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Abstract. When studying a mechanical structure, evaluation of itguifency response function (FRF) over a given fre-
quency range is one of the main interests. Computationdlaside, evaluating FRFs presents no methodological dif-
ficulty in the deterministic case. Doing this when the modeluides some uncertain parameters may however be more
difficult as multimodality can arise around resonances. eked, even for a single degree of freedom system, it can be
shown that usual methods of the probabilistic frame sucheagiglized Polynomial Chaos may fail to properly describe
the probability density function of the response amplitude

This study proposes another approach which involves aishilfte usual quantities used to draw FRFs. Instead of com-
puting the stochastic response for a given excitation feeqy, this work adopts a constant response phase pointwf vie
For each phase value of the oscillator response, the unicgytaver some parameters is propagated to the correspgndin
uncertain amplitudes and excitation frequencies. Thisigies much smoother variations of the involved quantitieshv

are much easier to describe using a simple Polynomial Chapsoach. This also provides a mean to conduct a straight-
forward stochastic study of special points such as the maxirof amplitude (which matches a given phase) or the point
for which the response is in quadrature with the excitatiBoth analytical and numerical results will be exposed for a
single degree of freedom oscillator whose squared eigeuéecy (or stiffness) follows a uniform law.

Keywords. Structural dynamics, Frequency Response Function, Ramitmattion, Uncertainty propagation, Polynomial
chaos

1 INTRODUCTION

When studying a mechanical structure, evaluation of itsueegy response function (FRF) over a given frequency
range is one of the main interests. Computational cost asidduating FRFs presents no methodological difficulty in
the deterministic case. Doing this when the model includ@sesuncertain parameters may however be more difficult
as multimodality can arise around resonances as dematstrgPagnacco et a(2009 2011). Indeed, even for a single
degree of freedom system, it can be shown that usual mettidkde probabilistic frame such as generalized Polynomial
Chaos (gPC,Xiu and Karniadakis2002) may fail to properly describe the probability density ¢tion (PDF) of the
response amplitudé*agnacco et gl2013. This latter work shows that more complex methods such asiHdlement
generalized Polynomial Chaos can be used to address thikeprancreasing the computational cost in return.

This study proposes another approach to handle the fregstunty of stochastic linear systems. It involves a shifhia t
usual quantities used to draw FRFs: instead of computingtihghastic response for a given excitation frequency, this
work adopts a constant phase point of view. For each phase wadlthe oscillator response, the uncertainty over some
parameters is propagated to the corresponding uncertalitades and excitation frequencies.

This work will be illustrated by a simple single degree ofeflem (sdof) linear damped oscillator whose eigen fre-
guency follows a uniform law. This system is describe in SeSection3 illustrates multimodality of system response
amplitude when the response is sought for a given excitéteamuency but variable (free) response phase. Sedttban
develops the proposed approach: the response is soughgicgraphase but variable excitation frequency. Secdfidn
provides the equations while Sek2 illustrates the approach on the sdof system. Finally, S@coposes a comparison
of both methods efficiency — constant excitation frequemay @nstant phase — when combined to a Polynomial Chaos
Expansion.

2 STOCHASTIC SYSTEM STUDIED

Deterministic single degree of freedom oscillator  Let us consider the sdof damped oscillator undergoing a daion
load depicted in Figl. Its movement is governed by Eq.)(

G+ 2nwod+ wé q= focogwt) (1)

whereq is the mass displacementanddare its velocity and acceleration respectively,is its eigen circular frequency,
n is the damping ratiofy is the excitation amplitude and is the excitation circular frequency.



E. Sarrouy et al.
A constant phase approach for the frequency response of stochastic linear oscillators

[

1 focogq wt)
7
2nwy b—— qt)
Figure 1. Simple damped oscillator
(a) Amplitude (b) Phase
. 0 .
(@)
(c)
0.25} 0.2
0.2}
~ 0.4
s
0.15} E,
©
< -0.6
0.1}
0.05} 08
0 -1
0 1 2 3 4 0 1 2 3 4
w/ 1 (rad/s) w/ 1 (rad/s)

Figure 2: Deterministic frequency response diagrams for the sdobeiduwscillator

In the frequency domain, Eqlbecomes

(@h — @ +2jnww)Q= fo (2)
where f = —1 andQ is the complex amplitude af:

q(t) = Re(Qée) @3)

Using this complex notations, one can easily write the cempblutionQ as a function of the mechanical parameters
wp, N and fy and the excitation frequenay:

Q= w§ — w? + 2jnawow )

Finally, decomposing the complex quant@jinto its amplitudea and phase,

Q=aé’ ()
one gets separate expressions for each component:
a- L ©)
V(68— w22+ (2nawnw)?
B 2Nwow
¢ = arctan| — wg 7 7

Amplitude and phase response of the oscillator are disglape=ig.2 for fop = 1, wp = 2rrandn = 0.05.
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Stochastic single degree of freedom oscillator Let us now consider a probability spa@®, <7, P) with © the event
space,«/ the g-algebra or®, andP a probability measure. Random variables will be denotedbycapital letter which
matches the deterministic variable. Hence i$ a deterministic variable, the associated random vaziafll be denoted
X. Its cumulative distribution function (cdf) and probatyildensity function (pdf) will be denotedk®x) = P(X < x) and

px (X) = d—PXX respectively.

We assume thaty varies and can be modeled using a random vari@gl@) : © — R which follows a uniform
distribution:

Qf < U (B~ Bf; o + D)

x- (B - a0) ®)

Pos(¥) = P(Q3 < X) g eSO |68~ BB +BcE|

This may happen when the oscillator stiffness has boundeéatieans.

Numerical values for later numerical applications amfé:: (2m)?, Awg = 0.3@, n = 0.05 andfg = 1. Diagrams in
Fig. 2 then match the mean sdof system response over the frequeempg|0; 471]. Four operating points around which
the stochastic response will be detailed are marked orkiging letters (a) to (d).

3 PROBLEMSARISING WHEN CONSIDERING A CONSTANT EXCITATION FREQUENCY

When studying a linear system over a given frequency range niatural to observe the variation affor a set of
excitation frequencie&. That is what is usually done when considering determmigtiuctures: for several values ©f
amplitudea and phase are evaluated and plotted on graphics similar to Biglt then seems natural to use a similar
procedure when studying stochastic linear structures aggven excitation frequency range: for several value®0é
sample on% realizations is generated and corresponding realizatibAsand® are evaluated. The problem is that, for
some values ofv, the probability density function & is discontinuous as demonstrated®ggnacco et a(2011, 2013.
This is illustrated on Fig3 and Fig.4.

These Monte Carlo simulations are obtained by considerigibvalues equally distributed over the ran@e4rn]. For
eachw value, 20 001 realizations @23 are considered; these realizations are equally distdborer the range” (Q3).
For eachQ% realization, the corresponding value fdis evaluated using Eq6) and stored. The pdfa is then evaluated
for each excitation frequenay. Figure3 displayspa for the wholew range using colors while Figt displayspa in a
classical way for the fouw values defined by operating points (a-d) marked in Big.

Panes (a) and (d) in Fig.show smooth pdfs whereas discontinuous pdfs similar to fl@rairve can be observed for
the excitation rangey € [1.667T, 2.2817]. The exception in this range is the pdf obtained in pane (ejalled explanations
for these behaviors can be found in the previously mentioeéstences. Only the main phenomenon will be outlined
here using Fig5 which plotsa versusag for the same four excitation frequencies values as in&ig.ontinuous pdfs of
panes (a) and (d) in Figk are related to a bijective relation betwaa@ anda as displayed by panes (a) and (d) in Fg.
On the contrary, Fig4.(b) shows that different values off map identical values cd. Being represented twice, theses
values fora are linked to suddenly higher pdf values. The exception gf &i{c) comes from the symmetrical property
visible in Fig.5.(c): eacha value has 2 preimages. Figuadisplays plots similar to Figs except that they displag
instead ofa whenay varies.

These discontinuous and possibly multimodal pdfs are diffio obtain when applying the widely used Polynomial
Chaos method to approximateand® as illustrated further in Seé. More complex methods must then be deployed to
handle the problemRagnacco et al2013.

4 CONSIDERING A CONSTANT PHASE

To avoid the previously mentioned drawbacks of using a @m&xcitation frequency method which can be explained
by the non-bijective link between the square eigen freq;aeogcand the response amplituedor a givenw value, let us
observea when the response phages kept constant. Equatiod) creates a link between the triplet, ¢, w); instead of
choosingw and evaluating subsequemtaind¢ values, let us choosedavalue and evaluate subsequardand w values.
From a mechanical point of view, this makes sense: Wbéwaries, responses sharing a same plgaseatch similar
operating points (maximum response amplitude for examgtedm a mathematical point of view, it is interesting as,
for a sdof oscillator, the link betweemg anda is bijective wheng is kept constant as illustrated by F&. This figure
displays graphics equivalent to Fig(that isa versuswg) but for four given values op instead of using given values for
w. Figurel0shows that the link between andwg for these for giverp values is also bijective.

The next subsection develops the equations giving the ssiares ofw anda for a giveng value. An expression for
A probability density function in the case Wh@% follows a uniform distribution is then derived, showing dsntinuity.
The second subsection illustrates this constant phaseothatid provides graphics equivalent to those in F3gs.6.

4.1 Expressionsof w, aand pa for agiven ¢
For a giveng €] — 1,0[ value, Eq. ) imposesw as follows:
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Figure 3: Constant excitation frequency studypdf (pa) over a given excitation frequency range. Color scale mapglog (a-d)
cuts refer to operating points defined in F2y.
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n
Case ¢ = —5
. ©)
Case ¢ # _7,27- w is solution of a second order polynomial equation
—tan(¢)2w? + 2nwow+tan(¢)?wd = 0 (10)
which has two possible solutions:
11)

o
W= tang) (rl +/ ’72+tar(¢)2>
Case—mm< ¢ < —7—21: then tarig) > 0,n ++/n2+tan(¢)2 > 0 andn — /N2 +tan(¢)2 < 0.

o g (s ) 0 o

tan(¢)

Case—g<¢<0: then tarig) < 0,n + /n2+tan(¢)2 > 0 andn — \/n2+tan(¢)2 < 0.
w:m(%(”_\/m>,w<ab

This leads to three cases for the displacement ampladdemula due to Eq.]):

(12)

(13)

Case—mm< ¢ < —g:
fo 1 (14)

1
a= —=
W \/1+tan(9)? tar‘(1¢)2 (n + \/172+tan(¢)2)27 1

Case ¢ = —7—2T:
(15)

1 fo

w§ 2n

Case—g< ¢ <O
! (16)

16
U RVIEer L irangr)

tan9)?

In every casea can be rewritten
17

)
a=—
o
whereay is a coefficient depending ap but not onwg. Hence, formulas foA and its cdf can be derived:
(18)

a

A= 2
Q3

(19)

PA(X) = 1 Pgg (%)
In the case whe®3 < % (« — Awf; & + Awf), one gets:

L) 3 1 oy
ngx | ok F -0k

(20)

(21)

_ % 1 B %
I e

which is smooth, unlike the case wheris kept constant.
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4.2 Numerical example

To illustrate the constant phase method, Monte Carlo sitiomia similar to those of Se@ are carried out. 50%
values equally distributed over the ranjged.98r, —0.0271]. For eachp value, 20 001 realizations 613 are considered;
these realizations are equally distributed over the ra.ﬁgég). For eacrﬂ(?J realization, the corresponding values for
andA are evaluated using Edql?) and Eq. 14) or Eq. ©) and Eq. 15) or Eq. (L3) and Eq. 16) depending orp value.
The pdfpa is then evaluated for each phage Figure7 displayspa for the whole¢ range using colors while Fi@
displayspa in a classical way for the foup values defined by operating points (a-d) marked in Eig.

All panes (a-d) in Fig8 show smooth pdfs while discontinuous pdfs where observeddarconstant excitation fre-
quency case, fow € [1.661,2.28m1]. This is justified mathematical by EcRY) which proves the smoothness jpf. It
can also be understood by considering the bijective linkvbeha andwg emphasized by Fid which was previously
mentioned. Finally let us point out that the link betweyeandaﬁ is bijective too as illustrated by Fig.0.

To figure out the main differences between the spaces inddbyeeach method (constant excitation frequency or
constant phase), Fi@ildisplays the variations around operating points (a-d) wb@avaries overs (Q%) for both methods
in classical diagrams: amplitudeand phase versus excitation frequenay.

5 CONSEQUENCESON A POLYNOMIAL CHAOS STUDY

Previous illustrations are based on Monte Carlo simulatidghe direct problem (considering either a constant exci-
tation frequency or a constant phase) is solved for a Iargmtsaong realizations. This can be afforded here because
the system is very small and the cost of the direct evaluasidrivial. However, stochastic systems are often studied
using an approximation of the stochastic respohsedgr and Karniadaki2004 Finette 2006 Sarrouy et a].2013 in
order to decrease the computational cost. Among the diffenethods used to compute such approximations, the Poly-
nomial Chaos expansion (PCE) introducedWiener (1938 and recently expanded to generalized Polynomial Chaos
(gPC) expansion and Multi-Element generalized Polynor@iados (MEgPC) expansiorXiu and Karniadakis2002
2003 Wan and Karniadakj2005 is one of the most famous.

The next subsection provides a brief description of the Ermlynomial Chaos expansion. While the second one
compares the results obtained when combining each metbaodtémt excitation frequency and constant phase) with PCE.

5.1 Brief summary about Polynomial Chaos expansion

Only the principle is recalled here for a dimension-one Isastic space, that is when only one random varidble
is used to introduce randomness in the system. The readefeisad to the references cited in above for a complete
presentation of PCE. R
Considering a second-order random procésthe Polynomial Chaos expansion proposes to express it @scidn X
which is a polynomial series using a sethdbrthogonal polynomials denotef, in the variables:

N-1

X(8) = X(&(0)) := ;ann(f(e)) (22)

n=!

where the ordeN is theoretically infinite for general situations.

The deterministic coefficients, are now used to represeXt They can be evaluated in two ways: using an intrusive
method or a non-intrusive one. The intrusive method follavzalerkin approach: Eq2®) is introduced in the equations
governingX and theses equations are projected onto the set of orthigguigaomialsy,. The non-intrusive method uses
the orthogonality of the polynomials with respect to a scptaduct denotee: o, e >:

<X >
< Yn, P >

where the numerator is usually evaluated using a quadratlae
The main difference between both methods is that the inveusithod provides a setwfx N coupled algebraic equations
(wheremis the size of the underlying deterministic problem) an@oftequires a special implementation while the non-
intrusive approach determines the set of coefficigptsne after the other in an independent manner and reusemegxist
codes to evaluat¥ realizations needed for the quadrature.

The choice of the polynomial basis is somehow arbitrary é/eome bases are considered as optimal to describe
some distributions by some authors,Xia and Karniadakig2002. In the present case, the random in@@tfollows a
uniform distribution which makes the Legendre polynomiadis the most natural choice. The first 6 polynomials are:

(23)

Xn

Yo(x) = 1 Pa(x) =%®M—w&w)

(x) = x Ws(x) = £(63— 703+ 15x) (24)
Uo(x) = %(3x2 -1 Pe(X) = 75(231x6 —315¢*+ 1052 - 5)

Ps(x) = (5 —3x)

This set of polynomials is orthogonal with respect to théofwing scalar product

1
< fg>= %/71 F(x)g(x)dx (25)
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Figure 7: Constant phase studypdf over a given excitation frequency range. Color scale madppdg (a-d) cuts refer to operating
points defined in Fig2.
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The adequacy of the Legendre polynomial basis and the eixjpams a random variabl& that follows a uniform distribu-

tion 7% (—1;1) and hence hapg (x) = % as probability density function may become visible if themauator of Eq. 23)
is rewritten as follows:

<Kot == 3 [ Ro0unax= [ K0un(x 3= [~ 00U (3 pe (= %] (26)

where BX] denotes the expected value of random varidble

Once PCE coefficients, are evaluated, there are two ways to post-process then, tResnean and variance can be
directly computed providedip(x) = 1:

N—-1
EX] =% < Wo.yo> and EX-EX)?*= 5 %< n, in> (27)
n=1

Second, cdf and pdf can be evaluated based on MC simulafitvesdifference with the usual processing is tKaealiza-

tions are computed using its PCE (i.e. E2R)] rather than solving the direct problem which saves a latoohputational
time and resource when the samples are large.



Proceedings of the 2nd International Symposium on Uncertainty Quantification and Stochastic Modeling
June 23th to June 27th, 2014, Rouen, France

5.2 Application of PCE for both methods
Let us define the random variabjeas follows:

o
g- % wg‘”g (29)

Its cdf Pr and pdfps can be easily established:

Pf(x):%l, pE(x):%, xe[~1,1] (29)

It follows that § has a uniform distributior? (—1;+1). This random variable will serve to develop all the stocicast
quantities around the 4 operating points (a-d) defined inZand which correspond to the 4 following triplets:

( ) (1.5m, 0.0571 —0.0540m)
(wgp,a,B ,¢§p) = (1.8m,0.1205 —0.14087)
(P, ac”, pcP) (2.0m, 0.2533 —0.5000m)
( ) (2.5m, 0.044Q —0.93047)

(30)

When the constant excitation frequency method is appligd,set tow® (x € {a,b,c,d}) andA and® expansions are
evaluated. In the case when the constant phase method isdigpis set togy” (x € {a, b, c,d}) andA andQ expansions
are evaluated. A degree 6 expansion is used in every caseco€Effficients are evaluated using a non-intrusive method
relying on a Gauss-Legendre quadrature with 7 nodes.

Figuresl2to 15 provide comparisons of Monte Carlo simulations and PCHigatound operating points (a-d) when
the constant excitation frequency method is used. As ezgethis method provides correct result for operating fgoint
(a), Fig.12 and (d), Fig.15: variations ofa and¢ with wg is well reproduced by the PCE and so are the respective pdfs.
However, PCE does not provide a proper descriptioA ahd ® for operating points (b), Figl3 and (c), Fig.14. As
stated in Pagnacco et al2013, increasing the expansion degree would not provide bedteits.

Figures16to 19 provide comparisons of Monte Carlo simulations and PCElt®swound operating points (a-d) when
the constant phase method is used. In this case, the varafteoand w with « is well described by the PCE as well as
the corresponding pdf, both being much smoother than wreendhstant excitation frequency is used.

5.3 Commentson the practical use of the constant phase approach

The constant phase approach is obviously useful when oneswarstudy the variation of the system response in
a particular configuration which is characterized by thespha variation of the resonance peak (obtained ¢oe=

arctar{—+/1—2n2/n)) , variation of the system response when in quadrature Wélexcitation ¢ = —71/2), ...

However, one frequently wants to check that the system respwill not exceed some given values over a range of
excitation frequency. In this case, the constant excitdtiequency approach seems more adapted but returns etoneo
results for some system parameters when using PCEP@gmacco et a(2011 2013), especially around resonance that
is where amplitudes are generally controlled. The congthase approach can still be used if combined to a little post
processing: let us denoténin; fmax the frequency range of interest. Evaluation of the respofh#ige mean system for
fmin and fmax provides coarse upper and lower bounds for the phase respéssdepicted in Figll, it is necessary to
enlarge this range to properly cover the whole frequencge@finin; fmax. By enlarging this phase range, one gets the
systems stochastic response over the desired frequergy.r@epending on the desired statistical indicators (cenfid
interval, quantiles, moments, ...), an adapted post-ggicg can be implemented.

This said, it is nonetheless interesting to keep in mindlleatg able to describe the variation of the resonance peéik bo
in terms of amplitude and frequency is much more interestiag knowing that the amplitude may stay below a given
value overfmin and fmax @and ignoring it will explode for a little lower excitationgiquency.

6 CONCLUSION

An original approach to study the dynamic response of asidgbree of freedom system has been developed. This
approach proposes to expand the system response on thef@yrChaos when imposing the response phase and
freeing the system excitation frequency rather than therotfay around as it is usually done. The proposed approach
was applied to a single dof system whose squared eigen fiegdellows a uniform law. This method was proven to
provide much better results than the usual approach whigarsdrom the inability to describe the multimodality ofeth
stochastic response. The numerical application also dstrated its ability to follow some phase defined points such a
the response of the system when in quadrature with the ércitahich is usually close to the resonance point and is easy
to detect experimentally.

This work addressed a single dof system: further work shbatdle the case of multi-dofs systems.
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