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Abstract. When studying a mechanical structure, evaluation of its frequency response function (FRF) over a given fre-
quency range is one of the main interests. Computational cost aside, evaluating FRFs presents no methodological dif-
ficulty in the deterministic case. Doing this when the model includes some uncertain parameters may however be more
difficult as multimodality can arise around resonances. Indeed, even for a single degree of freedom system, it can be
shown that usual methods of the probabilistic frame such as generalized Polynomial Chaos may fail to properly describe
the probability density function of the response amplitude.
This study proposes another approach which involves a shiftin the usual quantities used to draw FRFs. Instead of com-
puting the stochastic response for a given excitation frequency, this work adopts a constant response phase point of view.
For each phase value of the oscillator response, the uncertainty over some parameters is propagated to the corresponding
uncertain amplitudes and excitation frequencies. This provides much smoother variations of the involved quantities which
are much easier to describe using a simple Polynomial Chaos approach. This also provides a mean to conduct a straight-
forward stochastic study of special points such as the maximum of amplitude (which matches a given phase) or the point
for which the response is in quadrature with the excitation.Both analytical and numerical results will be exposed for a
single degree of freedom oscillator whose squared eigen frequency (or stiffness) follows a uniform law.

Keywords. Structural dynamics, Frequency Response Function, Randomvibration, Uncertainty propagation, Polynomial
chaos

1 INTRODUCTION

When studying a mechanical structure, evaluation of its frequency response function (FRF) over a given frequency
range is one of the main interests. Computational cost aside, evaluating FRFs presents no methodological difficulty in
the deterministic case. Doing this when the model includes some uncertain parameters may however be more difficult
as multimodality can arise around resonances as demonstrated byPagnacco et al.(2009, 2011). Indeed, even for a single
degree of freedom system, it can be shown that usual methods of the probabilistic frame such as generalized Polynomial
Chaos (gPC, (Xiu and Karniadakis, 2002)) may fail to properly describe the probability density function (PDF) of the
response amplitude (Pagnacco et al., 2013). This latter work shows that more complex methods such as Multi-Element
generalized Polynomial Chaos can be used to address this problem increasing the computational cost in return.
This study proposes another approach to handle the frequency study of stochastic linear systems. It involves a shift in the
usual quantities used to draw FRFs: instead of computing thestochastic response for a given excitation frequency, this
work adopts a constant phase point of view. For each phase value of the oscillator response, the uncertainty over some
parameters is propagated to the corresponding uncertain amplitudes and excitation frequencies.

This work will be illustrated by a simple single degree of freedom (sdof) linear damped oscillator whose eigen fre-
quency follows a uniform law. This system is describe in Sec.2. Section3 illustrates multimodality of system response
amplitude when the response is sought for a given excitationfrequency but variable (free) response phase. Section4 then
develops the proposed approach: the response is sought for agiven phase but variable excitation frequency. Section4.1
provides the equations while Sec.4.2 illustrates the approach on the sdof system. Finally, Sec.5 proposes a comparison
of both methods efficiency – constant excitation frequency and constant phase – when combined to a Polynomial Chaos
Expansion.

2 STOCHASTIC SYSTEM STUDIED

Deterministic single degree of freedom oscillator Let us consider the sdof damped oscillator undergoing a harmonic
load depicted in Fig.1. Its movement is governed by Eq. (1).

q̈+2ηω0 q̇+ω2
0 q= f0cos(ωt) (1)

whereq is the mass displacement, ˙q andq̈ are its velocity and acceleration respectively,ω0 is its eigen circular frequency,
η is the damping ratio,f0 is the excitation amplitude andω is the excitation circular frequency.
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Figure 1: Simple damped oscillator
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Figure 2: Deterministic frequency response diagrams for the sdof damped oscillator

In the frequency domain, Eq. (1) becomes

(ω2
0 −ω2+2jηω0ω)Q= f0 (2)

where j2 =−1 andQ is the complex amplitude ofq:

q(t) = Re
(

Qejωt
)

(3)

Using this complex notations, one can easily write the complex solutionQ as a function of the mechanical parameters
ω0, η and f0 and the excitation frequencyω:

Q=
f0

ω2
0 −ω2+2jηω0ω

(4)

Finally, decomposing the complex quantityQ into its amplitudea and phaseϕ ,

Q= aejϕ (5)

one gets separate expressions for each component:

a=
f0

√

(ω2
0 −ω2)2+(2ηω0ω)2

(6)

ϕ = arctan

(

−
2ηω0ω
ω2

0 −ω2

)

(7)

Amplitude and phase response of the oscillator are displayed on Fig.2 for f0 = 1, ω0 = 2π andη = 0.05.
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Stochastic single degree of freedom oscillator Let us now consider a probability space(Θ,A ,P) with Θ the event
space,A theσ-algebra onΘ, andP a probability measure. Random variables will be denoted by the capital letter which
matches the deterministic variable. Hence ifx is a deterministic variable, the associated random variable will be denoted
X. Its cumulative distribution function (cdf) and probability density function (pdf) will be denoted PX(x) = P(X ≤ x) and
pX(x) =

dPX
dx respectively.

We assume thatω2
0 varies and can be modeled using a random variableΩ2

0(θ) : Θ → R which follows a uniform
distribution:

Ω2
0 →֒ U

(

ω2
0 −∆ω2

0 ;ω2
0 +∆ω2

0

)

PΩ2
0
(x) = P(Ω2

0 ≤ x) =
x−
(

ω2
0 −∆ω2

0

)

2∆ω2
0

, x∈ I (Ω2
0) =

[

ω2
0 −∆ω2

0 ;ω2
0 +∆ω2

0

]

(8)

This may happen when the oscillator stiffness has bounded variations.
Numerical values for later numerical applications are:ω2

0 = (2π)2, ∆ω2
0 = 0.3ω2

0 , η = 0.05 and f0 = 1. Diagrams in
Fig. 2 then match the mean sdof system response over the frequency range[0;4π]. Four operating points around which
the stochastic response will be detailed are marked on Fig.2 using letters (a) to (d).

3 PROBLEMS ARISING WHEN CONSIDERING A CONSTANT EXCITATION FREQUENCY

When studying a linear system over a given frequency range, itis natural to observe the variation ofa for a set of
excitation frequenciesω. That is what is usually done when considering deterministic structures: for several values ofω,
amplitudea and phaseϕ are evaluated and plotted on graphics similar to Fig.2. It then seems natural to use a similar
procedure when studying stochastic linear structures overa given excitation frequency range: for several values ofω, a
sample ofΩ2

0 realizations is generated and corresponding realizationsof A andΦ are evaluated. The problem is that, for
some values ofω, the probability density function ofA is discontinuous as demonstrated byPagnacco et al.(2011, 2013).
This is illustrated on Fig.3 and Fig.4.
These Monte Carlo simulations are obtained by considering 501 ω values equally distributed over the range[0;4π]. For
eachω value, 20 001 realizations ofΩ2

0 are considered; these realizations are equally distributed over the rangeI (Ω2
0).

For eachΩ2
0 realization, the corresponding value forA is evaluated using Eq. (6) and stored. The pdfpA is then evaluated

for each excitation frequencyω. Figure3 displayspA for the wholeω range using colors while Fig.4 displayspA in a
classical way for the fourω values defined by operating points (a-d) marked in Fig.2.

Panes (a) and (d) in Fig.4 show smooth pdfs whereas discontinuous pdfs similar to pane(b) curve can be observed for
the excitation rangeω ∈ [1.66π;2.28π]. The exception in this range is the pdf obtained in pane (c). Detailed explanations
for these behaviors can be found in the previously mentionedreferences. Only the main phenomenon will be outlined
here using Fig.5 which plotsa versusω2

0 for the same four excitation frequencies values as in Fig.4. Continuous pdfs of
panes (a) and (d) in Fig.4 are related to a bijective relation betweenω2

0 anda as displayed by panes (a) and (d) in Fig.5.
On the contrary, Fig.4.(b) shows that different values ofω2

0 map identical values ofa. Being represented twice, theses
values fora are linked to suddenly higher pdf values. The exception of Fig. 3.(c) comes from the symmetrical property
visible in Fig.5.(c): eacha value has 2 preimages. Figure6 displays plots similar to Fig.5 except that they displayϕ
instead ofa whenω2

0 varies.
These discontinuous and possibly multimodal pdfs are difficult to obtain when applying the widely used Polynomial

Chaos method to approximateA andΦ as illustrated further in Sec.5. More complex methods must then be deployed to
handle the problem (Pagnacco et al., 2013).

4 CONSIDERING A CONSTANT PHASE

To avoid the previously mentioned drawbacks of using a constant excitation frequency method which can be explained
by the non-bijective link between the square eigen frequency ω2

0 and the response amplitudea for a givenω value, let us
observea when the response phaseϕ is kept constant. Equation (4) creates a link between the triplet(a,ϕ ,ω); instead of
choosingω and evaluating subsequenta andϕ values, let us choose aϕ value and evaluate subsequenta andω values.
From a mechanical point of view, this makes sense: whenω2

0 varies, responses sharing a same phaseϕ match similar
operating points (maximum response amplitude for example). From a mathematical point of view, it is interesting as,
for a sdof oscillator, the link betweenω2

0 anda is bijective whenϕ is kept constant as illustrated by Fig.9. This figure
displays graphics equivalent to Fig.5 (that isa versusω2

0) but for four given values ofϕ instead of using given values for
ω. Figure10shows that the link betweenω andω2

0 for these for givenϕ values is also bijective.
The next subsection develops the equations giving the expressions ofω anda for a givenϕ value. An expression for

A probability density function in the case whenΩ2
0 follows a uniform distribution is then derived, showing itscontinuity.

The second subsection illustrates this constant phase method and provides graphics equivalent to those in Figs.3 to 6.

4.1 Expressions of ω, a and pA for a given ϕ
For a givenϕ ∈]−π,0[ value, Eq. (7) imposesω as follows:
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Figure 3: Constant excitation frequency study:A pdf (pA) over a given excitation frequency range. Color scale maps log(pA). (a-d)
cuts refer to operating points defined in Fig.2.
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Case ϕ =−
π
2

:

ω = ω0 (9)

Case ϕ 6=−
π
2

: ω is solution of a second order polynomial equation

− tan(ϕ )2ω2+2ηω0ω+ tan(ϕ )2ω2
0 = 0 (10)

which has two possible solutions:

ω =
ω0

tan(ϕ )

(

η ±
√

η 2+ tan(ϕ )2

)

(11)

Case −π< ϕ <−
π
2

: then tan(ϕ )> 0, η +
√

η 2+ tan(ϕ )2 > 0 andη −
√

η 2+ tan(ϕ )2 < 0.

ω =
ω0

tan(ϕ )

(

η +
√

η 2+ tan(ϕ )2

)

, ω > ω0 (12)

Case −
π
2
< ϕ < 0: then tan(ϕ )< 0, η +

√

η 2+ tan(ϕ )2 > 0 andη −
√

η 2+ tan(ϕ )2 < 0.

ω =
ω0

tan(ϕ )

(

η −
√

η 2+ tan(ϕ )2

)

, ω < ω0 (13)

This leads to three cases for the displacement amplitudea formula due to Eq. (6):

Case −π< ϕ <−
π
2

:

a=
1

ω2
0

f0
√

1+ tan(ϕ )2

1
1

tan(ϕ )2

(

η +
√

η 2+ tan(ϕ )2
)2

−1
(14)

Case ϕ =−
π
2

:

a=
1

ω2
0

f0
2η

(15)

Case −
π
2
< ϕ < 0:

a=
1

ω2
0

f0
√

1+ tan(ϕ )2

1

1−
1

tan(ϕ )2

(

η −
√

η 2+ tan(ϕ )2
)2 (16)

In every case,a can be rewritten

a=
aϕ

ω2
0

(17)

whereaϕ is a coefficient depending onϕ but not onω2
0 . Hence, formulas forA and its cdf can be derived:

A=
aϕ

Ω2
0

(18)

PA(x) = 1−PΩ2
0

(aϕ

x

)

(19)

In the case whenΩ2
0 →֒ U (ω2

0 −∆ω2
0 ;ω2

0 +∆ω2
0), one gets:

PA(x) = 1+
1
2

(

ω2
0

∆ω2
0

−1

)

−
aϕ

2∆ω2
0

1
x
, x∈

[

aϕ

ω2
0 +∆ω2

0

;
aϕ

ω2
0 −∆ω2

0

]

(20)

pA(x) =
aϕ

2∆ω2
0

1
x2 , x∈

[

aϕ

ω2
0 +∆ω2

0

;
aϕ

ω2
0 −∆ω2

0

]

(21)

which is smooth, unlike the case whenω is kept constant.
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4.2 Numerical example

To illustrate the constant phase method, Monte Carlo simulations similar to those of Sec.3 are carried out. 501φ
values equally distributed over the range[−0.98π;−0.02π]. For eachφ value, 20 001 realizations ofΩ2

0 are considered;
these realizations are equally distributed over the rangeI (Ω2

0). For eachΩ2
0 realization, the corresponding values forΩ

andA are evaluated using Eq. (12) and Eq. (14) or Eq. (9) and Eq. (15) or Eq. (13) and Eq. (16) depending onϕ value.
The pdf pA is then evaluated for each phaseϕ . Figure7 displayspA for the wholeϕ range using colors while Fig.8
displayspA in a classical way for the fourϕ values defined by operating points (a-d) marked in Fig.2.

All panes (a-d) in Fig.8 show smooth pdfs while discontinuous pdfs where observed inthe constant excitation fre-
quency case, forω ∈ [1.66π;2.28π]. This is justified mathematical by Eq. (21) which proves the smoothness ofpA. It
can also be understood by considering the bijective link betweena andω2

0 emphasized by Fig.9 which was previously
mentioned. Finally let us point out that the link betweenω andω2

0 is bijective too as illustrated by Fig.10.
To figure out the main differences between the spaces involved by each method (constant excitation frequency or

constant phase), Fig.11displays the variations around operating points (a-d) whenω2
0 varies overI (Ω2

0) for both methods
in classical diagrams: amplitudea and phaseϕ versus excitation frequencyω.

5 CONSEQUENCES ON A POLYNOMIAL CHAOS STUDY

Previous illustrations are based on Monte Carlo simulations: the direct problem (considering either a constant exci-
tation frequency or a constant phase) is solved for a large sample ofΩ2

0 realizations. This can be afforded here because
the system is very small and the cost of the direct evaluationis trivial. However, stochastic systems are often studied
using an approximation of the stochastic response (Lucor and Karniadakis, 2004; Finette, 2006; Sarrouy et al., 2013) in
order to decrease the computational cost. Among the different methods used to compute such approximations, the Poly-
nomial Chaos expansion (PCE) introduced byWiener(1938) and recently expanded to generalized Polynomial Chaos
(gPC) expansion and Multi-Element generalized PolynomialChaos (MEgPC) expansion (Xiu and Karniadakis, 2002,
2003; Wan and Karniadakis, 2005) is one of the most famous.

The next subsection provides a brief description of the simple Polynomial Chaos expansion. While the second one
compares the results obtained when combining each method (constant excitation frequency and constant phase) with PCE.

5.1 Brief summary about Polynomial Chaos expansion

Only the principle is recalled here for a dimension-one stochastic space, that is when only one random variableξ
is used to introduce randomness in the system. The reader is referred to the references cited in above for a complete
presentation of PCE.
Considering a second-order random processX, the Polynomial Chaos expansion proposes to express it as a functionX̂
which is a polynomial series using a set ofN orthogonal polynomials denotedψn in the variableξ :

X(θ) = X̂(ξ (θ)) :=
N−1

∑
n=0

xnψn(ξ (θ)) (22)

where the orderN is theoretically infinite for general situations.
The deterministic coefficientsxn are now used to representX. They can be evaluated in two ways: using an intrusive
method or a non-intrusive one. The intrusive method followsa Galerkin approach: Eq. (22) is introduced in the equations
governingX and theses equations are projected onto the set of orthogonal polynomialsψn. The non-intrusive method uses
the orthogonality of the polynomials with respect to a scalar product denoted< •,•>:

xn =
< X̂,ψn >

< ψn,ψn >
(23)

where the numerator is usually evaluated using a quadraturerule.
The main difference between both methods is that the intrusive method provides a set ofm×N coupled algebraic equations
(wherem is the size of the underlying deterministic problem) and often requires a special implementation while the non-
intrusive approach determines the set of coefficientsxn one after the other in an independent manner and reuses existing
codes to evaluateX realizations needed for the quadrature.

The choice of the polynomial basis is somehow arbitrary evenif some bases are considered as optimal to describe
some distributions by some authors, asXiu and Karniadakis(2002). In the present case, the random inputΩ2

0 follows a
uniform distribution which makes the Legendre polynomial basis the most natural choice. The first 6 polynomials are:

ψ0(x) = 1 ψ4(x) = 1
8(35x4−30x2+3)

ψ1(x) = x ψ5(x) = 1
8(63x5−70x3+15x)

ψ2(x) = 1
2(3x2−1) ψ6(x) = 1

16(231x6−315x4+105x2−5)
ψ3(x) = 1

2(5x3−3x)

(24)

This set of polynomials is orthogonal with respect to the following scalar product

< f ,g>=
1
2

∫ 1

−1
f (x)g(x)dx (25)
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Figure 7: Constant phase study:A pdf over a given excitation frequency range. Color scale maps log(pA). (a-d) cuts refer to operating
points defined in Fig.2.
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The adequacy of the Legendre polynomial basis and the expansion on a random variableξ that follows a uniform distribu-
tion U (−1;1) and hence haspξ (x) =

1
2 as probability density function may become visible if the numerator of Eq. (23)

is rewritten as follows:

< X̂,ψn >=
1
2

∫ 1

−1
X̂(x)ψn(x)dx=

∫ 1

−1
X̂(x)ψn(x)

1
2

dx=
∫ 1

−1
X̂(x)ψn(x)pξ (x)dx= E[X̂ψn] (26)

where E[X] denotes the expected value of random variableX.
Once PCE coefficientsxn are evaluated, there are two ways to post-process them. First, the mean and variance can be

directly computed providedψ0(x) = 1:

E[X̂] = x0 < ψ0,ψ0 > and E[(X̂−E[X̂])2] =
N−1

∑
n=1

x2
n < ψn,ψn > (27)

Second, cdf and pdf can be evaluated based on MC simulations.The difference with the usual processing is thatX̂ realiza-
tions are computed using its PCE (i.e. Eq. (22)) rather than solving the direct problem which saves a lot ofcomputational
time and resource when the samples are large.
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5.2 Application of PCE for both methods

Let us define the random variableξ as follows:

ξ =
Ω2

0−ω2
0

∆ω2
0

(28)

Its cdf Pξ and pdfpξ can be easily established:

Pξ (x) =
x+1

2
, pξ (x) =

1
2
, x∈ [−1,1] (29)

It follows that ξ has a uniform distributionU (−1;+1). This random variable will serve to develop all the stochastic
quantities around the 4 operating points (a-d) defined in Fig. 2 and which correspond to the 4 following triplets:

(ωop
a ,aop

a ,ϕ op
a ) = (1.5π, 0.0571, −0.0540π)

(ωop
b ,aop

b ,ϕ op
b ) = (1.8π, 0.1205, −0.1408π)

(ωop
c ,aop

c ,ϕ op
c ) = (2.0π, 0.2533, −0.5000π)

(ωop
d ,aop

d ,ϕ op
d ) = (2.5π, 0.0440, −0.9304π)

(30)

When the constant excitation frequency method is applied,ω is set toωop
x (x∈ {a,b,c,d}) andA andΦ expansions are

evaluated. In the case when the constant phase method is applied,ϕ is set toϕ op
x (x∈ {a,b,c,d}) andA andΩ expansions

are evaluated. A degree 6 expansion is used in every case. Thecoefficients are evaluated using a non-intrusive method
relying on a Gauss-Legendre quadrature with 7 nodes.

Figures12to 15provide comparisons of Monte Carlo simulations and PCE results around operating points (a-d) when
the constant excitation frequency method is used. As expected, this method provides correct result for operating points
(a), Fig.12 and (d), Fig.15: variations ofa andϕ with ω2

0 is well reproduced by the PCE and so are the respective pdfs.
However, PCE does not provide a proper description ofA andΦ for operating points (b), Fig.13 and (c), Fig.14. As
stated in (Pagnacco et al., 2013), increasing the expansion degree would not provide betterresults.
Figures16 to 19 provide comparisons of Monte Carlo simulations and PCE results around operating points (a-d) when
the constant phase method is used. In this case, the variation of a andω with ω2

0 is well described by the PCE as well as
the corresponding pdf, both being much smoother than when the constant excitation frequency is used.

5.3 Comments on the practical use of the constant phase approach

The constant phase approach is obviously useful when one wants to study the variation of the system response in
a particular configuration which is characterized by the phase ϕ : variation of the resonance peak (obtained forϕ =

arctan(−
√

1−2η 2/η )) , variation of the system response when in quadrature with the excitation (ϕ =−π/2), ...
However, one frequently wants to check that the system response will not exceed some given values over a range of
excitation frequency. In this case, the constant excitation frequency approach seems more adapted but returns erroneous
results for some system parameters when using PCE (seePagnacco et al.(2011, 2013)), especially around resonance that
is where amplitudes are generally controlled. The constantphase approach can still be used if combined to a little post
processing: let us denote[ fmin; fmax] the frequency range of interest. Evaluation of the responseof the mean system for
fmin and fmax provides coarse upper and lower bounds for the phase response. As depicted in Fig.11, it is necessary to
enlarge this range to properly cover the whole frequency range [ fmin; fmax]. By enlarging this phase range, one gets the
systems stochastic response over the desired frequency range. Depending on the desired statistical indicators (confidence
interval, quantiles, moments, ...), an adapted post-processing can be implemented.
This said, it is nonetheless interesting to keep in mind thatbeing able to describe the variation of the resonance peak both
in terms of amplitude and frequency is much more interestingthat knowing that the amplitude may stay below a given
value overfmin and fmax and ignoring it will explode for a little lower excitation frequency.

6 CONCLUSION

An original approach to study the dynamic response of a single degree of freedom system has been developed. This
approach proposes to expand the system response on the Polynomial Chaos when imposing the response phase and
freeing the system excitation frequency rather than the other way around as it is usually done. The proposed approach
was applied to a single dof system whose squared eigen frequency follows a uniform law. This method was proven to
provide much better results than the usual approach which suffers from the inability to describe the multimodality of the
stochastic response. The numerical application also demonstrated its ability to follow some phase defined points such as
the response of the system when in quadrature with the excitation which is usually close to the resonance point and is easy
to detect experimentally.
This work addressed a single dof system: further work shouldhandle the case of multi-dofs systems.
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Figure 12: Constant excitation frequency study: PC simulations compared to MC simulations for operating point (a).
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Figure 13: Constant excitation frequency study: PC simulations compared to MC simulations for operating point (b).
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Figure 14: Constant excitation frequency study: PC simulations compared to MC simulations for operating point (c).
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Figure 15: Constant excitation frequency study: PC simulations compared to MC simulations for operating point (d).
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Figure 16: Constant phase study: PC simulations compared to MC simulations for operating point (a).
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Figure 17: Constant phase study: PC simulations compared to MC simulations for operating point (b).
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Figure 18: Constant phase study: PC simulations compared to MC simulations for operating point (c).
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Figure 19: Constant phase study: PC simulations compared to MC simulations for operating point (d).
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