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THE HOPF ALGEBRA OF FINITE TOPOLOGIES AND

T -PARTITIONS

LOÏC FOISSY AND CLAUDIA MALVENUTO

ABSTRACT. A noncommutative and noncocommutative Hopf algebra on finite
topologies HT is introduced and studied (freeness, cofreeness, self-duality. . .). Gen-
eralizing Stanley’s definition of P -partitions associated to a special poset, we define
the notion of T -partitions associated to a finite topology, and deduce a Hopf algebra
morphism from HT to the Hopf algebra of packed words WQSym. Generalizing
Stanley’s decomposition by linear extensions, we deduce a factorization of this mor-
phism, which induces a combinatorial isomorphism from the shuffle product to the
quasi-shuffle product of WQSym. It is strongly related to a partial order on packed
words, here described and studied.
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Introduction

In his thesis [16], Stanley introduced the notion of (P, ω,m)-partition associated
to a (P, ω) poset. More precisely, a (P , ω) poset, or equivalently a special poset, is
a finite set (P ,≤P ,≤) with two orders, the second being total, see section 1.2 for
examples. A (P, ω,m)-partition, or, briefly, a P -partition, associated to a special
poset P is a map f : P −→ N, such that:

(1) If i ≤P j in P , then f(i) ≤ f(j).
(2) If i ≤P j and i > j in P , then f(i) < f(j).

Stanley proved [16, 8] that the set of P -partitions of P can be decomposed into a
disjoint family of subsets indexed by the set of linear extensions of the partial order
≤P .

Special posets are organized as a Hopf algebra HSP , described in [11] as a subob-
ject of the Hopf algebra of double posets, that is to say finite sets with two partial
orders. Linear extensions are used to define a Hopf algebra morphism L from HSP

to the Malvenuto-Retenauer Hopf algebra of permutations FQSym [9, 10, 1]. Con-
sidering P -partitions which are packed words (which allows to find all P -partitions),
it is possible to define a Hopf algebra morphism Γ from HSP to WQSym, the Hopf
algebra of packed words. Then Stanley’s decomposition allows to define an injec-
tive Hopf algebra morphism ϕ : FQSym −→ WQSym, such that the following
diagram commutes:

HSP
L //

Γ
%%❑

❑❑
❑❑

❑❑
❑❑

❑
FQSym

ϕ

��
WQSym

Our aim in this the present text is a generalization of Stanley’s theorem on P -
partitions and its applications to combinatorial Hopf algebras. We here replace
special posets by special quasi-posets (P ,≤P ,≤), where ≤P is a quasi-order, that
is to say a reflexive and transitive relation, and ≤ is a total order. By Alexandroff’s
correspondence, these correspond to topologies on finite sets [n] = {1, . . . , n}. A
construction of a Hopf algebra on finite topologies (up to homeomorphism) is done
in [4], where one also can find a brief historic of the subject. We apply the same
construction here and obtain a Hopf algebra HT on finite topologies, which is non-
commutative and noncocommutative. It is algebraically studied in section 2; we
prove its freeness and cofreeness (proposition 5 and theorem 7), show that the Hopf
algebra of special posets is both a subalgebra and a quotient of HT via the con-
struction of a family of Hopf algebra morphisms θq (proposition 8). A (degenerate)
Hopf pairing is also defined on HT, with the help of Zelevinsky’s pictures, extending
the pairing on special posets of [11]. The set of topologies on a given set is totally
ordered by the refinement; using this ordering and a Möbius inversion, we define
another basis of HT, called the ribbon basis. The product and the coproducts are
described in this new basis (theorem 12).

The notions of T -partitions and linear extensions of a topology are defined in
section 4. A T -partition of a topology T on the set [n] is introduced in definition
13. Namely, if ≤T is the quasi-order associated to the topology T , a generalized
T -partition of T is a surjective map f : [n] −→ [p] such that:
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• if i ≤T j, then f(i) ≤ f(j).

The T -partition f is strict if:

• If i ≤T j, i > j and not j ≤T i, then f(i) < f(j).
• If i < j < k, i ≤T k, k ≤T i and f(i) = f(j) = f(k), then i ≤T j, j ≤T i,
j ≤T k and k ≤T i.

The last condition, which is empty for special posets, is necessary to obtain an
equivalent of Stanley’s decomposition, as it will be explained later. We now identify
any T -partition f associated to the topology T on [n] with the word f(1) . . . f(n). A
family of Hopf algebra morphisms Γ(q1,q2,q3) from HT to WQSym, parametrized by
triples of scalars, is defined in proposition 14. In particular, for any finite topology
T :

Γ(1,1,1)(T ) =
∑

f generalized T -partition of T

f, Γ(1,0,0)(T ) =
∑

f strict T -partition of T

f.

Linear extensions are introduced in definition 15. They are used to defined a
Hopf algebra morphism L : HT −→ WQSym, up to a change of the product
of WQSym: one has to replace its usual product by the shifted shuffling product

, used in [5]. We then look for an equivalent of Stanley’s decomposition theorem
of P -partitions, reformulated in terms of Hopf algebras, that is to say we look for
a Hopf algebra morphism ϕ(q1,q2,q3) making the following diagram commute:

HT

L //

Γ(q1,q2,q3) ''◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

(WQSym, ,∆)

ϕ(q1,q2,q3)

��
(WQSym, .,∆)

We prove in proposition 21 that such a ϕ(q1,q2,q3) exists if, and only if, (q1, q2, q3) =
(1, 0, 0) or (0, 1, 0), which justifies the introduction of strict T -partitions. The mor-
phism ϕ(1,0,0) is defined in proposition 19, with the help of a partial order on packed
words introduced in definition 17; the set decomposition of T -partitions is stated
in corollary 20. Finally, the partial order on packed words is studied in section 4.5,
with a combinatorial application in corollary 26.

The text is organized as follows. The first section recalls the construction of the
Hopf algebras WQSym, FQSym and HSP . The second section deals with the
Hopf algebra of topologies and its algebraic study; the ribbon basis is the object of
the third section. The equivalent of Stanley’s decomposition, from a combinatorial
and a Hopf algebraic point of view, is the object of the last section, together with
the study of the partial order on packed words.

Aknowledgment. The research leading these results was partially supported
by the French National Research Agency under the reference ANR-12-BS01-0017.

Notations. For all n ≥ 0, we put [n] = {1, . . . , n}. In particular, [0] = ∅. We
denote by N>0 the set of strictly positive integers.

1. Reminders

1.1. WQSym and FQSym. Let us first recall the construction of WQSym [13].
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• A packed word is a word f whose letters are in N>0, such that for all
1 ≤ i ≤ j,

j appears in f =⇒ i appears in f.

Here are the packed words of length ≤ 3:

1 = ∅; (1); (12), (21), (11); (123), (132), (213), (231), (312), (321),

(122), (212), (221), (112), (121), (211), (111).

• Let f = f(1) . . . f(n) be a word whose letters are in N>0. There exists
a unique increasing bijection φ from {f(1), . . . , f(n)} into a set [m]. The
packed word Pack(f) is φ(f(1)) . . . φ(f(n)).

• If f is a word whose letters are in N>0, and I is a subset of N>0, then f|I is
the subword of f obtained by keeping only the letters of f which are in I.

As a vector space, a basis of WQSym is given by the set of packed words. Its
product is defined as follows: if f and f ′ are packed words of respective lengths n
and n′:

f.f ′ =
∑

f ′′ packed word of length n + n′,
Pack(f ′′(1)...f ′′(n))=f,

Pack(f ′′(n+1)...f ′′(n+n′))=f ′

f ′′.

For example:

(112).(12) = (11212) + (11213) + (11214) + (11223) + (11224)

+ (11234) + (11312) + (11323) + (11324) + (11423)

+ (22312) + (22313) + (22314) + (22413) + (33412).

The unit is the empty packed word 1 = ∅.
If f is a packed word, its coproduct in WQSym is defined by:

∆(f) =

max(f)
∑

k=0

f|[k] ⊗ Pack(f|N>0\[k]).

For example:

∆((511423)) = 1⊗ (511423) + (1)⊗ (4312) + (112)⊗ (321)

+ (1123)⊗ (21) + (11423)⊗ (1) + (511423)⊗ 1.

Then (WQSym, .,∆) is a graded, connected Hopf algebra.

We denote by j the involution on packed words defined in the following way:
if f = f(1) . . . f(n) is a packed word of length n, there exists a unique decreasing
bijection ϕ from {f(1), . . . , f(n)} into a set [l]. We put j(f) = ϕ(f(1)) . . . ϕ(f(n)).
For example, j((513321)) = (152235). The extension of j to WQSym is a Hopf
algebra isomorphism from (WQSym, .,∆) to (WQSym, .,∆op).

In particular, permutations are packed words. Note that the subspace of WQSym

generated by all the permutations is a coalgebra, but not a subalgebra: for example,
(1).(1) = (12) + (21) + (11). On the other side, the subspace of WQSym gener-
ated by packed words which are not permutations is a biideal, and the quotient of
WQSym by this biideal is the Hopf algebra of permutations FQSym [9, 1]. As a
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vector space, a basis of FQSym is given by the set of all permutations; if σ and σ′

are two permutations of respective lengths n and n′,

σ.σ′ =
∑

σ′′∈Sn+n′ ,

Pack(σ′′(1)...σ′′(n))=σ,

Pack(σ′′(n+1)...σ′′(n+n′))=σ′

σ′′ =
∑

ǫ∈Sh(n,n′)

ǫ ◦ (σ ⊗ τ),

where Sh(n, n′) is the set of (n, n′)-shuffles, that is to say permutations ǫ ∈ Sn+n′

such that ǫ(1) < . . . < ǫ(n) and ǫ(n+ 1) < . . . < ǫ(n+ n′). For example:

(132).(21) = (13254) + (14253) + (15243) + (14352) + (15342)

+ (15432) + (24351) + (25341) + (25431) + (35421).

If σ ∈ Sn, its coproduct is given by:

∆(σ) =

n
∑

k=0

σ|[k] ⊗ Pack(σ|N>0\[k]).

For example:

∆((51423)) = 1⊗ (51423) + (1)⊗ (4312) + (12)⊗ (321)

+ (123)⊗ (21) + (1423)⊗ (1) + (51423)⊗ 1.

The canonical epimorphism from WQSym to FQSym is denoted by ̟.

We shall need the standardisation map, which associates a permutation to any
packed word. If f = f(1) . . . f(n) is a packed word, then Std(f) is the unique
permutation σ ∈ Sn such that for all 1 ≤ i, j ≤ n:

f(i) < f(j) =⇒ σ(i) < σ(j),

(f(i) = f(j) and i < j) =⇒ σ(i) < σ(j).

In particular, if f is a permutation, Std(f) = f . Here are examples of standardiza-
tion of packed words which are not permutations:

Std(11) = (12), Std(122) = (123), Std(212) = (213), Std(221) = (231),

Std(112) = (123), Std(121) = (132), Std(211) = (312), Std(111) = (123).

1.2. Special posets. Let us briefly recall the construction of the Hopf algebra on
special posets [11, 3]. A special (double) poset is a family (P,≤,≤tot), where P is
a finite set, ≤ is a partial order on P and ≤tot is a total order on P . For example,
here are the special posets of cardinality ≤ 3: they are represented by the Hasse
graph of ≤, the total order ≤tot is given by the indices of the vertices.

1 = ∅ ; q1 ; q1 q2 , q
q

1
2 , q

q

2
1 ;

q1 q2 q3 , q
q

1
2
q3 , q

q

1
3
q2 , q

q

2
1
q3 , q

q

2
3
q1 , q

q

3
1
q2 ,

q

q

3
2
q1 , q

qq

∨1

32

, q

qq

∨2

31

, q

qq

∨3

21

,
q

∧qq 12 3 ,
q

∧qq 21 3 ,
q

∧qq 31 2 , q
q

q

1
2

3

, q
q

q

1
3

2

, q
q

q

2
1

3

, q
q

q

2
3

1

, q
q

q

3
1

2

, q
q

q

3
2

1

.

If P = (P,≤,≤tot) and Q = (Q,≤,≤tot) are two special posets, we define a special
posets P.Q in the following way:

• As a set, P.Q = P ⊔Q.
• If i, j ∈ P , then i ≤ j in P.Q if, and only if, i ≤ j in P , and i ≤tot j in P.Q

if, and only if, i ≤tot j in P .
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• If i, j ∈ Q, then i ≤ j in P.Q if, and only if, i ≤ j in Q, and i ≤tot j in P.Q
if, and only if, i ≤tot j in Q.

• If i ∈ P and j ∈ Q, then i and j are not comparable for ≤, and i ≤tot j.

For example, q

q

1
3
q2 . q

qq

∨1

32

= q

q

1
3
q2 q

qq

∨4

65

. The vector space generated by the set of (iso-
classes) of special posets is denoted by HSP . This product is bilinearly extended
to HSP , making it an associative algebra. The unit is the empty special poset 1 = ∅.

If P is a special poset and I ⊆ P , then by restriction I is a special poset. We
shall say that I is an ideal of P if for all i, j ∈ P :

(i ∈ I and i ≤ j) =⇒ j ∈ I.

We give HSP the coproduct defined by:

∆(P ) =
∑

I ideal of P

(P \ I)⊗ I.

For example:

∆( q

qq

q

∨2

13

4

) = q

qq

q

∨2

13

4

⊗1+1⊗ q

qq

q

∨2

13

4

+ q

qq

∨2

13

⊗ q1+ q

q

q

1
2

3

⊗ q1+ q

q

1
2 ⊗ q1 q2+ q

q

2
1 ⊗ q

q

1
2 + q1⊗ q

q

2
3
q1 .

Let P = (P,≤,≤tot) be a special poset. A linear extension of P is a total order
≤′ extending the partial order ≤. Let ≤′ be a linear extension of P . Up to a unique
isomorphism, we can assume that P = [n] as a totally ordered set. For any i ∈ [n],
we denote by σ(i) the index of i in the total order ≤′. Then σ ∈ Sn, and we now
identify ≤′ and σ. The following map is a surjective morphism of Hopf algebras:

L :







HSP −→ FQSym

P −→
∑

σ linear extension of P

σ.

For example:

L(
q

∧qq 1

2 3 ) = (312) + (321), L(
q

∧qq 2

1 3 ) = (132) + (231), L(
q

∧qq 31 2 ) = (123) + (213),

L( q

qq

∨1

32

) = (123) + (132), L( q

qq

∨2

31

) = (213) + (312), L( q

qq

∨3

21

) = (231) + (321),

L( q
q

q

1
2

3

) = (123), L( q
q

q

2
1

3

) = (213), L( q
q

q

3
1

2

) = (231),

L( q
q

q

1
3

2

) = (132), L( q
q

q

2
3

1

) = (312), L( q
q

q

3
2

1

) = (321).

Let P be a special poset. With the help of the total order of P , we identify
P with the set [n], where n is the cardinality of P . A P -partition of P is a map
f : P −→ [n] such that:

(1) If i ≤P j in P , then f(i) ≤ f(j).
(2) If i ≤P j and i > j in P , then f(i) < f(j).

We represent a P -partition of P by the word f(1) . . . f(n). Obviously, if w =
w1 . . . wn is a word, it is a P -partition of the special poset P if, and only if, Pack(w)
is a P -partition of P . We define:

Γ :







HSP −→ WQSym

P −→
∑

w packed word, P -partition of P

w.
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For example:

Γ( q1 ) = (1),

Γ( q1 q2 ) = (12) + (21) + (11),

Γ( q
q

1
2 ) = (12) + (11),

Γ( q
q

2
1 ) = (21),

Γ( q

qq

∨1

32

) = (123) + (132) + (122) + (112) + (121) + (111),

Γ( q

qq

∨2

31

) = (213) + (312) + (212) + (211),

Γ( q

qq

∨3

21

) = (231) + (321) + (221).

We shall prove in section 4 that Γ is a Hopf algebra morphism.

Remark. There is a natural surjective Hopf algebra morphism ̺ from WQSym

to the Hopf algebra of quasisymmetric functions QSym [14]. For any special poset
P :

̺ ◦ Γ(P) =
∑

f P -partition of w

xf(1) . . . xf(n) ∈ QSym ⊆ Q[[x1, x2, . . .]].

So ̺ ◦ Γ(P) is the generating function of P in the sense of [16].

We shall also prove that Stanley’s decomposition theorem can be reformulated
in the following way: let us consider the map

ϕ :







FQSym −→ WQSym

σ −→
∑

w packed word, Std(w) = σ

w.

Then ϕ is an injective Hopf algebra morphism, such that ϕ◦L = Γ. Combinatorially
speaking, for any special poset P :

{P -partition of P} =
⊔

σ linear extension of P

{w | Pack(w) = σ}.

1.3. Infinitesimal bialgebras. An infinitesimal bialgebra [7] is a triple (A,m,∆)
such that:

• (A,m) is a unitary, associative algebra.
• (A,∆) is a counitary, coassociative algebra.
• For all x, y ∈ A, ∆(xy) = (x⊗ 1)∆(y) + ∆(x)(1 ⊗ y)− x⊗ y.

The standard examples are the tensor algebras T (V ), with the concatenation prod-
uct and the deconcatenation coproduct. By the rigidity theorem of [7], these are
essentially the unique examples:

Theorem 1. Let A be a graded, connected infinitesimal bialgebra. Then A is
isomorphic to T (Prim(A)) as an infinitesimal bialgebra.

2. Topologies on a finite set

2.1. Notations and definitions. Let X be a set. Recall that a topology on X is
a family T of subsets of X , called the open sets of T , such that:

(1) ∅, X ∈ T .
(2) The union of an arbitrary number of elements of T is in T .
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(3) The intersection of a finite number of elements of T is in T .

Let us recall from [2] the bijective correspondence between topologies on a finite
set X and quasi-orders on X :

(1) Let T be a topology on the finite set X . The relation ≤T on X is defined
by i ≤T j if any open set of T which contains i also contains j. Then ≤T

is a quasi-order, that is to say a reflexive, transitive relation. Moreover, the
open sets of T are the ideals of ≤T , that is to say the sets I ⊆ X such that,
for all i, j ∈ X :

(i ∈ I and i ≤T j) =⇒ j ∈ I.

(2) Conversely, if ≤ is a quasi-order on X , the ideals of ≤ form a topology on
X denoted by T≤. Moreover, ≤T≤

=≤, and T≤T = T . Hence, there is a
bijection between the set of topologies on X and the set of quasi-orders on
X .

(3) Let T be a topology on X . The relation ∼T on X , defined by i ∼T j if
i ≤T j and j ≤T i, is an equivalence on X . Moreover, the set X/ ∼T is
partially ordered by the relation defined by i ≤T j if i ≤ j. Consequently,
we shall represent quasi-orders on X (hence, topologies on X) by the Hasse
diagram of X/ ∼T , the vertices being the equivalence classes of ∼T .

For example, here are the topologies on [n], n ≤ 3:

1 = ∅ ; q1 ; q1 q2 , q
q

1
2 , q

q

2
1 , q1, 2 ;

q1 q2 q3 , q
q

1
2
q3 , q

q

1
3
q2 , q

q

2
1
q3 , q

q

2
3
q1 , q

q

3
1
q2 ,

q

q

3
2
q1 , q

qq

∨1

32

, q

qq

∨2

31

, q

qq

∨3

21

,
q

∧qq 12 3 ,
q

∧qq 21 3 ,
q

∧qq 31 2 , q
q

q

1
2

3

, q
q

q

1
3

2

, q
q

q

2
1

3

, q
q

q

2
3

1

, q
q

q

3
1

2

, q
q

q

3
2

1

,

q1, 2 q3 , q1, 3 q2 , q2, 3 q1 , q
q

1, 2
3 , q

q

1, 3
2 , q

q

2, 3
1 , q

q

3
1, 2 , q

q

2
1, 3 , q

q

1
2, 3 , q1, 2, 3 .

The number tn of topologies on [n] is given by the sequence A000798 in [15]:

n 1 2 3 4 5 6 7 8 9
tn 1 4 29 355 6 942 209527 9 535 241 642 779 354 63 260 289 423

n 10 11 12
tn 8 977 053 873 043 1 816 846 038 736 192 519 355 571 065 774 021

The set of topologies on [n] will be denoted by Tn, and we put T =
⊔

n≥0

Tn.

If T is a finite topology on a set X , then ι(T ) = {X \O | O ∈ T } is also a finite
topology, on the same set X . Consequently, ι defines a involution of the set T. The
quasi-order associated to ι(T ) is ≤ι(T )=≥T .

Notations. Let f be a packed word of length n. We define a quasi-order ≤f on
[n] by:

i ≤f j if f(i) ≤ f(j).

The associated topology is denoted by Tf . The open sets of this topology are the
subsets f−1({i, . . . ,max(f)}), 1 ≤ i ≤ max(f), and ∅. For example:

T(331231) = q

q

q

3, 6
4

1, 2, 5

.
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2.2. Two products on finite topologies. Notations. Let O ⊆ N and let n ∈ N.
The set O(+n) is the set {k + n | k ∈ O}.

Definition 2. Let T ∈ Tn and T ′ ∈ Tn′ .

(1) The topology T .T ′ is the topology on [n + n′] which open sets are the sets
O ⊔O′(+n), with O ∈ T and O′ ∈ T ′.

(2) The topology T ↓ T ′ is the topology on [n+n′] which open sets are the sets
O ⊔ [n′](+n), with O ∈ T , and O′(+n), with O′ ∈ T ′.

Example. q

qq

∨1

32

. q
q

2
1 = q

qq

∨1

32
q

q

5
4 and q

qq

∨1

32

↓ q

q

2
1 = q∨

qq

q

q

∧
1

32

5

4

.

Proposition 3. These two products are associative, with ∅ = 1 as a common
unit.

Proof. Obviously, for any T ∈ T, 1.T = T .1 = 1 ↓ T = T ↓ 1 = T . Let T ∈ Tn,
and T ′ ∈ Tn′ . The quasi-order associated to T .T ′ is:

{(i, j) | i ≤T j} ⊔ {(i+ n, j + n) | i ≤T ′ j}.

The quasi-order associated to T ↓ T ′ is:

{(i, j) | i ≤T j} ⊔ {(i+ n, j + n) | i ≤T ′ j} ⊔ {(i, j) | 1 ≤ i ≤ n < j ≤ n+ n′}.

Let T ∈ Tn, T ′ ∈ Tn′ and T ′′ ∈ Tn′′ . The quasi-orders associated to (T .T ′).T ′′

and to T .(T ′.T ′′) are both equal to:

{(i, j) | i ≤T j} ⊔ {(i+ n, j + n) | i ≤T ′ j} ⊔ {(i+ n+ n′, j + n+ n′) | i ≤T ′′ j}.

So (T .T ′).T ′′ = T .(T ′.T ′′). The quasi-orders associated to (T ↓ T ′) ↓ T ′′ and to
T ↓ (T ′ ↓ T ′′) are both equal to:

{(i, j) | i ≤T j} ⊔ {(i+ n, j + n) | i ≤T ′ j} ⊔ {(i+ n+ n′, j + n+ n′) | i ≤T ′′ j}

⊔{(i, j) | 1 ≤ i ≤ n < j ≤ n+n′ + n′′}⊔ {(i, j) | n < i ≤ n+n′ < j ≤ n+n′ + n′′}.

So (T ↓ T ′) ↓ T ′′ = T ↓ (T ′ ↓ T ′′). �

Definition 4. (1) We denote by HT the vector space generated by T. It is
graded, the elements of Tn being homogeneous of degree n. We extend the
two products defined earlier on HT.

(2) Let T ∈ T, different from 1.
(a) We shall say that T is indecomposable if it cannot be written as T =

T ′.T ′′, with T ′, T ′′ 6= 1.
(b) We shall say that T is ↓-indecomposable if it cannot be written as

T = T ′ ↓ T ′′, with T ′, T ′′ 6= 1.
(c) We shall say that T is bi-indecomposable if it is both indecomposable

and ↓-indecomposable.

Note that (HT , ., ↓) is a 2-associative algebra [7], that is to say an algebra with
two associative products sharing the same unit.

Proposition 5. (1) The associative algebra (HT, .) is freely generated by
the set of indecomposable topologies.

(2) The associative algebra (HT, ↓) is freely generated by the set of ↓-indecompo-
sable topologies.

(3) The 2-associative algebra (HT, ., ↓) is freely generated by the set of bi-
indecomposable topologies.
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Proof. 1. An easy induction on the degree proves that any T ∈ T can be written
as T = T1. . . . .Tk, with T1, . . . , Tk indecomposable.

Let us assume that T = T1. · · · .Tk = T ′
1 . · · · .T

′
l , with T1, . . . , Tk, T ′

1 , . . . , T
′
l

indecomposable topologies. Let m be the smallest integer ≥ 1 such that for all
1 ≤ i ≤ m < j ≤ n, i and j are not comparable for ≤T . By definition of
the product ., for all i ≤ deg(T1), for all j > deg(T1), i and j are not compa-
rable for ≤T , so m ≤ deg(T1). Let T ′ be the restriction of the topology T1 to
{1, . . . ,m} and T ′′ be the restriction of the topology T1 to {m + 1, . . . , deg(T1)},
reindexed to {1, . . . , deg(T1) −m}. By definition of m, T1 = T ′.T ′′. As T1 is in-
decomposable, T ′ = 1 or T ′′ = 1; as m ≥ 1, T ′′ = 1, so T ′ = T1. Similarly,
T ′ = T ′

1 = T1. The restriction of T to {m + 1, . . . , deg(T )}, after a reindexation,
gives T2. · · · .Tk = T ′

2 . · · · .T
′
l . We conclude by an induction on the degree of T .

2. Similar proof. For the unicity of the decomposition, use the smallest integer
m ≥ 1 such that for all i ≤ m < j ≤ n, i ≤T j.

3. First step. Let T ∈ Tn, n ≥ 1. Let us assume that T is not ↓-indecomposable.
Then T = T ′ ↓ T ′′, with T ′, T ′′ 6= 1, so 1 ≤T n: this implies that T is indecom-
posable. Hence, one, and only one, of the following assertions holds:

• T is indecomposable and not ↓-indecomposable.
• T is not indecomposable and ↓-indecomposable.
• T is bi-indecomposable.

Second step. Let (A, . ↓) be a 2-associative algebra, and let aT ∈ A for any
bi-indecomposable T ∈ T. Let us prove that there exists a unique morphism of
2-associative algebras φ : HT −→ A, such that φ(T ) = aT for all bi-indecomposable
T ∈ T. The proof will follow, since HT satisfies the universal property of the free
2-associative algebra generated by the bi-indecomposable elements. We define φ(T )
for T ∈ T by induction on deg(T ) in the following way:

(1) φ(1) = 1A.
(2) If T is bi-indecomposable, then φ(T ) = aT .
(3) If T is indecomposable and not ↓-indecomposable, we write uniquely T =

T1 ↓ . . . ↓ Tk, with k ≥ 2, T1, . . . , Tk ∈ T, ↓-indecomposable. Then φ(T ) =
φ(T1) ↓ . . . ↓ φ(Tk).

(4) If T is not indecomposable and ↓-indecomposable, we write uniquely T =
T1. · · · .Tk, with k ≥ 2, T1, . . . , Tk ∈ T, indecomposable. Then φ(T ) =
φ(T1). · · · .φ(Tk).

By the first step, φ is well-defined. By the unicity of the decomposition into de-
composables or ↓-indecomposables, φ is a morphism of 2-associative algebras. �

We denote by F (X) the generating formal series of all topologies on [n], by
FI(X) the formal series of indecomposable topologies on [n], by F↓I(X) the formal
series of ↓-indecomposable topologies on [n], and by FBI(X) the formal series on
bi-indecomposable topologies on [n]. Then:

FI(X) = F↓I(X) =
F (X)− 1

F (X)
, FBI(X) =

−2 + 3F (X)− F (X)2

F (X)
.



THE HOPF ALGEBRA OF FINITE TOPOLOGIES AND T -PARTITIONS 11

This gives:

n 1 2 3 4 5 6 7 8 9
I, ↓ I 1 3 22 292 6 120 193 594 9 070 536 622 336 756 61 915 861 962
BI 1 2 15 229 5 298 177 661 8 605 831 601 894 158 60 571 434 501

n 10 11 12
I, ↓ I 8 846 814 822 932 1 798 543 906 246 948 515 674 104 905 890 202
BI 8 716 575 772 821 1 780 241 773 757 704 511 992 638 746 006 383

2.3. A coproduct on finite topologies. Notations.

(1) Let X be a finite, totally ordered set of cardinality n, and T a topology on
X . There exists a unique increasing bijection φ from X to [n]. We denote
by Std(T ) the topology on [n] defined by:

Std(T ) = {φ(O) | O ∈ T }.

It is an element of Tn.
(2) Let X be a finite set, and T be a topology on X . For any Y ⊆ X , we

denote by T|Y the topology induced by T on Y , that is to say:

T|Y = {O ∩ Y | O ∈ T }.

Note that if Y is an open set of T , T|Y = {O ∈ T | O ⊆ Y }.

Proposition 6. Let T ∈ Tn, n ≥ 1. We put:

∆(T ) =
∑

O∈T

Std(T|[n]\O)⊗ Std(T|O).

Then:

(1) (HT, .,∆) is a graded Hopf algebra.
(2) (HT, ↓,∆) is a graded infinitesimal bialgebra.
(3) The involution ι defines a Hopf algebra isomorphism from (HT, .,∆) to

(HT, .,∆
op).

Proof. Let T ∈ Tn, n ≥ 0. Then:

(∆⊗ Id) ◦∆(T )

=
∑

O∈T , O′∈T|[n]\O

Std((T|[n]\O)|([n]\O)\O′)⊗ Std((T|[n]\O)|O′)⊗ Std(T|O)

=
∑

O∈T , O′∈T|[n]\O

Std(T|[n]\(O⊔O′))⊗ Std(T|O′)⊗ Std(T|O).

If O ∈ T and O′ ∈ T|[n]\O, then O ⊔O′ is an open set of T . Conversely, if O1 ⊆ O2

are open sets of T , then O2 \O1 ∈ T|[n]\O1
. Putting O1 = O and O2 = O ⊔O′:

(∆⊗ Id) ◦∆(T ) =
∑

O1⊆O2∈T

Std(T|[n]\O2
)⊗ Std(T|O2\O1

)⊗ Std(T|O1
).

Moreover:

(Id⊗∆) ◦∆(T ) =
∑

O∈T , O′∈T|O

Std(T|[n]\O)⊗ Std(T|O\O′)⊗ Std(T|O′)
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If O is an open set of T and O′ is an open set of T|O, then O′ is an open set of T .
Hence, putting O1 = O′ and O2 = O:

(Id⊗∆) ◦∆(T ) =
∑

O1⊆O2∈T

Std(T|[n]\O2
)⊗ Std(T|O2\O1

)⊗ Std(T|O1
).

This proves that ∆ is coassociative. It is obviously homogeneous of degree 0.
Moreover, ∆(1) = 1⊗ 1 and for any T ∈ Tn, n ≥ 1:

∆(T ) = T ⊗ 1 + 1⊗ T +
∑

∅(O([n]

Std(T|[n]\O)⊗ Std(T|O).

So ∆ has a counit.
Let T ∈ Tn, T ′ ∈ Tn′ , n, n′ ≥ 0. By definition of T .T ′:

∆(T .T ′) =
∑

O∈T ,O′∈T ′

Std((T .T ′)|[n+n′]\O.O′)⊗ Std((T .T ′)|O.O′)

=
∑

O∈T ,O′∈T ′

Std(T|[n]\O).Std(T
′
[n′]\O′)⊗ Std(T|O).Std(T|O′)

=
∑

O∈T ,O′∈T ′

(

Std(T|[n]\O)⊗ Std(T|O)
)

.
(

Std(T ′
|[n′]\O′)⊗ Std(T|O′)

)

= ∆(T ).∆(T ′).

Hence, (HT , .,∆) is a Hopf algebra.

By definition of T ↓ T ′:

∆(T ↓ T ′) =
∑

O∈T ,O 6=∅

Std
(

(T ↓ T ′)|[n+n′]\(O↓[n′])

)

⊗ Std
(

(T ↓ T ′)|O↓[n′]

)

+
∑

O′∈T ′,O′ 6=[n′]

Std
(

(T ↓ T ′)|[n+n′]\O′(+n)

)

⊗ Std
(

(T ↓ T ′)|O′(+n)

)

+ Std
(

(T ↓ T ′)|[n+n′]\[n′](+n)

)

⊗ Std
(

(T ↓ T ′)[n′](+n)

)

=
∑

O∈T ,O 6=∅

Std(T|[n]\O)⊗ Std(T|O) ↓ T ′

+
∑

O′∈T ′,O′ 6=[n′]

T ↓ Std(T ′
|[n′]\O′)⊗ Std(T ′

|O′) + T ⊗ T ′

=
∑

O∈T ,O 6=∅

(

Std(T|[n]\O)⊗ Std(T|O)
)

↓ (1⊗ T ′)

+
∑

O′∈T ′,O′ 6=[n′]

(T ⊗ 1) ↓
(

Std(T ′
|[n′]\O′)⊗ Std(T ′

|O′)
)

+ T ⊗ T ′

= (∆(T )− T ⊗ 1) ↓ (1⊗ T ′) + (T ⊗ 1) ↓ (∆(T )− 1⊗ T ′) + T ⊗ T ′

= ∆(T ) ↓ (1 ⊗ T ′) + (T ⊗ 1) ↓ ∆(T )− T ⊗ T ′.

Hence, (HT, ↓,∆) is an infinitesimal bialgebra.



THE HOPF ALGEBRA OF FINITE TOPOLOGIES AND T -PARTITIONS 13

For all T , T ′ ∈ T, ι(T .T ′) = ι(T ).ι(T ′). Moreover:

∆(ι(T )) =
∑

O∈T

Std(ι(T )|O)⊗ Std(ι(T )|[n]\O)

=
∑

O∈T

ι(Std(T|O))⊗ ι(Std(T|[n]\O))

= (ι⊗ ι) ◦∆op(T ).

So ι is a Hopf algebra morphism from HT to Hcop
T

. �

As a consequence of theorem 1:

Theorem 7. The graded, connected coalgebra (HT,∆) is cofree, that is to say
is isomorphic to the tensor algebra on the space of its primitive elements with the
deconcatenation coproduct.

Remark. Forgetting the total order on [n], that is to say considering isoclasses
of finite topologies, we obtain the Hopf algebra of finite spaces of [4] as a quotient
of HT; the product ↓ induces the product ≻ on finite spaces.

2.4. Link with special posets. Let T ∈ T. We put:

c(T ) = deg(T )− ♯{equivalence classes of ∼T }.

Note that c(T ) ≥ 0. Moreover, c(T ) = 0 if, and only if, the relation ∼T is the
equality, or equivalently if the quasi-order ≤T is an order, that is to say if T is T0
[17].

If T ∈ Tn, n ≥ 0, is T0, then for any open set O of T , T|O and T|[n]\O are also
T0. Moreover, if T and T ′ are T0, then T .T ′ and T ′ ↓ T ′ also are. Hence, the
subspace HT0 of HT generated by T0 topologies is a Hopf subalgebra. Considering
T0 topologies as special posets, it is isomorphic to the Hopf algebra of special posets
HSP : this defines an injective Hopf algebra morphism ι : HSP −→ HT. We now
identify HSP with its image by ι, that is to say HT0 . Note that HSP is stable under
↓, so is a Hopf 2-associative subalgebra of HT.

Notation. Let T ∈ Tn, n ≥ 0. We denote by T the special poset Std([n]/ ∼T ),
resulting on the set of equivalence classes of ∼T , where the elements of [n]/ ∼T ,
that is to say the equivalence classes of ∼T , are totally ordered by the smallest
element of each class. In this way, T is a special poset.

Examples.

q1, 2 q3 = q1 q2 , q

q

1, 2
3 = q

q

1
2 , q

q

3
1, 2 = q

q

2
1 , q1, 2 = q1 ,

q1, 3 q2 = q1 q2 , q

q

1, 3
2 = q

q

1
2 , q

q

2
1, 3 = q

q

2
1 , q1, 2, 3 = q1 .

q2, 3 q1 = q1 q2 , q

q

2, 3
1 = q

q

2
1 , q

q

1
2, 3 = q

q

1
2 ,

Proposition 8. Let q ∈ K. The following map is a surjective morphism of Hopf
2-associative algebras:

θq :

{

HT −→ HSP

T −→ qc(T )T .
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Proof. If T , T ′ ∈ T, then T .T ′ = T .T ′ and T ↓ T ′ = T ↓ T ′. Moreover,
deg(T .T ′) = deg(T ↓ T ′) = deg(T ) + deg(T ′), and the number of equivalence
classes of ∼T .T ′ and ∼T ↓T ′ are both equal to the sum of the number of equivalence
classes of ∼T and ∼′

T . Hence, c(T .T ′) = c(T ↓ T ′) = c(T ) + c(T ′), and:

θq(T .T
′) = qc(T .T ′)T .T ′ = qc(T )qc(T

′)T .T ′ = θq(T ).θq(T
′),

θq(T ↓ T ′) = qc(T ↓T ′)T ↓ T ′ = qc(T )qc(T
′)T ↓ T ′ = θq(T ) ↓ θq(T

′),

so θq is a 2-associative algebra morphism. If T ∈ Tn, n ≥ 1, then any open set of
T is a union of equivalence classes of ∼T . So there is a bijection:

{

{open sets of T } −→ {ideals of T }
O −→ Std(O/ ∼T )

Moreover, c(T ) = c(T|[n]\O) + c(T|O) = c(Std(T|[n]\O)) + c(Std(T|O)). If T has k
equivalence classes, we obtain:

∆ ◦ θq(T ) = qc(T )∆(T )

= qc(T )
∑

O∈T

(([n] \O)/ ∼T )⊗ (O/ ∼T )

=
∑

O∈T

qc(Std(T|[n]\O))qc(Std(T|O))Std(T|[n]\O)⊗ Std(T|O)

= (θq ⊗ θq) ◦∆(T ).

If T ∈ T is T0, then T = T and c(T ) = 0, so θq(T ) = T : θq is surjective. �

We obtain a commutative diagram of Hopf 2-associative algebras:

HT

θq
����

HSP

-



ι

;;✇✇✇✇✇✇✇✇

Id
// HSP

Examples.

θq( q1, 2 q3 ) = q q1 q2 , θq( q
q

1, 2
3 ) = q q

q

1
2 , θq( q

q

3
1, 2 ) = q q

q

2
1 , θq( q1, 2 ) = q q1 ,

θq( q1, 3 q2 ) = q q1 q2 , θq( q
q

1, 3
2 ) = q q

q

1
2 , θq( q

q

2
1, 3 ) = q q

q

2
1 , θq( q1, 2, 3) = q2 q1 .

θq( q2, 3 q1 ) = q q1 q2 , θq( q
q

2, 3
1 ) = q q

q

2
1 , θq( q

q

1
2, 3 ) = q q

q

1
2 ,

Remarks.

(1) In particular, for any T ∈ T:

θ0(T ) =

{

T if T is T0,
0 otherwise.

(2) θq is homogeneous for the gradation of HT by the cardinality if, and only
if, q = 0. It is always homogeneous for the gradation by the number of
equivalence classes (note that this gradation is not finite-dimensional).
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2.5. Pictures and duality. The concept of pictures between tableaux was intro-
duced by Zelevinsky in [18], and generalized to pictures between double posets by
Malvenuto and Reutenauer in [11]. We now generalize this for finite topologies, to
obtain a Hopf pairing on HT.

Notations. Let ≤T be a quasi-order on [n], and let i, j ∈ [n]. We shall write
i <T j if (i ≤T j and not j ≤T i).

Definition 9. Let T ∈ Tk, T ∈ Tl, and let f : [k] −→ [l]. We shall say that f
is a picture from T to T ′ if:

• f is bijective;
• For all i, j ∈ [k], i <T j =⇒ f(i) < f(j);
• For all i, j ∈ [k], f(i) <T ′ f(j) =⇒ i < j;
• For all i, j ∈ [k], i ∼T j ⇐⇒ f(i) ∼T ′ f(j);

The set of pictures between T and T ′ is denoted by Pic(T , T ′).

Proposition 10. We define a pairing on HT by 〈T , T ′〉 = ♯P ic(T , T ′) for all
T , T ′ ∈ T. Then this pairing, when extended by linearity, is a symmetric Hopf
pairing. Moreover, ι is an isometry for this pairing.

Proof. First, if T , T ′ ∈ T, Pic(T ′, T ) = {f−1 | f ∈ Pic(T , T ′)}, so 〈T ′, T 〉 =
〈T , T ′〉: the pairing is symmetric.

We fix T1, T2, T ∈ T, of respective degrees n1, n2 and n. Let f ∈ Pic(T1.T2, T ).
Let x ∈ [n1 + n2] \ [n1] and y ∈ [n1 + n2], such that f(x) ≤T f(y). Two cases can
occur:

• f(x) <T f(y). Then x < y, so y ∈ [n1 + n2] \ [n1].
• f(x) ∼T f(y). Then x ∼T1.T2 y. By definition of T1.T2, [n1 + n2] \ [n1] is

an open set of T1.T2, so y ∈ [n1 + n2] \ [n1].

In both cases, y ∈ [n1 + n2] \ [n1], so f([n1 + n2] \ [n1]) is an open set of T , which
we denote by Of . Moreover, by restriction, Std(f|[n1]) is a picture between T1 and
Std(T|[n]\Of

) and Std(f|[n1+n2]\[n1]) is a picture between T2 and Std(T|O). We can
define a map:

φ :







Pic(T1.T2, T ) −→
⊔

O∈T

Pic(T1, Std(T|[n]\O))× Pic(T2, Std(T|O))

f −→ (Std(f|[n1]), Std(f|[n1+n2]\[n1]))

This map is clearly injective. Let O ∈ T , (f1, f2) ∈ Pic(T1, Std(T|[n]\O)) ×
Pic(T2, Std(T|O)). Let f be the unique bijection [n1 + n2] −→ [n] such that
f([n1 + n2] \ [n1]) = O, f1 = Std(f|[n1]) and f2 = Std(f|[n1+n2]\[n1]). Let us
prove that f is a picture between T1.T2 and T .

• If i <T1.T2 j in [n1 + n2], then (i, j) ∈ [n1]
2 or (i, j) ∈ ([n1 + n2] \ [n1])

2. In
the first case, f1(i) < f1(j), so f(i) < f(j). In the second case, f2(i−n1) <
f2(j − n1), so f(i) < f(j).

• If f(i) <T f(j) in T , as f([n1 +n2] \ [n1]) = O is an open set, (i, j) ∈ [n1]
2

or (i, j) ∈ ([n1+n2]\[n1])
2 or (i, j) ∈ [n1]×([n1+n2]\[n1]). In the first case,

f1(i) <Std(T|[n]\O) f1(j), so i < j. In the second case, f2(i − n1) <Std(T|O)

f2(j − n1), so i− n1 < j − n1 and i < j. In the last case, i < j.
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• If i ∼T1.T2 j, by definition of T1.T2, (i, j) ∈ [n1]
2 or (i, j) ∈ ([n1+n2]\ [n1])

2.
In the first case, f1(i) ∼Std(T|[n]\O) f1(j), so f(i) ∼T f(j). In the second

case, f2(i− n1) ∼Std(T|O) f2(j − n1), so f(i) ∼T f(j).

• If f(i) ∼T f(j), as O = f([n1 + n2] \ [n1]) is an open set of T , both O
and f([n1]) = [n] \ O are stable under ∼T , so (i, j) ∈ [n1]

2 or (i, j) ∈
([n1 + n2] \ [n1])

2. In the first case, f1(i) ∼Std(T|[n]\O) f1(j), so i ∼T1 j

and i ∼T1.T2 j. In the second case, f2(i − n1) ∼Std(T|O) f2(j − n1), so
i− n1 ∼T2 j − n1 and i ∼T1.T2 j.

Finally, φ is bijective. We obtain:

〈T1.T2, T 〉 = ♯P ic(T1.T2, T )

=
∑

O∈T

♯P ic(T1, Std(T|[n]\O))× ♯P ic(T2, Std(T|O))

=
∑

O∈T

〈T1, Std(T|[n]\O)〉〈Pic(T2, Std(T|O)〉

= 〈T1 ⊗ T2,∆(T )〉.

So 〈−,−〉 is a Hopf pairing.

Let T , T ′ ∈ T. It is not difficult to show that Pic(ι(T ), ι(T ′)) = j(Pic(T , T ′)),
so 〈ι(T ), ι(T ′)〉 = 〈T , T ′〉. �

Remark. Here is the matrix of the pairing in degree 2:

q1 q2 q

q

1
2

q

q

2
1

q1, 2

q1 q2 2 1 1 0

q

q

1
2 1 1 0 0

q

q

2
1 1 0 1 0

q1, 2 0 0 0 2

So this pairing is degenerated, as for example q1 q2 − q

q

1
2 − q

q

2
1 is in its kernel. The

first values of the rank of the pairing in dimension n is given by the following array:

n 1 2 3 4
Rk(〈−,−〉|(HT )n) 1 3 16 111

dim(Ker(〈−,−〉|(HT )n)) 0 1 13 244

3. Ribbon basis

3.1. Definition. The set Tn of topologies on [n] is partially ordered by the refine-
ment of topologies: if T , T ′ ∈ Tn, T ≤ T ′ if any open set of T is an open set of
T ′. For example, here is the Hasse graph of T2:

q1 q2

❊❊
❊❊

❊❊
❊❊

②②
②②
②②
②②

q

q

1
2

❊❊
❊❊

❊❊
❊❊

❊
q

q

2
1

②②
②②
②②
②②
②

q1, 2



THE HOPF ALGEBRA OF FINITE TOPOLOGIES AND T -PARTITIONS 17

Definition 11. We define a basis (RT )T ∈T of HT in the following way: for all
T ∈ Tn, n ≥ 0,

T =
∑

T ′≤T

RT ′ .

Examples. If {i, j} = {1, 2}:

R q i, j = q i, j , R
q

q

i
j = q

q

i
j − q i, j , R q i q j = q i q j − q

q

i
j − q

q

j
i + q i, j .

If {i, j, k} = {1, 2, 3}:

R q i, j, k = q i, j, k ,

R
q

q

i, j
k = q

q

i, j
k − q i, j, k ,

R
q

q

i
j, k = q

q

i
j, k − q i, j, k ,

R q i q j, k = q i q j, k − q

q

i
j, k − q

q

j, k
i + q i, j, k ,

R
q

q

q

i
j
k = q

q

q

i
j
k

− q

q

i
j, k − q

q

i, j
k + q i, j, k ,

R
q

qq

∨i

kj = q

qq

∨i

kj
− q

q

q

i
j
k

− q

q

q

i
k
j

+ q

q

i
j, k ,

R q

∧qq ij k

=
q

∧qq ij k − q

q

q

k
j
i

− q

q

q

j
k
i

+ q

q

j, k
i ,

R
q

q

i
j
qk

= q

q

i
j
qk − q

qq

∨i

kj
−

q

∧qq j

i k + q

q

q

i
k
j

− q i, j qk + q

q

i, j
k + q

q

k
i, j − q i, j, k,

R q i q j qk = q i q j qk − q

q

i
j
qk − q

q

i
k
q j − q

q

j
i
qk − q

q

j
k
q i − q

q

k
i
q j − q

q

k
j
q i

− q

q

i
j, k − q

q

j
i, k − q

q

k
i, j − q

q

j, k
i − q

q

i, k
j − q

q

i, j
k

+ q

qq

∨i

kj
+ q

qq

∨j

ki
+ q

qq

∨k

ji
+

q

∧qq ij k +
q

∧qq ji k +
q

∧qq k

i j + 2 q i, j, k .

3.2. The products and the coproduct in the basis of ribbons. Notations.

(1) Let T ∈ Tn and let I, J ⊆ [n]. We shall write I ≤T J if for all i ∈ I, j ∈ J ,
i ≤T j.

(2) Let T ∈ Tn and let I, J ⊆ [n]. We shall write I <T J if for all i ∈ I, j ∈ J ,
i <T j.

Theorem 12. (1) Let T ∈ Tk, T
′ ∈ Tl, k, l ≥ 0. Then:

RT .RT ′ =
∑

T ′′∈Tk+l,

T ′′
|[k]=T , Std(T ′′

|[k+l]\[k])=T ′

RT ′′ .

(2) Let T ∈ Tk, T ′ ∈ Tl, k, l ≥ 0. Then:

RT ↓ RT ′ =
∑

T ′′∈Tk+l,

T ′′
|[k]=T , Std(T ′′

|[k+l]\[k])=T ′,

[k]≤T ′′ [k+l]\[k]

RT ′′ .

(3) For all T ∈ Tn, n ≥ 0:

∆(RT ) =
∑

O∈T ,
[n]\O<T O

RStd(T|[n]\O) ⊗RStd(T|O).
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Proof. 1. First step. We first prove that for any T ′′ ∈ Tk+l, T ′′ ≤ T .T ′ if, and
only if, T ′′

|[k] ≤ T and Std(T ′′
|[k+l]\[k]) ≤ T ′.

=⇒. As T ′′ ≤ T .T ′, T ′′
|[k] ≤ (T .T ′)|[k] = T , and Std(T ′′

|[k+l]\[k]) ≤ Std((T .T ′)|[k+l]\[k]) =

T ′.
⇐=. Let I be an open set of T ′′. Then I1 = I ∩ [k] is an open set of T ′′

|[k], so

I1 is an open set of T . Moreover, I2 = I ∩ ([k + l] \ [k])(−k) is an open set of
Std(T ′′

|[k+l]\[k]), so I2 is an open set of T ′. By definition of T .T ′, I1 ⊔ I2[k] = I is

an open set of T .T ′, so T ′′ ≤ T .T ′.

Second step. We define a product ⋆ on HT by the formula:

RT ⋆ RT ′ =
∑

T ′′∈Tk+l,

T ′′
|[k]=T ,Std(T ′′

|[k+l]\[k])=T ′

RT ′′ ,

for any T ∈ Tk, T ′ ∈ Tl, k, l ≥ 0. Then:

T ⋆ T ′ =
∑

S≤T ,S′≤T ′

RS ⋆ RS′

=
∑

S≤T ,S′≤T ′

∑

S′′∈Tk+l,

S′′
|[k]=S,Std(S′′

|[k+l]\[k])=S′

RS′′

=
∑

S′′∈Tk+l,

S′′
|[k]≤T ,Std(S′′

|[k+l]\[k])≤T ′

RS′′

=
∑

S′′∈Tk+l,

S′′≤T .T ′

RS′′

= T .T ′.

We used the first step for the fourth equality. So ⋆ = ..

2. First step. We first prove that for any T ′′ ∈ Tk+l, T ′′ ≤ T ↓ T ′ if, and only
if, T ′′

|[k] ≤ T , Std(T ′′
|[k+l]\[k]) ≤ T ′ and [k] ≤T ′′ [k + l] \ [k].

=⇒. By restriction, T ′′
|[k] ≤ T , Std(T ′′

|[k+l]\[k]) ≤ T ′. Let x ∈ [k] and y ∈

[k+ l] \ [k], and let O be an open set of T ′′ which contains x. It is also an open set
of T ↓ T ′ which contains x, so it contains [k + l] \ [k] by definition of T ↓ T ′. So
x ≤T ′′ y.

⇐=. As [k] ≤T ′′ [k + l] \ [k], any open sets of T ′′ which contains an element of
[k] contains [k + l] \ [k]. Hence, there are two types of open sets in T ′′:

• Open sets O contained in [k + l] \ [k]. Then O(−k) is an open set of
Std(T ′′

|[k+l]\[k]), so it is an open set of T ′, and finally O is an open set of

T ↓ T ′.
• Open sets O which contain [k+ l] \ [k]. Then O ∩ [k] is an open set of T ′′

|[k],

so is an open set of T . Hence, O is an open set of T ↓ T ′.

We obtain in this way that T ′′ ≤ T ↓ T ′.
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Second step. Using the first step, we conclude as in the second step of the first
point.

3. First step. Let O ∈ T , S ≤ T|O and S ′ ≤ T|[n]\O. It is not difficult to see
that there exists a unique topology T ′ ∈ Tn such that S = T ′

|O, S ′ = T ′
|[n]\O and

[n] \O <T ′ O. It is:

T ′ = {Ω ∪O | Ω ∈ S ′} ∪ S.

Second step. We define a coproduct on HT by:

δ(RT ) =
∑

O∈T ,
[n]\O<T O

RStd(T|[n]\O) ⊗RStd(T|O),

for any T ∈ T. Then:

δ(T ) =
∑

T ′≤T

δ(RT ′)

=
∑

T ′≤T

∑

O∈T ′, ([n]\O)<T ′O

RStd(T ′
|[n]\O

) ⊗RStd(T ′
|O

)

=
∑

O∈T

∑

T ′≤T , O∈T ′,
([n]\O)<T ′O

RStd(T ′
|[n]\O

) ⊗ RStd(T ′
|O

)

=
∑

O∈T

∑

S≤Std(T|[n]\O),

S′≤Std(T|O)

RS ⊗RS′

=
∑

O∈T

Std(T|[n]\O)⊗ Std(T|O)

= ∆(T ).

We used the first step for the third equality. So δ = ∆. �

4. Generalized T-partitions

4.1. Definition.

Definition 13. Let T ∈ Tn.

(1) A generalized T-partition of T is a surjective map f : [n] −→ [p] such that
if i ≤T j in [n], then f(i) ≤ f(j) in [p]. If f is a generalized T-partition of
T , we shall represent it by the packed word f(1) . . . f(n).

(2) Let f a generalized T-partition of T . We shall say that f is a (strict)
T-partition if for all i, j ∈ [n]:

• i <T j and i > j implies that f(i) < f(j) in [p].
• If i < j < k, i ∼T k and f(i) = f(j) = f(k), then i ∼T j and j ∼T k.

(3) The set of generalized T-partitions of T is denoted by P(T ); the set of
(strict) T-partitions of T is denoted by Ps(T ).

(4) If f ∈ P(T ), we put:

ℓ1(f) = ♯{(i, j) ∈ [n]2 | i <T j, i < j, and f(i) = f(j)},

ℓ2(f) = ♯{(i, j) ∈ [n]2 | i <T j, i > j, and f(i) = f(j)},

ℓ3(f) = ♯{(i, j, k) ∈ [n]3 | i < j < k, i ∼T k, i ∼| T j, j ∼| T k and f(i) = f(j) = f(k)}.
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Note that f is strict if, and only if, ℓ2(f) = ℓ3(f) = 0.

Example. Let T = q

qq

∨2, 4

51
q3 . If f is a packed word of length 5, it is a generalized

T -partition of T if, and only if, f(2) = f(4) ≤ f(1), f(5). Hence:

P(T ) =























(11111), (11112), (11211), (11212), (11213), (11312), (21111),
(21112), (21113), (21211), (21212), (21213), (21311), (21312),
(21313), (21314), (21413), (22122), (22123), (31112), (31211),
(31212), (31213), (31214), (31312), (31412), (32122), (32123),

(32124), (41213), (41312), (42123)























.

Moreover, f is a strict T -partition of T if, and only if, f(2) = f(4) < f(1), f(2) =
f(4) ≤ f(5), and f(3) 6= f(2), f(4). Hence:

Ps(T ) =







(21211), (21212), (21213), (21311), (21312), (21313), (21314),
(21413), (31211), (31212), (31213), (31214), (31312), (31412),

(32122), (32123), (32124), (41213), (41312), (42123)







.

Remarks.

(1) Let f ∈ P(T ). If i ∼T j in [n], then i ≤T j and j ≤T i, so f(i) ≤ f(j) and
f(j) ≤ f(i), and finally f(i) = f(j).

(2) If T ∈ T is T0, then the set of strict T-partitions of T is the set of P-
partitions of the poset T , as defined in [16, 6]. We shall now omit the term
"strict" and simply write "T-partitions".

Proposition 14. Let q = (q1, q2, q3) ∈ K3. We define a linear map Γq : HT −→
WQSym in the following way: for all T ∈ Tn, n ≥ 0,

Γq(T ) =
∑

f∈P(T )

q
ℓ1(f)
1 q

ℓ2(f)
2 q

ℓ3(f)
3 f(1) . . . f(n).

Then Γq is a homogeneous surjective Hopf algebra morphism. Moreover, j◦Γ(q2,q1,q3)) =
Γ(q1,q2,q3) ◦ i.

Proof. We shall use the following notations: if T ∈ T and f ∈ P(T ), we put

ℓ(f) = (ℓ1(f), ℓ2(f), ℓ3(f)) and qℓ(f) = q
ℓ1(f)
1 q

ℓ2(f)
2 q

ℓ3(f)
3 .

Let us first prove that Γq is an algebra morphism. Let T , T ′ ∈ T, of respective
degree n and n′. Let f = f(1) . . . f(n+ n′) be a packed word. If 1 ≤ i ≤ n < j ≤
n+n′, then i and j are not comparable for ≤T .T ′ . Hence, f ∈ P(T .T ′) if, and only
if, f ′ = Pack(f(1) . . . f(n)) ∈ P(T ) and f ′′ = Pack(f(n+1) . . . f(n+n′)) ∈ P(T ′).
Moreover, ℓ(f) = ℓ(f ′) + ℓ(f ′′), so:

Γq(T .T
′) =

∑

f ′∈P(T ),f ′′∈P(T ′)

∑

Pack(f(1)...f(n))=f ′

Pack(f(n+1)...f(n+n′))=f ′′

qℓ(f)f(1) . . . f(n+ n′)

=
∑

f ′∈P(T ),f ′′∈P(T ′)

qℓ(f
′)qℓ(f

′′)
∑

Pack(f(1)...f(n))=f ′

Pack(f(n+1)...f(n+n′))=f ′′

f(1) . . . f(n+ n′)

=
∑

f ′∈P(T ),f ′′∈P(T ′)

qℓ(f
′)qℓ(f

′′)f ′.f ′′

= Γq(T ).Γq(T
′).
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Let us now prove that Γq is a coalgebra morphism. Let T ∈ Tn. We consider
the two following sets:

A =
⊔

O∈T

P(T|[n]\O)× P(T|O), B = {(f, i) | f ∈ P(T ), 0 ≤ i ≤ max(f)}.

Let (f, g) ∈ P(T|[n]\O) × P(T|O) ⊆ A. We define h : [n] −→ N by h(i) = f(i) if
i /∈ O and h(i) = g(i)+max(f) if i ∈ O. As f and g are packed words, h(1) . . . h(n)
also is. Let us assume that i ≤T j. Three cases are possible:

• i, j /∈ O. As f(i) ≤ f(j), h(i) ≤ h(j).
• i, j ∈ O. As g(i) ≤ g(j), h(i) ≤ h(j).
• i /∈ O and j ∈ O. Then h(i) = f(i) ≤ max(f) < max(f) + g(j) = h(j).

Consequently, h ∈ P(T ). Hence, we define a map θ : A −→ B, sending (f, g) to
(h,max(f)).

θ is injective: if θ(f, g) = θ(f ′, g′) = (h, k), then max(f) = max(f ′) = k.
Moreover:

O = h−1({max(f) + 1, . . . ,max(h)}) = h−1({k + 1, . . . ,max(h)}) = O′.

Then f = h|O = h|O′ = f ′ and g = Pack(h|[n]\O) = Pack(h|[n]\O) = g′. Finally,
(f, g) = (f ′, g′).

θ is surjective: let (h, k) ∈ B. We put O = h−1({k + 1, . . .max(h)}). Let i ∈ O
and j ∈ [n], such that i ≤T j. As h ∈ P(T ), h(j) ≥ h(i) > k, so j ∈ O and O is an
open set of T . Let f = h|[n]\O and g = Pack(h|O). By restriction, f ∈ P(T|[n]\O)
and g ∈ P(T|O). Moreover, as h is a packed word, max(f) = k, and for all i ∈ O,
g(i) = h(i)− k. This implies that θ(f, g) = (h, k).

Let (f, g) ∈ P(T|[n]\O) × P(T|O) ⊆ A, and let θ(f, g) = (h, k). If i /∈ O and
j ∈ O, h(i) < h(j). Hence:

ℓ1(h) = ♯{(i, j) ∈ ([n] \O)2 | i <T j, i < j and h(i) = h(j)}

+ ♯{(i, j) ∈ O2 | i <T j, i < j and h(i) = h(j)}

= ♯{(i, j) ∈ ([n] \O)2 | i <T j, i < j and f(i) = f(j)}

+ ♯{(i, j) ∈ O2 | i <T j, i < j and g(i) + max(f) = g(j) + max(f)}

= ℓ1(f) + ℓ1(g).

Similarly, ℓ2(h) = ℓ2(f) + ℓ2(g) and ℓ3(h) = ℓ3(f) + ℓ3(g). We obtain:

∆ ◦ Γq(T ) =
∑

h∈P(T )

∑

0≤k≤max(h)

qℓ(h)h|h−1({1,...,k}) ⊗ Pack
(

h|h−1({k+1,...,max(h)})

)

=
∑

(h,k)∈B

qℓ(h)h|h−1({1,...,k}) ⊗ Pack
(

h|h−1({k+1,...,max(h)})

)

=
∑

(f,g)∈A

qℓ(f)qℓ(g)f ⊗ g

=
∑

O∈T





∑

f∈P(T|[n]\O)

qℓ(f)f



⊗





∑

g∈P(T|O)

qℓ(g)g





= (Γq ⊗ Γq) ◦∆(T ).
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Consequently, Γq is a Hopf algebra morphism.

Let f be a packed word of length n, and Tf be the associated topology, as defined
in section 2. Note that f ∈ P(Tf ); moreover, if g ∈ P(Tf ) is different from f , then
max(g) < max(f). Hence:

Γq(Tf ) = f + (linear span of packed words g of maximum < max(f)) .

In particular, if f = (1 . . . 1), Tw = q1, . . . , n, and Γq(Tf ) = (1 . . . 1). By a triangu-
larity argument, Γq is surjective.

Let T ∈ T. It is not difficult to prove that P(T ) = j (P(ι(T ))). Moreover, if
f ∈ P(ι(T )) and g = j(f), then ℓ1(f) = ℓ2(g), ℓ2(f) = ℓ1(g) and ℓ3(f) = ℓ3(g). So:

j ◦ Γ(q2,q2,q3) ◦ ι(T ) =
∑

g∈P(T )

q
ℓ2(g)
2 q

ℓ1(g)
1 q

ℓ2(g)
2 g = Γ(q1,q2,q3)(T ),

so j ◦ Γ(q2,q2,q3) ◦ ι = Γ(q1,q2,q3). �

Examples.

Γq( q1 ) = (1),

Γq( q1 q2 ) = (12) + (21) + (11),

Γq( q
q

1
2 ) = (12) + q1(11),

Γq( q
q

2
1 ) = (21) + q2(11),

Γq( q1, 2 ) = (11),

Γq( q

qq

∨1

32

) = (123) + (132) + (122) + q1(112) + q1(121) + q21(111),

Γq( q

qq

∨2

31

) = (213) + (312) + (212) + q2(112) + q1(211) + q1q2(111),

Γq( q

qq

∨3

21

) = (231) + (321) + (221) + q2(121) + q2(211) + q22(111),

Γq( q
q

1, 2
3 ) = (112) + q21(111),

Γq( q
q

1, 3
2 ) = (121) + q1q2q3(111),

Γq( q
q

2, 3
1 ) = (211) + q22(111),

Γq( q
q

1
2, 3 ) = (122) + q21(111),

Γq( q
q

2
1, 3 ) = (212) + q1q2q3(111),

Γq( q
q

3
1, 2 ) = (221) + q22(111).

Remarks.

(1) In particular:

Γ(1,1,1)(T ) =
∑

f∈P(T )

f(1) . . . f(n), Γ(1,0,0)(T ) =
∑

f∈Ps(T )

f(1) . . . f(n).

(2) The restriction of Γ(1,0,0) to HSP is the map Γ defined in section 1.2.

4.2. Linear extensions.

Definition 15. Let T ∈ Tn, n ≥ 0. A linear extension of T is an ordered
partition A = (A1, . . . , Ak) of [n] such that:

• the equivalence classes of ∼T are A1, . . . , Ak;
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• if, in the poset T , Ai ≤T Aj, then i ≤ j.

The set of linear extensions of T is denoted by L(T ).

Notations. If A = (A1, . . . , Ak) is a linear extension of T ∈ Tn, we bijectively
associate to A the packed word f = f(1) . . . f(n) of length n such that for all i ∈ [n],
for all j ∈ [k], f(i) = j if, and only if i ∈ Aj . We shall now use the packed word f
instead of A.

Example. Let T = q

qq

∨2, 4

1, 5, 63

. The linear extensions of T are ({2, 4}, {3}, {1, 5, 6})
and ({2, 4}, {1, 5, 6}, {3}), or, expressed in packed words, (312133) and (213122).

Remark. Let T ∈ Tn, n ≥ 0, and f = f(1) . . . f(n) be a packed word of length
n. Then f ∈ L(T ) if, and only if:

(1) for all i, j ∈ [n], f(i) = f(j) if, and only if, i ∼T j;
(2) for all i, j ∈ [n], i <T j implies that f(i) < f(j).

Hence, L(T ) ⊆ P (T ) and more precisley:

L(T ) = {f ∈ P(T ) | max(f) = ♯T } = {f ∈ Ps(T ) | max(f) = ♯T }.

Proposition 16. (1) Let f ′, f ′′ be two packed words, of respective length n
and n′. We put:

f ′ f ′′ =
∑

Pack(f(1)...f(n))=f ′

Pack(f(n+1)...f(n+n′))=f ′′

{f(1),...f(n)}∩{f(n+1),...,f(n+n′)}=∅

f.

This defines a product on WQSym, such that (WQSym, ,∆) is a Hopf
algebra.

(2) Let L be the following map:

L :







HT −→ WQSym

T −→
∑

f∈L(T )

f.

Then L is a surjective Hopf morphism from HT to (WQSym, ,∆).
Moreover, j ◦ L = L ◦ ι.

Proof. Let T , T ′ ∈ T, of respective degree n and n′. Let f = f(1) . . . f(n+ n′) be
a packed word. If 1 ≤ i ≤ n < j ≤ n + n′, then i and j are not comparable for
≤T .T ′ . Hence, f ∈ L(T .T ′) if, and only if:

• f ′ = Pack(f(1) . . . f(n)) ∈ L(T ) and f ′′ = Pack(f(n + 1) . . . f(n + n′)) ∈
L(T ′).

• {f(1), . . . f(n)} ∩ {f(n+ 1), . . . , f(n+ n′)} = ∅.

So:

L(T .T ′) =
∑

f ′∈L(T ),f ′′∈L(T ′)

∑

Pack(f(1)...f(n))=f ′

Pack(f(n+1)...f(n+n′))=f ′′

{f(1),...f(n)}∩{f(n+1),...,f(n+n′)}=∅

f(1) . . . f(n+ n′)

=
∑

f ′∈L(T ),f ′′∈L(T ′)

f f ′

= L(T ) L(T ′).
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Let T ∈ Tn. We consider the two following sets:

A =
⊔

O∈T

L(T|[n]\O)× L(T|O), B = {(f, i) | f ∈ L(T ), 0 ≤ i ≤ max(f)}.

Let (f, g) ∈ L(T|[n]\O) × L(T|O) ⊆ A. We define h : [n] −→ N by h(i) = f(i) if
i /∈ O and h(i) = g(i)+max(f) if i ∈ O. As f and g are packed words, h(1) . . . h(n)
also is. Moreover, as O and [n] \ O are union of equivalence classes of ∼T , for all
i, j ∈ [n], h(i) = h(j) if, and only if, i ∼T j. Let us assume that i ≤T j. Three
cases are possible:

• i, j /∈ O. As f(i) ≤ f(j), h(i) ≤ h(j).
• i, j ∈ O. As g(i) ≤ g(j), h(i) ≤ h(j).
• i /∈ O and j ∈ O. Then h(i) = f(i) ≤ max(f) < max(f) + g(j) = h(j).

Consequently, h ∈ L(T ). Hence, we define a map θ : A −→ B, sending (f, g) to
(h,max(f)). The proof of the bijectivity of θ is similar to the proof for the case of
generalized T-partitions. We obtain:

∆ ◦ L(T ) =
∑

h∈L(T )

∑

0≤k≤max(h)

h|h−1({1,...,k}) ⊗ Pack
(

h|h−1({k+1,...,max(h)})

)

=
∑

(h,k)∈B

h|h−1({1,...,k}) ⊗ Pack
(

h|h−1({k+1,...,max(h)})

)

=
∑

(f,g)∈A

f ⊗ g

=
∑

O∈T





∑

f∈L(T|[n]\O)

f



⊗





∑

g∈L(T|O)

g





= (L⊗ L) ◦∆(T ).

Let f be a packed word. Then L(Tf ) = {f}, so L(Tf ) = f , that is L is surjec-
tive. As L is compatible with the products and the coproducts of both HT and
(WQSym, ,∆), its image, that is to say (WQSym, ,∆), is a Hopf algebra,
and L is a Hopf algebra morphism.

It is not difficult to prove that for all T ∈ T, j(L(ι(T ))) = L(T ), which implies
that j ◦ L ◦ ι = L. �

Remark. The product is defined and used in [5].

Examples.

L( q1 ) = (1), L( q1 q2 ) = (12) + (21), L( q
q

1
2 ) = (12),

L( q
q

2
1 ) = (21), L( q1, 2 ) = (11), L( q1, 2, 3) = (111),

L( q
q

1, 2
3 ) = (112), L( q

q

1, 3
2 ) = (121), L( q

q

2, 3
1 ) = (211),

L( q
q

3
1, 2 ) = (221), L( q

q

2
1, 3 ) = (212), L( q

q

1
2, 3 ) = (122),

L( q

qq

∨1

32

) = (123) + (132), L( q

qq

∨2

31

) = (213) + (312), L( q

qq

∨3

21

) = (231) + (321),

L( q
q

q

1
2

3

) = (123), L( q
q

q

2
1

3

) = (213), L( q
q

q

3
1

2

) = (231),

L( q
q

q

1
3

2

) = (132), L( q
q

q

2
3

1

) = (312), L( q
q

q

3
2

1

) = (321).
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Here is an example of product :

(112) (12) = (11234) + (11324) + (11423) + (22314) + (22413) + (33412).

4.3. From linear extensions to T-partitions.

Definition 17. Let f, g be two packed words of the same length n. We shall say
that g ≤ f if:

• For all i, j ∈ [n], f(i) ≤ f(j) implies that g(i) ≤ g(j).
• For all i, j ∈ [n], f(i) > f(j) and i < j implies that g(i) > g(j).
• For all i, j ∈ [n], f(i) = f(j) implies that g(i) = g(j).

The relation ≤ is a partial order on the set of packed words of length n. Here
are the Hasse graphs of these posets if n = 2 or n = 3:

(12) (21)

(11)

;

(123)

●●
●●

●●
●●

✇✇
✇✇
✇✇
✇✇

(122)

●●
●●

●●
●●

(112)

✇✇
✇✇
✇✇
✇✇

(111)

(132)

(121)

(213)

(212)

(231)

(221)

(312)

(211)

(321)

Remark. This order is also introduced and used in [12].

Lemma 18. Let f, g be packed words of length n. Then g ≤ f if, and only if, g
is a T-partition of Tf .

Proof. =⇒. Let us assume that g ≤ f . If i ≤Tf
j, then f(i) ≤ f(j), so g(i) ≤ g(j).

If i <Tf
j and i > j, then f(i) < f(j), so g(i) < g(j). We assume that i < j < k,

i ∼Tf
k and g(i) = g(j) = g(k). As i ∼T k, f(i) = f(k). If f(j) < f(i), as g ≤ f ,

we obtain g(j) < g(i): contradiction. So f(i) ≤ f(j). If f(j) > f(k), as g ≤ f , we
obtain g(j) > g(k): contradiction. So f(j) ≤ f(k), and finally, f(i) = f(j) = f(k),
so i ∼Tf

j and j ∼Tf
k. Hence, g ∈ Ps(Tf ).

⇐=. Let us assume that g ∈ Ps(Tf ). If f(i) ≤ f(j), then i ≤Tf
j, so g(i) ≤ g(j).

If f(i) = f(j), then i ∼Tf
j, so g(i) = g(j). If f(i) < f(j) and i > j, then i <Tf

j
and i > j, so g(i) < g(j). This implies g ≤ f . �

Proposition 19. We define:

ϕ(1,0,0) :







WQSym −→ WQSym

f −→
∑

g≤f

g.
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Then ϕ(1,0,0) is a Hopf algebra isomorphism from (WQSym, ,∆) to (WQSym, .,∆)
such that the following diagram commutes:

HT

L //

Γ(1,0,0) ''◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

(WQSym, ,∆)

ϕ(1,0,0)

��
(WQSym, .,∆)

Proof. Let T ∈ Tn, n ≥ 0.

First step. Let f ∈ L(T ) and g ≤ f . Let us prove that g ∈ Ps(T ). This is the
generalization of lemma 18 to any finite topology.

(1) If i ≤T j, then f(i) ≤ f(j), so g(i) ≤ g(j).
(2) If i <T j and j < i, then f(i) < f(j), so g(i) < g(j).
(3) Let us assume that i < j < k, i ∼T k and g(i) = g(j) = g(k). If i ∼| T j,

then f(i) 6= f(j). If f(i) > f(j), as g ≤ f , we obtain g(i) > g(j): this is
a contradiction. So f(i) < f(j). As ∼T is an equivalence, j ∼| T k, and we
obtain in the same way f(j) < f(k). So f(i) < f(k), and i ∼| T k: this is a
contradiction. As a consequence, i ∼T j and j ∼T k.

This proves that g ∈ Ps(T ).

Second step. Let us now consider an element g ∈ Ps(T ). We want to prove that
there exists a unique f ∈ L(T ) such that g ≤ f . For all p ∈ [max(g)], g−1({p}) is
the union of equivalence classes of ∼T , and we put:

g−1({p}) = Cp,1 ⊔ . . . ⊔ Cp,kp
.

Moreover, as g ∈ Ps(T ), necessarily the Cp,r are intervals. Hence, we assume that
for all p:

Cp,1 < . . . < Cp,kp
,

which means for all r < s, all the elements of Cp,r are smaller than all the elements
of Cp,s.

Unicity. Let us assume there exists f ∈ L(T ), such that g ≤ f . The linear
extension f is constant on Cp,r: we put f(Cp,r) = {cp,r}. As f ∈ L(T ), the cp,r
are all distincts.

(1) If r < s and cp,r > cp,s, choosing i ∈ Cp,r and j ∈ Cp,s, then i < j and
f(i) > f(j), so, as g ≤ f , p = g(i) > g(j) = p: contradiction. So cp,r < cp,s.

(2) If p < q and cq,s < cp,r, choosing i ∈ Cp,r and j ∈ Cq,s, then f(i) ≥ f(j),
which implies that p = g(i) ≥ g(j) = q: contradiction. So cp,r < cq,s.

We finally obtain:

c1,1 < . . . < c1,k1 < . . . < cmax(g),1 < . . . < cmax(g),kmax(g)
,

which entirely determines f : f is unique.
Existence. Let us consider the packed word f determined by:

f(i) = k1 + . . .+ kp−1 + r if x ∈ Cp,r.

The values of f on two different subsets Cp,r are different, so i ∼T j if, and only if,
f(i) = f(j). If i <T j, assuming i ∈ Cp,r and j ∈ Cq,s, then p = g(x) ≤ g(y) = q.
When p < q, then f(i) < f(j). When p = q, if j < i we should have, as g ∈ Ps(T ),
g(i) < g(j): contradiction. So i < j, and r < s, so f(x) < f(y). Finally, f ∈ L(T ).
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If f(i) = f(j), then i and j are in the same Cp,r, so g(i) = g(j). If f(i) ≤ f(j),
assuming that i ∈ Cp,r and j ∈ Cq,s, then p ≤ q, so p = g(x) ≤ g(y) = q. If
f(i) < f(j) and i > j then p ≤ q; if p = q, then r > s, so f(i) > f(j): contradic-
tion. So p < q, and p = g(i) < g(j) = q. We obtain that g ≤ f .

As a conclusion:

ϕ(1,0,0) ◦ L(T ) =
∑

f∈L(T )

∑

g≤f

g(1) . . . g(n) =
∑

g∈Ps(T )

g(1) . . . g(n) = P(1,0,0)(T ).

So ϕ(1,0,0) ◦ L = Γ(1,0,0).

Third step. Let x, y ∈ WQSym. As L is surjective, there exists x′, y′ ∈ HT

such that L(x′) = x and L(y′) = y. Then:

ϕ(1,0,0)(x y) = ϕ(1,0,0)(L(x
′) L(y′))

= ϕ(1,0,0) ◦ L(x
′.y′)

= Γ(1,0,0)(x
′.y′)

= Γ(1,0,0)(x
′).Γ(1,0,0)(y

′)

= ϕ(1,0,0) ◦ L(x
′).ϕ(1,0,0) ◦ L(y

′)

= ϕ(1,0,0)(x).ϕ(1,0,0)(y).

Moreover:

∆ ◦ ϕ(1,0,0)(x) = ∆ ◦ ϕ(1,0,0) ◦ L(x
′)

= ∆ ◦ Γ(1,0,0)(x
′)

= (Γ(1,0,0) ⊗ Γ(1,0,0)) ◦∆(x′)

= (ϕ(1,0,0) ⊗ ϕ(1,0,0)) ◦ (L⊗ L) ◦∆(x′)

= (ϕ(1,0,0) ⊗ ϕ(1,0,0)) ◦∆(L(x′))

= (ϕ(1,0,0) ⊗ ϕ(1,0,0)) ◦∆(x).

So ϕ(1,0,0) is a Hopf algebra morphism.

Let x ∈ WQSym. As Γ(1,0,0) is surjective, there exists x′ ∈ HT, such that
Γ(1,0,0)(x

′) = x. Then ϕ(1,0,0)(L(x
′)) = x: ϕ(1,0,0) is surjective. Since it is homoge-

neous and the homogeneous components of WQSym are finite dimensional, it is
an isomorphism. �

Examples.

ϕ(1,0,0)((123)) = (123) + (122) + (112) + (111),

ϕ(1,0,0)((132)) = (132) + (121), ϕ(1,0,0)((213)) = (213) + (212),

ϕ(1,0,0)((231)) = (231) + (221), ϕ(1,0,0)((312)) = (312) + (211),

ϕ(1,0,0)((321)) = (321), ϕ(1,0,0)((112)) = (112) + (111),

ϕ(1,0,0)((121)) = (121), ϕ(1,0,0)((211)) = (211),

ϕ(1,0,0)((122)) = (122) + (111), ϕ(1,0,0)((212)) = (212),

ϕ(1,0,0)((221)) = (221), ϕ(1,0,0)((111)) = (111).
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Remark. Let ϕ(0,1,0) = j ◦ ϕ(1,0,0) ◦ j. Then:

ϕ(0,1,0) ◦ L = j ◦ ϕ(1,0,0) ◦ j ◦ L = j ◦ ϕ(1,0,0) ◦ L ◦ ι = j ◦ Γ(1,0,0) ◦ ι = Γ(0,1,0).

Moreover, for all packed word f :

ϕ(0,1,0)(f) =
∑

g≤′f

g,

where the order relation ≤′ on packed words is defined by g ≤′ f if:

• For all i, j ∈ [n], f(i) ≤ f(j) implies that g(i) ≤ g(j).
• For all i, j ∈ [n], f(i) < f(j) and i < j implies that g(i) < g(j).
• For all i, j ∈ [n], f(i) = f(j) implies that g(i) = g(j).

Corollary 20. For any finite topology T of degree n:

Ps(T ) =
⊔

f∈L(T )

{g | g ≤ f} =
⊔

f∈L(T )

Ps(Tf ).

Proof. This is the first step of the proof of proposition 19. �

So T -partitions only depend on linear extensions. In the case of special posets,
that is to say of T0 topologies, the previous corollary is proved in [16, 6].

Proposition 21. Let q ∈ K3. There exists a linear endomorphism ϕq of
WQSym such that ϕq ◦ L = Γq if, and only if, q = (1, 0, 0) or q = (0, 1, 0).

Proof. =⇒. If ϕq exists, then:

ϕq((123)) = ϕq ◦ L( q
q

q

1
2

3

) = Γq( q
q

q

1
2

3

) = (123) + q1(112) + q1(122) + q31(111),

ϕq((213)) = ϕq ◦ L( q
q

q

2
1

3

) = Γq( q
q

q

2
1

3

) = (213) + q2(112) + q1(212) + q21q2(111),

ϕq((312)) = ϕq ◦ L( q
q

q

2
3

1

) = Γq( q
q

q

2
3

1

) = (312) + q1(211) + q2(212) + q1q
2
2(111).

Moreover:

ϕq ◦ L( q1 q

q

2
3 ) = ϕq((123) + (213) + (312))

= (123) + (213) + (312) + (q1 + q2)(112) + q1(211) + q1(122) + (q1 + q2)(212)

+ (q31 + q21q2 + q1q
2
2)(111)

= Γq( q1 q

q

2
3 )

= (123) + (213) + (312) + (112) + q1(211) + q1(122) + (212) + q1(111).

Identifying these two expressions, the coefficient of (112) gives q1 + q2 = 1; the
coefficient of (111) gives:

q1 = q31 + q21q2 + q2q
2
1 ⇐⇒ q1(q

2
1 + q1q2 + q22 − 1) = 0

⇐⇒ q1((q1 + q2)
2 − q1q2 − 1) = 0

⇐⇒ q21q2 = 0.

So (q1, q2) = (1, 0) or (0, 1). Moreover:

ϕq((121)) = ϕq ◦ L( q
q

1, 3
2 ) = Γq( q

q

1, 3
2 ) = (121),

ϕq((212)) = ϕq ◦ L( q
q

2
1, 3) = Γq( q

q

2
1, 3) = (212),
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and:

(121)+(212) = ϕq((121)+(212)) = ϕq◦L( q1, 3 q2 ) = Γq( q1, 3 q2 ) = (121)+(212)+q3(111).

The coefficient of (111) gives q3 = 0. So q = (1, 0, 0) or (0, 1, 0).

⇐=. Comes from proposition 19. �

4.4. Links with special posets. If T ∈ T is T0, then all its linear extensions
are permutations. Seeing FQSym as a Hopf subalgebra of (WQSym, ,∆), by
restriction we obtain a Hopf algebra morphism L : HSP −→ FQSym, which is the
morphism L defined in section 1.2.

If T ∈ T is not T0, then no generalized T-partition of T is a permutation, so
̟ ◦ Γq(T ) = 0. Hence, we have a commutative diagram of Hopf algebras:

HT

θ0
����

Γq
// WQSym

̟
����

HSP
L

// FQSym

If T ∈ T is T0, then a T-partition of T is a P-partition of the poset associated
to T , in Stanley’s sense [16], and we obtain the commutative diagram:

FQSym

θ(1,0,0)

��
HSP

Γ
//

L

99sssssssss
WQSym

4.5. The order on packed words. Let us precise the properties of the order on
packed words of definition 17. We shall use the following notion, which, in some
sense, is the generalization of the notion of ascents of permutations.

Definition 22. Let f be a packed word of length n, and let i ∈ [n]. We shall
say that i ∈M(f) if:

• f(i) < max(f).
• For all j ∈ [n], f(j) = f(i) =⇒ j ≤ i.
• For all j ∈ [n], f(j) = f(i) + 1 =⇒ j > i.

Example. If f = (412133), then M(f) = {3}.

Remark. If f is a permutation, then i ∈M(f) if, and only if, f−1(f(i)+1) > i.

The aim of this section is to prove the following theorem:

Theorem 23. (1) Let f, g be two packed words. Then f ≤ g if, and only if,
Std(f) = Std(g) and M(f) ⊆M(g).

(2) For all n ≥ 1, there is an isomorphism of posets:

Φ :







({packed words of length n},≤) −→
⊔

σ∈Sn

({subsets of M(σ) },⊆)

f −→ M(f) ⊆M(Std(f)).
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Hence, for all n ≥ 1, the poset of packed words of length n is a disjoint
union of posets, indexed by Sn, the part indexed by σ being isomorphic to
the poset of subsets of M(σ), partially ordered by the inclusion.

Lemma 24. (1) For any packed word g, g ≤ Std(g).
(2) Let f, g be packed words. If f ≤ g, then Std(f) = Std(g).

Proof. We put σ = Std(f), τ = Std(g) and, for all p ∈ [max(g)], g−1({p}) = Cp.
1. Let i, j ∈ [n]. We assume that i ∈ Cp and j ∈ Cq. If τ(i) ≤ τ(j), by definition

of the standardization, p ≤ q, so g(i) = p ≤ q = g(j). If τ(i) = τ(j), as τ is a
permutation, i = j, and g(i) = g(j). If τ(i) < τ(j) and j > i, then p ≤ q. As τ is
increasing on Cp by definition of the standardization, p = q is impossible. So p < q,
and g(i) = p < q = g(j). We obtain g ≤ τ .

2. As f ≤ g, f is constant on Cp for all p. We put f(Cp) = {cp}. If i ∈ Cp

and j ∈ Cq, with p < q, then g(i) = p ≤ q = g(j), so f(i) ≤ f(j): cp ≤ cq. If
cp = cq and p < q, let i ∈ Cp and j ∈ Cq. If j < i, as g(i) = p < q = g(j) and
f ≤ g, cp = f(i) < f(j) = cq: contradiction. Hence, if cp = cq, for all i ∈ Cp, for
all j ∈ Cq, i < j, which is shortly denoted by Cp < Cq.

As f is constant on Cp, σ is increasing on Cp. If p < q and cp 6= cq, then cp < cq.
By definition of the standardization, for all i ∈ Cp, j ∈ Cq, σ(i) < σ(j). If p < q
and cp = cq, then for all i ∈ Cp, j ∈ Cq, i < j. As f is constant on Cp ⊔ Cq,
σ(i) < σ(j). Finally:

• σ is increasing on Cp for all p.
• If p < q, i ∈ Cp and j ∈ Cq, σ(i) < σ(j).

So σ = Std(g). �

Lemma 25. Let σ ∈ Sn, n ≥ 1. The following map is bijective:

φσ :

{

{f packed word | Std(f) = σ} −→ {I | I ⊆M(σ)}
f −→ M(f).

Proof. Let f be a packed word such that Std(f) = σ. We put f−1({p}) = Cp for
all p ∈ [max(f)]. Let i ∈ M(f). Assume that i ∈ Cp. Then p < max(f), i is the
greatest element of Cp, and, if j is the smallest element of Cp+1, i < j. By definition
of the standardization, σ(j) = σ(i) + 1. As j > i, i ∈M(σ), so M(f) ⊆M(σ), and
φσ is well-defined.

We define a map ψσ : {I | I ⊆ M(σ)} −→ {f packed word | Std(f) = σ} in the
following way. If I ⊆M(σ), we define f(σ−1(i)) by induction: f(σ−1(1)) = 1, and,
for all i ∈ [n− 1]:

• If σ−1(i) ∈ I or if σ−1(i) /∈M(σ), then f(σ−1(i+ 1)) = f(σ−1(i)) + 1.
• If σ−1(i) ∈M(σ) \ I, f(σ−1(i+ 1)) = f(σ−1(i)).

Clearly, f is a packed word. Let us prove that Std(f) = σ. For all p ∈ [max(f)],
we put f−1({p}) = Cp. By definition of f , for all p, there exist ip ≤ jp such that
Cp = σ−1({ip, . . . , jp}), and σ−1(ip), . . . , σ

−1(jp − 1) ∈M(σ), which implies:

σ−1(ip) < σ−1(ip + 1) < . . . < σ−1(jp − 1) < σ−1(jp).

We obtain that σ−1 is increasing on ip, . . . , jp, so σ is increasing on Cp. Moreover,
if p < q, i ∈ Cp and j ∈ Cq, by definition of f , putting σ−1(i) = k and σ−i(j) = l,
k < l. Consequently, σ(i) = k < l = σ(j). We obtain that Std(f) = σ. We can put
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ψσ(I) = f , and then ψσ is a well-defined map.

Let I ⊆ M(σ), and f = ψσ(I). For all p ∈ [max(f)], we put f−1({p}) = Cp. If
i ∈ M(f), then i is the greatest element of Cp with p = f(i) < max(f), and if j
is the smallest element of Cp+1, then i < j. As σ = Std(f), σ(j) = σ(i) + 1, so
i ∈ M(σ), and M(f) ⊆ M(σ). By definition of f , i ∈ I or i /∈ M(σ), so i ∈ I:
M(f) ⊆ I. Let i ∈ I. We put k = σ(i). Then f(σ−1(k + 1)) = f(σ−1(k)) + 1. By
definition of f , i is the greatest element of Cp, with p = f(i) and j = σ−1(k +1) is
the smallest element of Cp+1. As σ−1(k) = i ∈M(σ), σ−1(k+1) = j > σ−1(k) = i:
i ∈M(f). We obtain M(f) = I, that is to say φσ ◦ ψσ(I) = I.

Let f be a packed word such that Std(f) = σ, I = M(f) and g = ψσ(I). For
all p ∈ [max(f)], we put f−1({p}) = Cp. Let us prove that f(σ−1(i)) = g(σ−1(i))
for all i by induction. If i = 1, as σ = Std(f), f(σ−1(1)) = 1 = g(σ−1(1)). Let us
assume that f(σ−1(i)) = g(σ−1(i)). We obtain three different cases.

(1) If σ−1(i) ∈ I, then σ−1(i) is the greatest element of Cp, with p = f(σ−1(i)),
and if j is the smallest element of Cp+1, then i < j. As Std(f) = σ, j =
σ−1(σ(σ−1(i))+1) = σ−1(i+1), and f(σ−1(i+1)) = p+1 = f(σ−1(i))+1 =
g(σ−1(i+ 1)).

(2) If σ−1(i) /∈ M(σ), then σ−1(i + 1) < σ−1(i). As σ = Std(f), necessarily
σ−1(i) is the greatest element of Cp and σ−1(i+ 1) is the smallest element
of Cp+1. We obtain f(σ−1(i+1)) = p+1 = f(σ−1(i)) + 1 = g(σ−1(i+1)).

(3) If σ−1(i) ∈ M(σ) \ I, then σ−1(i) < σ−1(i + 1). As σ = Std(f) and
i /∈ I, σ−1(i) and σ−1(i + 1) are in the same Cp, so f(σ−1(i + 1)) = p =
f(σ−1(i)) = g(σ−1(i + 1)).

As a conclusion, g = f , so ψσ ◦ φσ(f) = f . �

Proof. (theorem 23).
1. =⇒. If f ≤ g, by lemma 24, Std(f) = Std(g). We denote by σ this per-

mutation. If I = M(f) and J = M(g), then f = ψσ(I) and g = ψσ(J). For all
p ∈ [max(f)], we put f−1({p}) = Cp. For all q ∈ [max(g)], we put g−1({q}) = C′

q.

Let k ∈ I. We put σ(k) = i. By construction of ψσ(I), k = σ−1(i) is the greatest
letter of Cp for p = f(k), and if l = σ−1(i + 1) is the smallest letter of Cp+1, then
k < l. Consequently, if k′ ∈ Cp, l

′ ∈ Cp+1, then k′ ≤ k < l ≤ l′. If g(k′) ≥ g(l′),
as f ≤ g, we should have f(k′) > f(l′): this is a contradiction, as f(k′) = p and
f(l′) = p + 1. So g(k′) < g(l′). Moreover, f is constant on C′

q for all q, as f ≤ g.
If k ∈ C′

q, then C′
q ⊆ Cp with p = f(k). Moreover, l ∈ Cp+1, so l /∈ C′

q. As

Std(g) = σ, l = σ−1(i+ 1) ∈ C′
q+1, which implies C′

q+1 ⊆ Cp+1. So for all k′ ∈ Cq,
l′ ∈ Cq+1, k

′ < l′: k ∈M(g) = J , and I ⊆ J .

1. ⇐=. We put I =M(f), J =M(g), such that f = ψσ(I) and g = ψσ(J), with
σ = Std(f) = Std(g).

• As I ⊆ J , the change of values of f in the definition of ψσ(I) are also
change of values of g in the definition of ψσ(J); consequently, if g(i) = g(j),
then f(i) = f(j).

• If g(k) ≤ g(l), we put σ(k) = i and σ(l) = j. By construction of ψσ(J),
i < j. By construction of ψσ(I), f(k) = f(σ−1(i)) =≤ f(σ−1(j)) = f(l).
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• If g(k) < g(l) and k > l, we put σ(k) = i and σ(l) = j. Then the interval
{i, . . . , j−1} contains an element which does not belong toM(σ) (otherwise,
it would contain only elements of M(σ), and then k ≤ l). By definition of
ψσ(I), f(k) < f(l).

Finally, f ≤ g.

2. For all σ ∈ Sn, φσ is bijective: this implies that Φ is bijective. By the first
point, Φ is an isomorphism of posets. �

Remark. In particular, if σ is a permutation, ϕ(1,0,0)(σ) is the sum of all
packed words f such that Pack(f) = σ. This implies that the restriction of ϕ(1,0,0)

to FQSym is the map ϕ defined in section 1.2.

Corollary 26. For all n ≥ 1, for all σ ∈ Sn:

♯{w packed word of length n | Std(w) = σ} = 2♯M(σ).

For all n ≥ 1:

♯{packed words of length n} =
∑

σ∈Sn

2♯M(σ).
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