N
N

N

HAL

open science

A Generic Approach for Modeling and Mining n-ary
Patterns

Medhi Khiari, Patrice Boizumault, Bruno Crémilleux

» To cite this version:

Medhi Khiari, Patrice Boizumault, Bruno Crémilleux. A Generic Approach for Modeling and Mining
n-ary Patterns. 19th Int. Symposium on Methodologies for Intelligent Systems (ISMIS’11), Jun 2011,

warsaw, Poland. pp.300-305. hal-01017265

HAL Id: hal-01017265
https://hal.science/hal-01017265v1

Submitted on 2 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01017265v1
https://hal.archives-ouvertes.fr

A Generic Approach for Modeling
and Mining n-ary Patterns

Mehdi Khiari, Patrice Boizumault, and Bruno Crémilleux

GREYC, CNRS - UMR 6072, Université de Caen Basse-Normandie,
Campus Cote de Nacre, F-14032 Caen Cedex, France
{Forename.Surname}@info.unicaen.fr

Abstract. The aim of this paper is to model and mine patterns com-
bining several local patterns (n-ary patterns). First, the user expresses
his/her query under constraints involving n-ary patterns. Second, a con-
straint solver generates the correct and complete set of solutions. This
approach enables to model in a flexible way sets of constraints combining
several local patterns and it leads to discover patterns of higher level.
Experiments show the feasibility and the interest of our approach.

1 Introduction

Knowledge Discovery in Databases involves different challenges, such as the dis-
covery of patterns of a potential user’s interest. The constraint paradigm brings
useful techniques to express such an interest. If mining local patterns under con-
straints is now a rather well-mastered domain including generic approaches [1,
these methods do not take into account the interest of a pattern with respect
to the other patterns which are mined. In practice, a lot of patterns which are
expected by the data analyst (cf. Section[2.2) require to consider simultaneously
and to combine several patterns. In the following, such patterns are called n-ary
patterns, and a query involving n-ary patterns is called a n-ary query.

There are very few attempts on mining n-ary patterns and the existing meth-
ods tackle particular cases by using devoted techniques [8]9]. One explanation
of the lack of generic methods is likely the difficulty of the task. Mining n-ary
patterns requires to compare the solutions satisfying each pattern involved in
the constraint, it is drastically harder than mining local patterns. The lack of
generic methods restrains the discovery of useful patterns because the user has
to develop a new method each time he wants to extract a new kind of patterns.

In this paper, we propose a generic approach for modeling and mining n-ary
patterns using Constraint Programming (CP). Our approach proceeds in two
steps. First, the user specifies the set of constraints which has to be satisfied.
Such constraints handle set operations and also numeric properties such as the
frequency or the length of patterns. Then, a constraint solver generates the
correct and complete set of solutions. The great advantage of this modeling
is its flexibility, it enables us to define a large set of n-ary queries leading to
discover patterns of higher level. It is no longer necessary to develop algorithms
from scratch to mine new types of patterns.

2 Definitions and First Examples

2.1 Local Patterns

Let Z be a set of distinct literals called items, an itemset (or pattern) is a
non-null subset of Z. The language of itemsets corresponds to £z = 2Z\(. A
transactional dataset r is a multi-set of itemsets of L£7. Each itemset, usually
called a transaction or object, is a database entry. Constraint-based mining task
selects all the itemsets of L7 present in r and satisfying a predicate which is
named constraint. Local patterns are regularities that hold for a particular part
of the data (i.e., checking whether a pattern satisfies or not a constraint can be
performed independently of the other patterns holding in the data).

Example. Let X be alocal pattern. The well-known frequency constraint focuses
on patterns occurring in the database a number of times exceeding a given
minimal threshold: freq(X) > minfr. There are many other constraints [7] to
evaluate the relevance of patterns, like the area (area(X) is the product of its
frequency times its length: area(X) = freq(X) x length(X)).

2.2 N-ary Patterns

In practice, the data analyst is often interested in discovering richer patterns
than local patterns. The definitions relevant to such more complex patterns rely
on properties involving several local patterns and are formalized by the notions
of n-ary constraint and n-ary pattern leading to n-ary queries.

Definition 1 (n-ary pattern). A n-ary pattern is defined by a query involving
several patterns.

Definition 2 (n-ary query). A n-ary query is a set of constraints over n-ary
patterns.

2.3 Motivating Example

N-ary queries straightforwardly enable us to design rich patterns requested by
the users such as the discovery of pairs of exception rules without domain-specific
information [9]. An exception rule is defined as a pattern combining a strong rule
and a deviational pattern to the strong rule, the interest of a rule of the pattern
is highlighted by the comparison with the other rule. The comparison between
rules means that these exception rules are not local patterns. More formally, an
exception rule is defined within the context of a pair of rules as follows (I is an
item, for instance a class value, X and Y are local patterns):

true if 3Y € Lz such that Y C X, one have (X\Y — I) A (X —)

(X =)= {false otherwise

Such a pair of rules is composed of a common sense rule X\Y — I and an
exception rule X — —1I since usually if X\Y then I. The exception rule isolates
surprising information. This definition assumes that the common sense rule has
a high frequency and a rather high confidence and the exception rule has a

low frequency and a very high confidence (the confidence of a rule X — Y is
freq(X UY)/freq(X)). Suzuki proposes a method based on sound pruning and
probabilistic estimation [9] to extract the exception rules, but this method is
devoted to this kind of patterns.

2.4 Related Work

There are a lot of works to discover local patterns under constraints [7] but there
are not so many methods to combine local patterns: pattern teams [6], constraint-
based pattern set mining [3| to name a few. Even if these approaches explicitly
compare patterns between them, they are mainly based on the reduction of the
redundancy or specific aims such as classification processes. Our work is in the
new trend on investigations of relationships between data mining and constraint
programming [2[4].

3 Modeling and Mining n-ary Queries Using CP

3.1 Examples of n-ary Queries

Exception Rules. (see Section [2.3). Let X and Y be two patterns. Let I
and —~I € Z. Let minfr, mazfr,61,02 € N. The exception rule n-ary query is
formulated as it follows:

— X\Y — I is expressed by the conjunction: freq((X \ Y) I) > minfr A
(freq(X \Y) — freq((X \Y)UI)) < §; (X\Y — I is a frequent rule having
a high confidence value).

— X — I is expressed by the conjunction: freq(XU—1I) < mazfr A(freq(X)—
freq(X U —I)) < 2 (X — —I is a rare rule having a high confidence value).

freq
freq
freq
freq

(X\Y)UI) > minfr A

X\Y) = freq((X\Y)UT) <61 A
X U-I) < mazfr A

X) — freq(X U-I) <o

exception(X,Y,I) =

—~ A~~~

Unexpected Rules. Another example of n-ary queries is the unexpected rule
X — Y with respect to a belief U — V where U and V' are patterns [8]. Basically,
an unexpected rule means that Y and V logically contradict each other. It is
defined more formally as: (1) Y AV E False, (2) X AU holds (it means XU
frequent), (3) XU — Y holds (XU — Y frequent and has a sufficient confidence
value), (4) XU — V does not hold (XU — V not frequent or XU — V has a
low confidence value). Given a a belief U — V| an unexpected rule un.(X,Y) is
modeled by the following n-ary query:

! The symbol LI denotes the disjoint union operator. It states that for a rule, patterns
representing respectively premises and conclusion must be disjoint.

freqlY UV)=0A
freq(X UU) > minfr, A
un.(X,Y) =< freq(X UUUY) > minfr, A
freq(XUUUY)/freq(X UU) > minconfA
(freq(X UU UV) <mazfr Vfreq(XUUUV)/ freq(XUU) <mazconf)

Classification Conflicts. Classification based on associations [11] is an other
area where n-ary queries enable us to combine local patterns to help to design
classifiers. Let C' and C” be the items denoting the class values. The following
example detects classification conflicts, here a pair of frequent classification rules
X — C and Y — (' having confidences greater than a minimal threshold
minconf. The rules have a large overlapping between their premises that may
introduce classification conflicts on unseen examples.

freq(X) > minfr A
freq(Y) = minfr A

classif. conflict(X,Y) =< freq(X U{C})/freq(X) > minconf A

freq(Y U{CY)j freq(Y) > minconf A

2 x length(X NY) > (length(X) + length(Y))/2

3.2 Soving n-ary Queries Using CP

After having formulated n-ary queries in a high level modeling as a set of numeric
and set constraints as previously seen, these constraints are solved by a CP
solver (the Gecode syste. Our method has 3 steps. Firstly, the dataset and
the patterns involved in the n-ary query are linked. Then, unknown patterns
are modeled using variables. Finally, numeric constraints and set constraints are
reformulated in a low level way (for more details, see [5]). As the resolution
performed by the CP solver is sound and complete, our approach is able to mine
the correct and complete set of patterns satisfying n-ary queries.

4 Experiments

Experiments were performed on several datasets from the UCI repositor and a
real-world dataset Meningitis coming from the Grenoble Central Hospital (329
transactions described by 84 items). Experiments were conducted with several
kinds of n-ary queries: exception rules, unexpected rules and classification con-
flicts. We use a PC having a 2.83 GHz Intel Core 2 Duo processor and 4 GB of
RAM, running Ubuntu Linux.

Highlighting Useful Patterns. Exception rules are a particular case of rare
rules. Even when rare rules can be extracted [10], it is impossible to pick the
exception rules among the set of all the rare rules. It is a pity because most of
the rare rules are unreliable and it is much more interesting to get the excep-
tions rules. Fig. 1] quantifies the number of exception rules on the Meningitis

2Inttp://www.gecode.org
3http://www.ics.uci.edu/~mlearn/MLRepository.html

1,00E+09
| —— rars rules (maxfr=4, 62=2)

w 100E+07 —8&— exception rules (61=3)
c | exception rules (61=3)
£ 1.00E+05 '1. exception rules (61=1)
§ e —— "

1,00E+03 - e ——

g [-—
1,00E+01 +
30 35 40
minfr

Fig. 1. Number of pairs of exception rules versus number of rare rules (Meningitis)

classif: mushroom exceptions:mushroom
200 —+— minconf = 90% —+—maxfr=10, 61=100,62=4
160 minconf=93% 2000 e maxfr=10, 61=100,62=0
w . = W
g 120 .g 1500 -)
= 80 = 1000 T
A
40 e - 500
0 — 0 L
2000 2200 2400 1000 1400 1800
minfr minfr

Fig. 2. Runtimes

dataset versus the number of rare rules (the number of rare rules depends on
mazx fr and corresponds to the line at the top of the figure). Looking for ex-
ception rules reduces on several orders of magnitude the number of outputted
patterns. Unexpected rules may also reveal useful information. For example, still
on Meningitis, such a rule has a premise made of a high percentage of immature
band cells and the absence of neurological deficiency and its conclusion is a nor-
mal value of the polynuclear neutrophil level. This rule is unexpected with the
belief that high values of the white cells count and the polynuclear percentage
lead to a bacterial etiological type.

Computational Efficiency. These experiments quantify runtimes and the
scalability of our approach. Runtimes vary according to the size of the datasets
but also the tightness of constraint{] On Meningitis and Australian, the set
of all solutions is computed in a few seconds (less than one second in most of
the cases). On Mushroom, runtimes vary from few seconds for tight constraints
to about an hour for low frequency and confidence thresholds. These results
suggest to conduct further experiments on this dataset to better evaluate the
runtimes. Fig. [2] details the runtime of our method on Mushroom according to
different thresholds of confidence and frequency. We observe that the tighter the

4 A constraint is said tight if its number of solutions is low compared to the cardinality
of the cartesian product of the variable domains, such as constraints defined by high
frequency and confidence thresholds

constraint is, the smaller the runtime is. Indeed, tight constraints enable a better
filtering of the domains and then a more efficient pruning of the search tree.

Obviously, our generic n-ary approach can be used for mining local patterns.
We obtain on this task the same runtimes as [2] which were competitive with
state of the art miners. With exception rules, we cannot compare runtimes be-
cause they are not indicated in [9].

5 Conclusion and Future Works

In this paper, we have presented a correct and complete approach to model and
mine n-ary patterns. The examples described in Section illustrate the gen-
erality and the flexibility of our approach. Experiments show its relevance and
its feasibility in spite of its generic scope. For CSPs, all variables are existen-
tially quantified. Further work is to introduce the universal quantification: this
quantifier would be precious to model important queries such as the peak quer.

References

1. Bonchi, F., Giannotti, F., Lucchese, C., Orlando, S., Perego, R., Trasarti, R.: A
constraint-based querying system for exploratory pattern discovery. Inf. Syst. 34(1),
3-27 (2009)

2. De Raedt, L., Guns, T., Nijssen, S.: Constraint Programming for Itemset Mining.
In: ACM SIGKDD Int. Conf. KDD 2008, Las Vegas, Nevada, USA (2008)

3. De Raedt, L., Zimmermann, A.: Constraint-based pattern set mining. In: 7th STAM
Int. Conf. on Data Mining. STAM, Philadelphia (2007)

4. Khiari, M., Boizumault, P., Crémilleux, B.: Local constraint-based mining and set con-
straint programming for pattern discovery. In: From Local Patterns to Global Models
(LeGo 2009), ECML/PKDD 2009 Workshop, Bled, Slovenia, pp. 61-76 (2009)

5. Khiari, M., Boizumault, P., Crémilleux, B.: Constraint programming for mining n-
ary patterns. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 552-567. Springer,
Heidelberg (2010)

6. Knobbe, A., Ho, E.: Pattern teams. In: Fiirnkranz, J., Scheffer, T., Spiliopoulou,
M. (eds.) PKDD 2006. LNCS (LNATI), vol. 4213, pp. 577-584. Springer, Heidelberg
(2006)

7. Ng, R.T., Lakshmanan, V.S., Han, J., Pang, A.: Exploratory mining and pruning
optimizations of constrained associations rules. In: Proceedings of ACM SIGMOD
1998, pp. 13-24. ACM Press, New York (1998)

8. Padmanabhan, B., Tuzhilin, A.: A belief-driven method for discovering unexpected
patterns. In: KDD, pp. 94-100 (1998)

9. Suzuki, E.: Undirected Discovery of Interesting Exception Rules. Int. Journal of
Pattern Recognition and Artificial Intelligence 16(8), 1065-1086 (2002)

10. Szathmary, L., Valtchev, P., Napoli, A.: Generating Rare Association Rules Using
the Minimal Rare Itemsets Family. Int. J. of Software and Informatics 4(3), 219-238
2010

11. g{in, ;(., Han, J.: CPAR: classification based on predictive association rules. In:
proceedings of the 2003 SIAM Int. Conf. on Data Mining, SDM 2003 (2003)

5 The peak query compares neighbor patterns; a peak pattern is a pattern whose all
neighbors have a value for a measure lower than a threshold

	ACTI-KHIARI-2011-1-p1
	ACTI-KHIARI-2011-1-p2
	ACTI-KHIARI-2011-1-p3
	ACTI-KHIARI-2011-1-p4
	ACTI-KHIARI-2011-1-p5
	ACTI-KHIARI-2011-1-p6

