that some ends of arrows are adjacent on strands, and
I–arrows may interfere in that. Nevertheless, Figure 16 illustrates how to use Corollary 4.10 to push away

such I–arrows at the cost of additional I–arrows, and perform the desired moves. There, boxes I stands

for bunches of I–arrows.

R1 : Iε −−−→
SA

I R2 :
−ε

II

ε
II

−−−−−−−−→
C3’s

ε

−ε

I

II

I

−−−→
R2

I

I

I

I

R3 :
I

ε1

I

ε2

I

ε3

I I

−−−−−−−−→
C3’s

ε1
I

ε2

I I

ε3

II

I

−−−−→
C3’s

I

ε3

I I

I I
ε1

ε2

I

−−−→
R3

I I

I I

ε2

ε1

ε3

I I

TC : I

ε

η
I

−−−−→
C3’s

η

ε

II

−−−→
TC

II

ε

η .

Figure 16. Performing Reidemeister and TC moves obstructed by I-arrows

It follows that the whole sequence S can be performed on T , giving a representative of T obtained by
adding I–arrows to B.

Now, since B is horizontal, there is a natural total order, from bottom to top, on its arrows. The arrows of
B can then be pushed up above the I–arrows, successively in decreasing order, using moves C3 (for I being
the strand on the right). This leads to the following decomposition:

GI

I

B

where B is horizontal and GI contains only I–arrows. Now, for any strand J , I restricted to GI , all
arrows connected to J are also connected to I, so that one can use moves C2 (for I being the strand on the
right), to rearrange the ends on strand J so that their order corresponds to the order induced by I. Applying
this operation for all strands J , I, we eventually obtain a horizontal Gauss diagram G̃I , such that G is
a–equivalent to the product of G̃I with B, which is still horizontal. This concludes the proof. �

Remark 4.13. As noted above, C2 moves still hold in GDa
n. This implies that any element of GDa

2 is a–
equivalent to a horizontal Gauss diagram. This is not likely to hold for GDa

n with n ≥ 3.

Corollary 4.14. The set wGDa
n is a group for the stacking product.
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Now we establish a second normalized form for welded Gauss diagrams up to a–equivalence.

Definition 4.15. A Gauss diagram is said to be ascending if all tails belong to the lowest halves of the
strands, whereas all heads are on the highest halves, that is, if any tail is below any head.

Lemma 4.16. Every welded Gauss diagram is a-equivalent to an ascending Gauss diagram.

Proof. Consider a Gauss diagram and choose an arbitrary order for its strands. Then, using move C3
1 repeat-

edly, each strand can be successively sorted, in the sense that all tails can be pushed below all heads. When
performing such C3

1 moves, the tails (resp. heads) of added arrows are in the neighborhood of a tail (resp.
head) of a pre-existent arrow, so none of the performed C3

1 moves will unsort the already sorted strands. �

4.4. Classification of welded Gauss diagram up to a-equivalence. In this section, we prove the following
theorem.

Theorem 4.17. There is a group isomorphism wGDa
n � AutC(RFn).

Recall that AutC(RFn) is the group of conjugating automorphisms defined in Section 1. The isomorphism
between wGDa

n and AutC(RFn) is given explicitely. In Section 4.4.1 we establish the existence of a group
homomorphism ϕG→A : wGDa

n −→ AutC(RFn), and in Section 4.4.2 we construct an inverse ϕA→G for ϕG→A.

4.4.1. Definition of ϕG→A. To construct the map ϕG→A, we need some notation.

Definition 4.18. Let G be a Gauss diagram. A tail interval is a pair (h1, h2) such that, either
• h1 and h2 are heads on a same strand, with h1 lower than h2, and there is no other head between

them;
• h1 is a head and h2 is the top endpoint of the strand containing h1, and there is no other head on this

strand above h1;
• h2 is a head and h1 is the bottom endpoint of the strand containing h2, and there is no other head on

this strand below h2;
• h1 and h2 are respectively the bottom and top endpoints of a strand that doesn’t contain any head.

Graphically, tail intervals are portions of strand comprised between two successive heads and/or strand
endpoints. A tail interval may contain some tails, but no head.
We denote by TG the set of tail intervals of G.

Notation 4.19. Let G be a Gauss diagram.
For every head h, we denote by T +

h (resp. T−h ) the unique tail interval of the form (h, . ) (resp. ( . , h)) and
by T 0

h the unique tail interval that contains the tail which is connected to h by an arrow. Finally, for every
i ∈ ~1, n�, we denote by T +

i and T−i the unique tail intervals containing respectively the top and bottom
endpoint of the ith strand (note that T +

i = T−i if the ith strand contains no arrow head).

Lemma 4.20. For any Gauss diagram G, there is a unique coloring map ξG : TG −→ RFn such that
(1) for every k ∈ ~1, n�, ξG(T−k ) = xk;
(2) for every head h, ξG(T +

h ) = ξG(T−h )ξG(T 0
h )εh , where εh is the sign of the arrow that contains h.

Moreover, for every i ∈ ~1, n�, ξG(T +
i ) only depends on the a–equivalence class of G.

We can note that condition (2), together with condition (1), imply that, for each i ∈ ~1, n�, every tail
interval which belongs to Ii is necessarily mapped to a conjugate of xi.

Proof. First, we deal with the case of horizontal Gauss diagrams. If G contains a single ε–labelled non
self-arrow only, then the lemma is clear. Indeed, the only possible coloring sends, as pictured below, T−1 to
x1, T +

1 to xxε2
1 and all other T +

k = T−k to xk.

x2

ε

x
xε
2

1

x3x1
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By induction on the number of arrows the result follows then whenever G is horizontal.
Now, each Reidemeister, TC or SA move between two Gauss diagrams G1 and G2 induces a one-to-one

correspondence between the coloring maps ξG1 and ξG2 . These correspondences are shown in Figure 17. As

η

b

ε

c

ca
η

ba
ε

a

↔

η

b c

ca
η

ba
ε

ε

a

TC

a

b

↔

ba
ε
= b

a

ε

b

ba

↔

ba
εa−ε

= b

a

−ε

ε
ba

ε

b

SA and R1 R2

c

ε

a b

cb
ηaεba

ε

cb
η

ε

η
↔

c

η

ε

ε

a b

ca
ε

ca
ε(bη)a

ε

= cb
ηaεba

ε

−ε

a b

ba
ε

ca
−ε

ε

η

c

ca
−εbη

↔

η

a b

ba
ε

c(b
η)a

ε
a−ε

= ca
−εbη

−ε

ε

c

c(b
η)a

ε

R3, case 1 R3, case 2

Figure 17. One-to-one correspondence between the coloring maps ξ

usual, for every picture, there is a non represented part which is identical on both side of each move. Note
that this is consistent since the ends of the represented tail intervals are pairwise coherently labelled. In
particular, in the case of moves SA and R1, the equality ba = b holds in RFn since a and b are both conjugate
of a same generator xi for some i ∈ ~1, n�. By Theorem 4.12, this implies that any Gauss diagram has a
unique coloring ξ with the desired property. Moreover, Figure 17 also shows that tail intervals which are not
of the form T +

i nor T−i , are possibly modified by Reidemeister, TC and SA moves. As a matter of fact, ξ(T +
i )

is kept unchanged for every i ∈ ~1, n�, and depends on the a–equivalency class of G only. �

Remark 4.21. The above proof of Lemma 4.20 can be easily adapted to show that the number of Fn–coloring
map ξG : TG → Fn for a given Gauss diagram G is a well defined invariant on GDn. Moreover, when such
an Fn–coloring map is unique, for instance when G ∈ GPn, then the value

(
ξG(Ti)

)
i∈~1,n� ∈ Fn

n is also a well
defined invariant.

Definition 4.22. For every G ∈ wGDa
n, we define ϕG→A(G) ∈ AutC(RFn) as the automorphism of RFn which

sends, for every i ∈ ~1, n�, the generator xi to ξG(T +
i ).

It is easily checked that ϕG→A : wGDa
n → AutC(RFn) is a group homomorphism so it defines an action of

wGDa
n on RFn.

Remark 4.23. If G is ascending, as defined in Definition 4.15, then, for any i ∈ ~1, n�, the element gi ∈ RFn

by which ϕG→A(G) conjugates xi can be read directly on G as xε1
i1 · · · x

εs
is

where T−i contains exactly the tails
t1, · · · , ts in this order and for each k ∈ ~1, s�, tk is connected by a εk–signed arrow to a head on Iik . For
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example,

+

−
−

+
� ϕG→A //





x1 7→ xx2 x−1
3

1
x2 7→ xx1

2

x3 7→ xx−1
2

3

.

Remark 4.24. Accordind to Remark 4.21, ϕG→A can be refined into an action of GPn on Fn.

4.4.2. Definition of ϕA→G. We will now define an inverse for ϕG→A. Let us first define, for every i ∈ ~1, n�,
the map

ρi : AutC(RFn) −→ RF(i)
n−1 = R〈x1, · · · , x̂i, · · · , xn〉

as the unique function such that, for every ϕ ∈ AutC(RFn), we have ϕ(xi) = xρk(ϕ)
i .

Lemma 4.25. For all i ∈ ~1, n�, the map ρi is well defined.

Proof. By definition of AutC(RFn), there exists some g ∈ RFn such that ϕ(xi) = xg
i . Since for every g1, g2 ∈

RFn and every ε ∈ {±1}, we have the equality

xg1 xεi g2
i = g−1

2 x−εi g−1
1 xig1xεi g2 = g−1

2 g−1
1 xig1x−εi xεi g2 = g−1

2 g−1
1 xig1g2 = xg1g2

i

in RFn, we may assume that g is represented by a word which does not contain xi, i.e. that g ∈ RF(i)
n−1. Now,

it remains to prove that this g is uniquely defined in RF(i)
n−1. Suppose that there exists g1, g2 ∈ RF(i)

n−1 such
that xg1

i = xg2
i . Then xi commutes with g1g−1

2 , that is, [xi, g1g−1
2 ] = 1. Applying the Magnus expansion

E, defined in Section 5.1, to the latter equality gives that Xi.G − G.Xi = 0, where E(xi) = 1 + Xi and
E(g1g−1

2 ) = 1 + G. But since g1g−1
2 ∈ RF(i)

n−1, the power series G does not contain the variable Xi, which
implies that Xi.G = G.Xi = 0. So G = 0, which by injectivity of the Magnus expansion (see [44]) implies
g1 = g2. �

Now, we define a map

η :
n∏

i=1

RF(i)
n−1 −→ wGDa

n

as follows. Let (g1, · · · , gn) ∈
∏n

i=1 RF(i)
n−1. For each i ∈ ~1, n�, choose a word gi = xε

i
1

ji1
· · · x

εi
si

jisi
representing

gi. Then we define η(g1, · · · , gn) as the image in wGDa
n of the Gauss diagram obtained from the trivial one by

adding successively, according to the lexicographical order on
{

(i, k)
∣∣i ∈ ~1, n�, k ∈ ~1, si�

}
, an εi

k–signed
arrow with head at the very top of Ii and tail at the very bottom of I jik

. Note that this actually defines an
ascending Gauss diagram. See Figure 19 for an exemple.

Lemma 4.26. The map η is well defined.

Proof. The fact that η does not depend on the order of the strands is guaranteed by relation TC, so we only
have to show that η(g1, · · · , gn) does not depend on the words representing the n variables. Fix i ∈ ~1, n�.
Any two words representing gi differ by a finite number of the following moves

(1) (1↔ x−εj xεj), for some j ∈ ~1, n� and some ε ∈ {±1},
(2) (x jx

g
j ↔ xg

j x j), for some j ∈ ~1, n� and some word g := xε1
i1 · · · x

εs
is
∈ RF(i)

n−1,

so we only need to check invariance of η under these two types of moves. Invariance under move (1) follows

easily from move R2 on Gauss diagrams. Now, let us consider move (2). Using the identity x
g1 x±1

j g2

j = xg1g2
j ,

we can assume that the word g involved in the move is in RF(i, j)
n−2 := R〈x1, · · · , x̂i, x̂ j, · · · , xn〉. We need to
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prove that the following equality holds in wGDa
n

(2)

Ij

+

B
ε1
i1

• · · · • B
εs
is

B
−εs
is

• · · · • B
−ε1
i1

+

Ii

=

Ii

+

B
ε1
i1

• · · · • B
εs
is

B
−εs
is

• · · · • B
−ε1
i1

+

Ij

,

where Bεk stands for the Gauss diagram with only one ε–labeled arrow whose tail is on Ik and head on Ii.
Note that, in particular, all arrows in the boxes have their head on strand Ii. The proof is done by proving
each side to be equal to a third Gauss diagram. This is shown in two main steps, and the reader is encouraged
to consult the example given in Figure 18 while reading the following proof.

First, we pull the lowest (+–signed) arrow in the left-hand side Gauss diagram in (2) across the lowest
block (i.e. across B−εs

is
• · · · • B−ε1

i1 ) by a sequence of moves TC and C3
1 (with, in Figure 14, I j being the

rightmost strand, Ii the middle one, and with all strands oriented downwards), and then use move C2
2 to

commute the heads of the two pictured +–signed arrows. This produces the following equality in wGDa
n

+

+

B
ε1
i1

• · · · • B
εs
is

B
−εs
is

• · · · • B
−ε1
i1

=

B̃−εs
is • · · · • B̃−ε1

i1

+

+

Bε1
i1 • · · · • Bεs

is

B−εs
is • · · · • B−ε1

i1

B̃ε1
i1 • · · · • B̃εs

is

=

+

+

Bε1
i1 • · · · • Bεs

is

B−εs
is • · · · • B−ε1

i1

B̃ε1
i1 • · · · • B̃εs

is

B̃−εs
is • · · · • B̃−ε1

i1

,

where B̃εk is obtained from Bεk by moving the head of each arrow lying on Ii to the strand I j (preserving the
horizontality and height of the arrow).

Next, we consider the right-hand side Gauss diagram in (2). Using TC moves, we pull the tail of the
highest (+–signed) arrow just below the tail of the middle (+–signed) arrow. Then, we pull its head across
the highest block, using moves C3

1 (with, in Figure 14, I j the rightmost strand, Ii the middle one, but with all
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strands oriented upwards). This leads to

+

+

B
ε1
i1

• · · · • B
εs
is

B
−εs
is

• · · · • B
−ε1
i1

= +

B
−εs
is

• · · · • B
−ε1
i1

B
ε1
i1

• · · · • B
εs
is

+

=

+

+

Bε1
i1 • · · · • Bεs

is

B−εs
is • · · · • B−ε1

i1

B̃ε1
i1 • · · · • B̃εs

is

B̃−εs
is • · · · • B̃−ε1

i1

,

and proves that (2) holds in wGDa
n. �

The example in Figure 18 illustrates both steps of the above proof.

i

−
+

kj

+

−
+

+

+

−
C3

3
−−−→

+

−
−

+

+

−
−

+

+

+

C3
3
−−−→ +

−
−

+

−
−

+

−

+

+ +

+
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−−−→ −

+

−

+

+

+

−

+

−
−

+

+

C3
3

−−−→
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+

+

−
+

+

−

+

−

+

−

−
−

+

+

−−
−→C2

2

+

+

+

−

−

+

+

−
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−−−→

+

−
+

−
−

+

+

+

C3
3

−−−→
TC

−

−

−
+

+

+

−

+

+

+

C3
3

−−−→
TC +

−

−

+

−
+

+

+

−

−
+

+ C3
3

−−−→
TC

−
+

+

−

+

−

−

+

−
−

+

+

+

+

Figure 18. Illustration of the two-step procedure in the proof of equality (2)

Definition 4.27. The map ϕA→G : AutC(RFn) −→ wGDa
n is defined as the composition η ◦

(∏n
i=1 ρi

)
.

The example for ϕA→G given in Figure 19 is to be compared with Remark 4.23.

Lemma 4.28. The map ϕA→G is an inverse for ϕG→A.

Proof. The relation ϕG→A ◦ ϕA→G = IdAutC(RFn) holds by construction. The fact that ϕA→G ◦ ϕG→A = IdwGDa
n

is clear for ascending Gauss diagrams, which is enough, by Lemma 4.16. �
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(x2x3, x−1
3 , x3, x−1

3 x1)





x1 7→ xx2 x3
1

x2 7→ xx−1
3

2

x3 7→ x3

x4 7→ xx−1
3 x1

4

�
ϕA→G

//

�
∏

ρi //

(x2x3, x−1
3 , x3, x−1

3 x1)

� η //
+

−+

−+

Figure 19. An example for ϕA→G

We conclude with the following corollary which, curiously enough, is not easily checked directly.

Corollary 4.29. The map ϕA→G is a group homomorphism.

4.5. Relation with welded string link and ribbon tubes. As the notation suggests, welded Gauss diagrams
are merely combinatorial tools for describing and studying welded string links.

Indeed, to a string link D, one can associate a Gauss diagram G by considering the strands of G as
parametrization intervals for the strands of D and add arrows between the preimages of each classical
crossing of D, oriented from the overpassing strand to the underpassing one, and signed by the sign of
the corresponding crossing. Then Reidemeister moves on D correspond to the eponymous moves on G, OC
corresponds to TC and a self-virtualization corresponds to the addition or removal of a self-arrow.

Conversely, to a Gauss diagram G, one can associate a string link by drawing one crossing ca for each
arrow a labelled by the sign of a, and then, for each piece of strand of G comprised between two ends e1
and e2 —with e1 lower than e2 and a1 and a2 the arrows that respectively contain e1 and e2— connecting
the outgoing endpoint of the overpassing (resp. underpassing) strand of ca1 if e1 is a tail (resp. a head), to
the ingoing endpoint of the overpassing (resp. underpassing) strand of ca2 if e2 is a tail (resp. a head) —this
can always be done at the cost of adding some virtual crossings— and finally closing similarly the string
link to its bottom and top endpoints according to the lowest and highest portions of strands of G. This is
well defined up to virtual moves and the correspondence between moves on diagrams and moves on Gauss
diagrams mentioned above also holds.

+

+

−

−

+

o /

Figure 20. Correspondence between string link diagrams and Gauss diagrams

Moreover, it is easily seen that horizontality for Gauss diagrams corresponds to monotony for string links.
As a consequence we have the following statement, which is considered as folklore in the literature:

Proposition 4.30. wSLn � wGDn, wPn � wGPn, wSLv
n � wGDa

n and wPv
n � wGPa

n as monoids. Moreover,
in these isomorphisms, there is a one-to-one correspondence between

• classical crossings and arrows;
• overstrands and tail intervals.

Note that these correspondences already hold in the virtual setting.
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Using these correspondences, constructions and results on welded string link can be transferred to Gauss
diagrams and vice versa. In particular, we obtain Theorems 3.10 and 3.11 as direct corollaries of Theorems
4.12 and 4.17, respectively.

Furthermore, Satoh’s Tube map can be defined on wGDn. By abuse of notation, we will still denote it by
Tube. It is a consequence of Proposition 3.13 that:

Proposition 4.31. For every Gauss diagram,

π1
(
Tube(G)

)
�
〈
TG
∣∣ T +

h = (T−h )(T 0
h )εh for each arrow head h of G

〉
,

where εh is the sign of the arrow that contains the head h. Moreover, through this isomorphism and for every
i ∈ ~1, n�, the generator T−i (resp. T +

i ) corresponds to the loop that positively enlaces the ith bottom (resp.
top) meridian of Tube(G).

Notation 4.32. For every Gauss diagram G, we denote by WG : TG → Rπ1
(
Tube(G)

)
the map induced by

the isomorphism mentionned in the previous proposition.

Then, with the notation of Section 2.3.2, we have

Lemma 4.33. ϕG→A = ϕ ◦ Tube.

Proof. Let G be a Gauss diagram. We consider ι0 and ι1 the inclusion maps associated to Tube(G). It follows
from the Wirtinger presentation that the map ι∗0

−1 ◦WG satisfies conditions (1) and (2) of Lemma 4.20. By
uniqueness, it follows that ι∗0

−1 ◦WG = ξG. Moreover, by Proposition 4.31 and the definition of ι1, we also
know that ι∗1(xi) = WG(T +

i ). So, finally, we get

ϕ
(
Tube(G)

)
(xi) =

(
ι∗0
−1
◦ ι∗1
)
(xi) = ι∗0

−1(WG(T +
i )
)

= ξG(T +
i ).

�

But since ϕG→A is an isomorphism, we obtain:

Corollary 4.34. The map Tube : wGDa
n → rTh

n is injective.

Since Tube was already known to be surjective, we obtain that the map ϕ : rTh
n → AutC(RFn) is a group

isomorphism, as stated in Theorem 2.33.

5. VirtualMilnor invariants

John Milnor defined in the fifties a family of link invariants, known today as Milnor’s µ-invariants [35,
36]. Given an n–component link L in the 3–sphere, Milnor invariants µI(L) of L are defined for any finite
sequence I of (possibly repeating) indices in ~1, n�. Roughly speaking, Milnor’s µ–invariants measure the
longitudes in the lower central series of the fundamental group of the link complement. These invariants,
however, are in general not well-defined integers, and their definition contains a rather intricate self-recurrent
indeterminacy ∆. In [20], Habegger and Lin showed that the indeterminacy in Milnor invariants of a link
is equivalent to the indeterminacy in representing this link as the closure of a string link, and that Milnor
invariants are actually well defined invariants of string links; the latter integer–valued string link invariants
are usually denoted µI .

Several authors have given tentative extensions of Milnor invariants to virtual knot theory [12, 31, 30].
They are all based on various combinatorial approaches of Milnor invariants, and are only partial extensions;
in particular, they are limited to the case of link-homotopy invariants, that is, to the case of Milnor invariants
indexed by sequences with no repetitions. In this section, we give a full extension of Milnor invariants to the
virtual setting, in what seems to be the most natural way. Habegger and Lin’s observation mentioned above
suggests that it is most natural to consider the string link case. Moreover, we have seen in the introduction
that we are actually seeking for an invariant of welded string links, rather than virtual, since Milnor invariant
are extracted from the fundamental group, which is a welded invariant. Finally, our construction is purely
topological, as we shall see below, and well-behaved with respect to the Tube map, so that it naturally
coincides with Milnor’s original invariants when restricted to classical string links (see Theorem 5.4).
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5.1. Milnor invariants for ribbon tubes. In this subsection, we develop a higher-dimensional analogue of
Milnor invariants for ribbon tubes. This follows closely, and generalizes the construction given in Section
2.2.1.3 in the case of the reduced free group. As a consequence, we freely borrow all notation from there.

Let T be a ribbon tube with tube components t
i∈~1,n�

Ai. and let W = B4 \
∗

N(T ) be the complement of an

open tubular neighborhood of T in B4. By Proposition 2.8, the inclusion ιε : ∂εW ↪→ W (ε ∈ {0, 1}) induces
isomorphisms both at the level of the first and second homology groups, so by Stallings theorem the maps

(ιε)k : π1(∂εW)
/
Γkπ1(∂εW)

'
−−−−−→ π1(T )

/
Γkπ1(T )

are isomorphisms for every k ∈ N∗.
Recall from Remark 2.19 that the preferred ith longitude λi of T is longitude of Ai having linking number

zero with Ai. For any k ∈ N and i ∈ ~1, n�, we define λk
i := (ι0)−1

k (λi) ∈ Fn
/
ΓkFn where λi is the ith preferred

longitude.
Denote byZ〈〈X1, · · · , Xn〉〉 the ring of formal power series in non-commutative variables X1, · · · , Xn. The

Magnus expansion E : Fn → Z〈〈X1, · · · , Xn〉〉 is the injective group homomorphism which maps xi to 1 + Xi

and x−1
i to

∑
k∈N

(−1)kXk
i , for each i ∈ ~1, n�.

Proposition 5.1. For any m ∈ N∗, any (i1, · · · , im) ∈ ~1, n�m, any j ∈ ~1, n� and any integer k > m, the
coefficient µ(4)

i1,··· ,im j(L) of Xi1 · · · Xim in the Magnus expansion E(λk
j) is a well-defined invariant of T .

Definition 5.2. The coefficient µ(4)
i1...ik of Xi1 · · · Xim in E(λk

j) is called a Milnor µ(4)–invariant of length m + 1.

Here, the (4)-exponent refers to the 4–dimensional nature of ribbon tubes.
For each non negative integer k, we define rTn(k) to be the submonoid of rTn consisting of elements with

vanishing Milnor µ(4)–invariants of length lower than k. We thus have a descending filtration of monoids
rTn = rTn(1) ⊃ rTn(2) ⊃ · · · ⊃ rTn(k) ⊃ · · · , called the Milnor filtration.

Now, we generalize the construction given in Section 2.3.2. Indeed, for each non negative integer, a
ribbon tube T induces an automorphism (ι0)−1

k ◦ (ι1)k of Fn
/
ΓkFn. Actually, this automorphism maps xi, for

each i ∈ ~1, n�, to its conjugate by λk
i , so that we have defined a monoid homomorphism

Ak : rTn → AutC
(

Fn
/
ΓkFn

)
.

One can check that T is in rTn(k) if and only if λk
i is trivial modulo ΓkFn for all i ∈ ~1, n�. So for all non

negative integer k, we have rTn(k) = Ker(Ak), and we can consider the map

µ(4)
k+1 : rTn(k)→ Fn

/
Γ2Fn ⊗

ΓkFn
/
Γk+1Fn.

which maps T to the sum

µ(4)
k+1(T ) :=

∑

i∈~1,n�

xi ⊗ λ
k+1
i ,

We call it the universal length k + 1 Milnor invariant. This map µ(4)
k+1 is strictly equivalent to the collection

of all Milnor µ(4)–invariants of length k + 1, via the formula µ(4)
k+1(L) :=

∑
i∈~1,n�

xi ⊗Ek(λk+1
i ), where Ek denotes

the composition of E with the projection onto the degree k part, that is

Ek(λk+1
j ) :=

∑

i1,··· ,ik∈~1,n�k

µ(4)
i1,··· ,ik jXi1 · · · Xik .

Note that Ek(λk+1
j ) lives in the isomorphic image of ΓkFn

/
Γk+1Fn in Z〈〈X1, · · · , Xn〉〉.

5.2. Milnor invariants for welded string links. The above 4-dimensional version µ(4) of Milnor invariants
provides, through the Tube map, a natural and general extension µw of Milnor invariants to virtual/welded
string links.

Definition 5.3. For any sequence I of (possibly repeating) indices in ~1, n�, Milnor invariant µw
I of n-

component welded string links is defined by

µw
I := µ(4)

I ◦ Tube.
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The construction of Milnor invariants for ribbon tubes given in subsection 5.1 is completely parallel to
the definition of Milnor invariants of classical string links (as given e.g. in [19, 21]). Moreover, the Tube
map is well-behaved with respect to the fundamental group of the complement; not only does it induce
an isomorphism of π1’s, but it also maps meridians to meridians and (preferred) longitudes to (preferred)
longitudes, so that the Wirtinger presentations are in one–to–one correspondence (see Proposition 3.13 and
the discussion preceding it). As a consequence, we have the following.

Theorem 5.4. For any sequence I of (possibly repeating) indices in ~1, n�, the restriction of µw
I to classical

string links coincides with Milnor invariant :

µw
I (L) = µI(L) , for any classical string link L.

5.3. Comparison with previous works. Let us now discuss previously existing (partial) virtual extensions
of Milnor invariants.

The first virtual extension of Milnor invariants is due to Dye and Kauffman [12]. There, it is already noted
that these are actually welded invariants. The authors, however, restricted themselves to link–homotopy
invariants, and focussed on the link case. This means in particular that the Dye-Kauffman extensions are
defined modulo a certain indeterminacy ∆. Their construction follows very closely Milnor’s original work
[36], using the virtual knot group, and actually only slightly deviates from [36] in the definition of the
indeterminacy ∆: since the authors only seek a link–homotopy invariant, a simpler definition can indeed be
used. However, the Dye-Kauffman extension does not always coincide with Milnor invariants for classical
links, precisely because of this different choice of indeterminacy. Consider for example a 3-component link
L obtained from the Borromean rings by inserting a positive clasp between the first and second components;
according to Milnor’s definition we have ∆(123) = 1, but in Dye–Kauffman’s definition we have ∆(123) = 0,
so that the invariants µ123 of the link L do not agree in both definitions.

Recently, Kotorii gave in [30] another virtual extension of Milnor invariants, using Turaev’s theory of
nanowords [43] to describe and study virtual links. This extension is thus purely combinatorial and, again,
addresses the link case and is only valid for link–homotopy invariants. Although it indeed coincides with
Milnor’s original invariants when restricted to classical links, it seems quite challenging to us to generalize
directly the Kotorii extension to all Milnor invariants. Indeed, the fact that Milnor invariants are indexed by
sequences with no repetitions is used to ensure invariance under Reidemeister 3 move (see Propositions 6.4
[30]).

The third virtual extension of Milnor invariants is due to Kravchenko and Polyak [31]. The authors actu-
ally provides Gauss diagram formula for µ-invariants, and their extension is therefore closest to the extension
given above. The result of [31] holds for string links (i.e. provides integer–valued virtual extensions), but
as the preceding ones it is only valid for Milnor link–homotopy invariants. Indeed, identifying the Gauss
diagram invariants defined in [31] with Milnor invariants relies on Polyak’s skein formula [37], which is
only valid for sequences without repetitions.
It would be interesting to generalize the Kravchenko–Polyak extension to all sequences (or at least, to iden-
tify the resulting Gauss diagram formulas with Milnor invariants). This seem to be a non-obvious problem,
in particular because the string link analogue of [36, Thm. 7] (which, roughly speaking, shows how Milnor’s
link–homotopy invariants suffice to generate all µ–invariants of links via cabling) does not hold in full gen-
erality, as outlined in [50, Sec. 3]. Actually, we expect that one way to address this question would be by
identifying the extension of Kravchenko–Polyak’s Gauss diagram formulas with the ‘topologically–defined’
extension µw of the present paper; this identification is at least clear in the case of non-repeated indices.
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[1] E. Artin. Zur Isotopie zweidimensionaler Flächen im R4. Abh. Math. Semin. Univ. Hamb., 4:174–177, 1925.
[2] B. Audoux. On the welded Tube map. preprint, 2014.
[3] D. Bar-Natan and Z. Dancso. Finite type invariants of w-knotted objects I: w-knots and the Alexander polynomial. arXiv e-

prints:1405.1956, 2014.
[4] D. Bar-Natan and Z. Dancso. Finite type invariants of w-knotted objects II: Tangles, foams and the Kashiwara-Vergne problem.

arXiv e-prints:1405.1955, 2014.
[5] V. G. Bardakov. The virtual and universal braids. Fund. Math., 184:1–18, 2004.
[6] A. Bartels and P. Teichner. All two dimensions links are null homotopic. Geom. Topol., 3:235–252, 1999.
[7] T. E. Brendle and A. Hatcher. Configuration spaces of rings and wickets. Comment. Math. Helv., 88(1):131–162, 2013.



32 B. AUDOUX, P. BELLINGERI, J.B. MEILHAN, AND E. WAGNER

[8] G. Burde and H. Zieschang. Knots, volume 5 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, second
edition, 2003.

[9] J. Carter, S. Kamada, and M. Saito. Stable equivalence of knots on surfaces and virtual knot cobordisms. J. Knot Theory Ramifi-
cations, 11(3):311–322, 2002.

[10] J. S. Carter and M. Saito. Knotted surfaces and their diagrams, volume 55 of Mathematical Surveys and Monographs. American
Mathematical Society, Providence, RI, 1998.

[11] D. T. Cochran. Link concordance invariants and homotopy theory. Invent. math., 90:635–645, 1987.
[12] H. A. Dye and L. H. Kauffman. Virtual homotopy. J. Knot Theory Ramifications, 19(7):935–960, 2010.
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Université Grenoble Alpes, IF, 38000 Grenoble, France
E-mail address: jean-baptiste.meilhan@ujf-grenoble.fr

IMB UMR5584, CNRS, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
E-mail address: emmanuel.wagner@u-bourgogne.fr


	Introduction
	1. General settings and notation
	2. Ribbon tubes
	2.1. Ribbon tubes and their homology
	2.2. Broken surface diagrams
	2.3. Classification of ribbon tubes up to link-homotopy.
	2.4. Classification of ribbon torus-links up to link-homotopy

	3. Welded string links
	3.1. Definitions
	3.2. Fundamental group for welded string link
	3.3. Relations with ribbon tubes

	4. Gauss diagrams
	4.1. Definitions
	4.2. Commutation of arrows
	4.3. Reduction of welded Gauss diagrams to horizontal Gauss diagrams
	4.4. Classification of welded Gauss diagram up to a-equivalence.
	4.5. Relation with welded string link and ribbon tubes

	5. Virtual Milnor invariants
	5.1. Milnor invariants for ribbon tubes
	5.2. Milnor invariants for welded string links
	5.3. Comparison with previous works

	References

