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Abstract—Discovering pattern sets or global patterns is an
attractive issue from the pattern mining community in order
to provide useful information. By combining local patterns
satisfying a joint meaning, this approach produces patterns
of higher level and thus more useful for the end-user than the
usual local patterns. In parallel, recent works investigating re-
lationships between data mining and constraint programming
(CP) show that the CP paradigm is a powerful framework to
model and mine patterns in a declarative and generic way.
We present a constraint-based language which enables us to
define queries in a declarative way addressing patterns sets
and global patterns. By specifying what the task is, rather
than providing how the solution should be computed, it is
easy to process by stepwise refinements to successfully discover
global patterns. The usefulness of the approach is highlighted
by several examples coming from the clustering based on
associations. All primitive constraints of the language are
modeled and solved using the SAT framework. We illustrate
the efficiency of our approach through several experiments.

I. INTRODUCTION

The process of extracting useful patterns from data, called
pattern mining, is an important tool for data analysis and has
been used in a wide range of applications and domains. A
large amount of work has been developed and many pattern
extraction problems are now identified and understood from
both theoretical and computational perspectives. Local pat-
tern discovery has become a growing field [19] and several
paradigms are available for producing extensive collections
of patterns such as the constraint-based pattern mining [20]
or condensed representations of patterns [3]. Because of the
exhaustive nature of the techniques, the pattern collections
provide a fairly complete picture of the information content
of the data. However, the approach suffers from limitations.
First, the collections of patterns still remain too large for an
individual and global analysis performed by the data analyst.
Secondly, the so-called local patterns represent fragmented
information whereas patterns expected by the data analyst
require to consider simultaneously several local patterns.
That is why combining local patterns to get global patterns
is highly attractive.

The data mining literature includes several methods to
take into account the relationships between patterns and
produce global patterns or pattern sets [4], [9]. Recent
approaches - constraint-based pattern set mining [4], pattern
teams [15] and selecting patterns according to the added

value of a new pattern given the currently selected patterns
[2] - aim at reducing the redundancy by selecting patterns
from the initial large set of local patterns on the basis
of their usefulness in the context of the other selected
patterns. Nevertheless, these methods are mainly based on
the reduction of the redundancy or specific aims such as
classification processes. The difficulty of the task may ex-
plain the use of heuristic functions and the lack of complete
and correct methods to mine global patterns. Indeed, mining
local patterns requires the exploration of a large search space
but mining global patterns is even harder because solutions
satisfying each pattern must be compared. Clearly, the lack
of generic approaches restrains the discovery of useful global
patterns because the user has to develop a new method each
time he wants to extract a new kind of global patterns. It
explains why this issue deserves our attention.

In this paper, we propose a constraint-based language to
discover patterns combining several local patterns. The key
idea is to propose a declarative and generic approach to ask
queries: the user models a problem by specifying a set of
constraints and expresses his queries thanks to constraints
over terms built from constants, variables, operators, and
function symbols. Queries and built-in constraints of the
language are encoded and solved using the SAT frame-
work. Our approach takes benefit of the recent progress
on cross-fertilization between data mining and Constraint
Programming [11], [12], [13], [22]. The definition of a
constraint-based language offers the great advantage to
provide a declarative method to address different pattern
mining problems: it is enough to change the specification
in term of constraints. We illustrate the approach by several
examples coming from the clustering based on associations.
With simple query refinements, the data analyst is able to
easily produce clusterings satisfying different properties. By
specifying what the task is, rather than providing how the
solution should be computed, the process greatly facilitates
the search of global patterns and the discovery of knowledge.

This paper is organized as follows. Section II describes the
constraint-based language and shows how queries and con-
straints can be defined using terms and built-in constraints.
Starting from the clustering example, Section III depicts the
process of successive refinements which enables us to easily
address several kinds of clustering and the discovery of
global models. Section IV describes how queries and built-in



constraints of the language are modeled and solved using the
SAT framework. Section V demonstrates the efficiency of
our approach through several experiments. We review related
work in Section VI

II. A CONSTRAINT-BASED LANGUAGE

This section describes the constraint-based language we
propose. Terms are built using constants, variables, oper-
ators, and function symbols. Constraints are relations over
terms that can be satisfied or not. The data analyst can define
new function symbols. We show how queries and constraints
can be written using built-in constraints.

A. Definitions and example

Let 7 be a set of n distinct literals called items, an
itemset (or pattern) is a non-null subset of Z. The language
of itemsets corresponds to L7 = 2T\(. A transactional
dataset is a multi-set of m itemsets of L£7. Each itemset,
usually called a transaction or object, is a database entry.
For instance, Table I gives a transactional dataset 7 with
m=11 transactions ti,...,%t1; described by n=8 items
A, B,C,D,E,F,G, H. Interestingness measures such as
the frequency and the area [8] are commonly used to
evaluate the relevance of patterns.

Definition 1. (frequency) The frequency of a pattern X is
the number of transactions that X; covers in 7: freqg(X;)
=N teT|X;Ct}.
Definition 2. (area) Let X; be a pattern, area(X;) =
freq(X;) x size(X,;) where size(X;) denotes the car-
dinality of X;.

From our running example (cf. Table I), freq({A, E}) =
3 and freq({C,F,G,H}) = 1. The frequency constraint
freq(X;) > minfr focuses on patterns occurring in the
dataset a number of times exceeding a given minimal thresh-
old minfr. On the other hand, 9 patterns satisfy the con-
straint area(X;)>6 : {4, E,G}, {B,E,G}, {C,E,G},
{C,E,H}, {E,G}, {C,E}, {C,H}, {E}, {G}. The goal
of constraint-based pattern mining is to discover all the
patterns of L7 satisfying a given constraint. The rest of
this section depicts our proposition to express constraints.
Contrary to the previous examples, several patterns can be
involved in the following constraints.

B. Terms

Terms are built from constants, variables, operators, and

function symbols.

« constants are either numerical values (as threshold
minfr), or items (as A) or patterns (as {A, B}) or
transactions (as t7).

« variables, noted X;, for 1 < i < k, represent the
unknown patterns.

e operators:

— set operators as N, U, \, ...
— numerical operators as +, —, X, /, ...

Trans. Items
t1
t2
ts
t4
ts B
te B
t7
ts
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Table 1
TRANSACTIONAL DATASET 7.

« function symbols involving one or several patterns:
freq/1, size/1, cover/1, overlapltems/2,
overlapTransactions/2, ...

Examples of terms:

o freqg(Xi) x size(X;) (ie. the area of X;)

o freqg(X1UXs3)xsize(X1NXs) (i.e., the overlapping
between area(X;) and area(Xs))

o freqg(X;) — freqg(Xs)

1) Built-in function symbols: The constraint based lan-
guage owns predefined (built-in) function symbols' like:

e cover(X;) = {t | t € T,X; C t} is the set of
transactions covered by X;.

. freq(X) =|{t|teT,X, C1}|

o size(X;)=[{jlj€ZL.j€ X}

o overlapItems(X;,X;)=|X;NX; | is the number
of items shared by both X; and X;.

» overlapTransactions(X;, X;) =|cover(X;)N
cover(X;) | is the number of transactions covered by
both X; and X;.

2) User-defined function symbols: The data analyst can
define new function symbols using constants, variables, op-
erators and existing function symbols (built-in or previously
defined ones). Examples:

o area(X;) = freq(X;) x size(X;)

o coverage(X;, Xj)=freq(X;UX;)xsize(X;NX;)

o interestingness measures can be straightforwardly de-

fined. Here is the example of the growth-rate well-
used in contrast mining [21]. Let Dy, Do C T be 2 sets
of transactions (i.e., classes) and freq’ (X;, D;) the
frequency of X; into D;, the growth-rate of X; in D;

. N _ |D2|x freq’ (X:,D:1)
is gri(X;) = |D:1|x freq’ (X;,D2)

C. Constraints and Queries

Constraints are relations over terms that can be satisfied
or not. There are three kinds of built-in constraints:

'Only function symbols used in Section III are introduced in this paper.



- numerical constraints like: <, <, =, #, >, >, ...
Examples:

o freg(X;) <10

o size(Xq) =2 x size(Xs)

o area(X;) < size(Xy) X freq(Xs)
- set constraints like: =, #, €, ¢, C, C, ...
Examples:

« A Xy

e X1UXs C X3

e X1 =XoNXy
- dedicated constraints like:

o closed(X;) is satisfied iff X; is a closed” pattern.

e coverTransactions([Xy,..., Xx]) is satisfied iff
each transaction is covered by at least one pattern (i.e.
Ulgigk cover(X;) =T),

o coverItems([Xy,..., X)) is satisfied iff every item
belongs to at least one pattern (i.e. |J;,«, Xi = D).

o canonical([Xy,..., Xg]) is satisfied iff for all 7 s.t.
1 <1 < k, pattern X; is less than pattern X;; with
respect to the lexicographic order.

Queries are formulae built using constraints and logical

connectors: A (conjunction) and V (disjunction).

III. MINING BY REFINING CONTRAINT-BASED QUERIES

A major strength of our approach is to provide a simple
and efficient way to declare and refine queries. In practice,
the data analyst starts by writing a first query Q1. Then, he
successively refines the query (deriving Q;41 from @;) until
he considers that relevant information has been extracted.
We illustrate this approach with the clustering problem.
Clustering aims at partitioning data into groups (clusters) so
that transactions are similar inside each cluster but different
between clusters [7]. We selected clustering because it is
an important and popular data mining task and, by nature,
clustering proceeds by iteratively refining queries until a
satisfactory solution is found. Our approach is also well-
suited to integrate constraints handled in constraint-based
clustering [1].

A. Modeling a clustering query

The closed patterns are well-designed for clustering based
on associations because a closed pattern gathers the maxi-
mum amount of similarity between a set of transactions.
Thus, a closed pattern is a candidate cluster. The standard
clustering problem can then be formalized as: “to find a set
of k closed patterns X1, Xo, ..., Xi (i.e., clusters) covering
all transactions without any overlap on these transactions”.

Our constraint-based language offers the constraints
to express this query: the closed(X;) constraints en-
force each unknown pattern X; to be closed, the
coverTransactions([Xy,..., Xj]) constraint ensures to

2 et T'r; be the set of transactions covered by pattern X;. X is closed
iff X is the largest (C) pattern covering T'r;.

Sol. X1 X2 X3

S1 {C, E G, H} {E} {A, D, F}

S2 {A, F} {C, H} {E, G}

S3 {C, E, H} {E, G} {F}

S4 {A, F} {C, E, H} {G}

ss | {A} {B, E, G} {C}

Table II
SET OF DIFFERENT CLUSTERINGS.
Sol. X1 X2 X3
sh {C,F, G, H} | {E} {F}
sh {A, D, F} {C,F, G, H} | {E}
sh {A, F} {C,F, G, H} | {E}
sy | {A E, F) {E} {F}
s5 | (A, D, F} {E} {F}
ss | {A} {B, E, G} {C}
sh {A, F} {C, E, H} {G}
ss | (A F) {C, H} {G}
54 {A, F} {C, H} {E, G}
s10 | {C, E, H} {E, G} {F}
s1 | {C, H} {E, G} {F}
s12 | {C, H} {F} {G}
s13 | {C, E, H} {F} {G}
Table III

SET OF DIFFERENT CLUSTERINGS FOR QUERY Q.

cover all the transactions. To avoid an overlap between
transactions, we add for each couple of patterns (X;, X;) s.t.
1<j the overlapTransactions(X;, X;)=0 constraint.
This constraint states that there exists no transaction covered
by both X; and Xj;.

Moreover, a clustering problem intrinsically owns a lot
of symmetrical solutions. Let s = (p1,p2,...,pr) be a
solution containing % patterns p;, any permutation o of
these k patterns 0(s) = (Po(1),Po(2)s -+ Po(k)) 15 also a
solution. The canonical([X1,..., Xx]) constraint is used
to avoid computing symmetrical solutions. This constraint
ensures that, for all 7 s.t. 1 < i < k, pattern X; is before
pattern X, with respect to the lexicographic order. The
canonical([Xy,...,Xk]) constraint plays an important
role. As for a clustering involving & clusters, the number
of symmetrical solutions is k!, it is crucial to break the
symmetries to avoid obtaining a huge number of redundant
solutions. Moreover, this constraint performs an efficient
filtering by drastically reducing the size of the search space.

Finally, we get the following query (1) modeling the
initial clustering problem:

/\1§i§k closed(Xi) A
coverTransactions([X1i,..., Xg]) A

Ai<i<j<k overlapTransactions(X;, X;) =0A
canonical([Xy,..., Xk])

On our running example, with k=3 patterns, query Q:
provides 5 solutions (see Table II).



B. Refining queries

By only refining queries on a clustering, the data analyst
can easily produce other clusterings satisfying different
properties. This section illustrates this feature of our ap-
proach that facilitates the building of global patterns and
the discovery of knowledge. From the initial query @1, we
derive queries )2 and Q3 avoiding clusterings with non-
frequent patterns and clusterings with small size patterns.

1) Removing solutions with non-frequent patterns: When
a cluster has a low frequency, it lacks of representativity and
the clustering is not considered as reliable. From @)1, it is
easy to add frequency constraints ensuring that each pattern
is frequent. With a frequency threshold §; =2, we get Qs:

/\1§i§k closed(Xi) AN
coverTransactions([Xi,..., Xg]) A

Ai<i<j<k overlapTransactions(X;, X;) =0A
canonical([Xy,..., X&]) A

N<i<k freg(Xi) > 61

Pattern {C, F, G, H} of solution s; has a frequency of 1
and thus is removed. With @), there remain 4 solutions (s,
S3, S4, and ss, see Table II).

2) Removing solutions with small size patterns: A clus-
tering with at least one cluster X; of small size’ is not
considered as useful because X; does not ensure enough
similarity between transactions associated to X;. It is simple
to add constraints requiring that the size of each pattern is
higher than a minimal size. From @2, with a minimal size
threshold d2=2, we obtain the query Qs:

Ni<i<k closed(X;) A
coverTransactions([X1,..., Xx]) A

Ai<i<j<k overlapTransactions(X;, X;) =0A
canonical([Xy,..., Xk]) A

/\1§i§k freq(Xi) 2 61 A

N1<i<k size(Xi) > 0o

With the query @3, there is only one solution: s2 with
X1={A, F}, Xo={C,H} and X3={F,G} (cf. Table II).

C. Solving other Clustering Problems

In the same way, it is easy to express other clustering
problems [1] such as soft clustering, co-clustering, and soft
co-clustering.

1) Soft clustering: This problem is a relaxed version of
the clustering where small overlaps on transactions (less than
a threshold d7) are allowed. The query Q4 (soft version of
(1) models this problem:

Ni<i<k closed(X;) A
coverTransactions([X1,..., Xx]) A

Ai<i<j<k overlapTransactions(X;, X;) < dr A
canonical([Xy,..., Xk])

3Moreover, clustering with clusters of size 1 often reflects values coming
from the binarization of an attribute (such as A, B and C' in Table I) and
are useless.

With k=3 and a maximal overlap between transactions
or=1, Q4 produces 13 solutions (see Table III).

With s, the overlaps are the transaction t1; (covered by
X1 and X3) and the transaction to (covered by Xo and X3)
(see Tables III and I). Removing solutions with non frequent
patterns (with §;=2) leads to 8 solutions (from s to s}5). By
adding a minimal size constraint d,=2, only the solution s{
remains (which is also the solution s5 of the initial clustering
problem, see Section III-B2).

2) Co-clustering: The co-clustering task consists in find-
ing k clusters covering both the set of transactions and the
set of items, without any overlap on transactions or on items.
Query Q5 expresses this problem:

Ni<i<k closed(X;) A
coverTransactions([X,..., Xx]) A

Ai<i<j<k overlapTransactions(X;, X;) =0A
coverItems([Xy,..., Xk]) A

M<i<j<k overlapItems(X;, X;) =0A
canonical([Xy,..., Xk])

3) Soft co-clustering: This problem is a relaxed version
of the co-clustering, allowing small overlaps on transactions
(less than 67) and on items (less than d7). The query Qg
(soft version of ()4 and (J5) models this task:

/\1§i§k closed(Xi) A
coverTransactions([X1,..., Xx]) A

N<i<j<k overlapTransactions(Xi,Xj) <dorA
coverItems([Xy,..., Xk]) A

Ni<i<j<k overlapItems(X;, X;) <drA
canonical([Xy,..., Xk])

4) Balanced clustering: In clustering, we generally pre-
fer solutions in which the frequencies of the clusters do
not differ too much from each other. Query ()7 describes
clusterings with balanced frequencies. For any couple of
clusters (X;, X;), their difference of frequencies must be
lower than a threshold Axm where A is a percentage.
Looking for clusterings with balanced size clusters could
be achieved in a same way.

Ai<i<k closed(X;) A
coverTransactions([X1i,..., Xx]) A

Mi<i<j<k overlapTransactions(X;, X;) =0 A
canonical([Xy,..., Xi]) A

M<icj<k | freq(X;) — freq(X;) [< A xm

IV. MODELING AND SOLVING AS A SAT PROBLEM

Satisfiability (SAT) is the problem of determining if the
variables of a given boolean formula can be assigned in
such a way as to make the formula be evaluated to True.
A formula is in conjunctive normal form (CNF) if it is a
conjunction of clauses, where a clause is a disjunction of
literals and a literal is either a variable z; or its negation
L.

Even if the SAT problem is NP-complete, efficient and
scalable algorithms for SAT, that were developed over the



last decade, have contributed to dramatic advances in the
ability to automatically solve problem instances involving
tens of thousands of variables and millions of constraints.
That is why, we have chosen to transform a query into a
CNF and then use a SAT solver to find its solutions.

In the remainder of this section, let (d; ;) be the (m,n)
boolean matrix where (d;;=True) iff (i€t). Queries are
modeled in two steps. First, unknown patterns are modeled
using boolean variables and matrix (d; ;). Then, each built-in
constraint its expressed using a CNF.

A. Modeling unknown patterns

Let X, Xo,..., X§ be the k patterns we are looking for.
In a same way as [13], [22], the link between the data set
T and an unknown pattern X; is performed by introducing
two kinds of boolean variables:

. lej,Xth, ---aXn,j S.t. (X¢7j=True) iff (’L S X])
. TL]’,TQJ’, ---,Tm,j S.t. (Tt7j=True) iff (X] C t)
The relation (X; C t) can be transformed into the following
CNF:
/\ - X5 (1
{i€Z|~ds,i}

The relationship between X; and 7 is modeled by stating
that, for each transaction ¢, (T j=True) iff X; covers ¢:

Vte T, T, & (X; Ct) )

Using Eq. 1, the left to right implication of Eq. 2 can be
transformed into the following CNF:

AC A

teT {i€Z|-ds:}

(T, ; V =X 5)) (3)

Using Eq. 1, the right to left implication of Eq. 2 can be
transformed into the following CNF:

ACV
teT {i€Z|ds:}

Finally, Eq. 3 and Eq. 4 must hold for every X, 1<5<k.
So, the SAT encoding of a query with k£ unknown patterns
requires k X m X n binary clauses.

XijVT;) 4

B. Constraints as boolean formulae

This section provides the boolean formulae associated to
built-in constraints. The following ones have a straightfor-
ward encoding:

. Xp = Xq — /\iGI(Xi,p = Xi,q)

. io S Xp — Xio,p

. Xp n Xq =X, — /\iGI(Xi,r = Xl'yp A Xl'yq)

. Xp U Xq =X, — /\iGI(Xi,r = Xl'yp \Y Xi,q)

. Xp\Xq =X, — /\iGI(Xi,T = Xi,p A _‘Xi,q)

o coverItems([Xy,..., Xz]) = Niez(Vjen..nXi,j)

o coverTransactions([Xu, ..., Xx]) = Ae(V;T};)

All threshold constraints are modelled using the sorting
network approach (for technical details, see [6]) in order

dataset #transactions  #items  density
Australian 690 125 0.40
Mushroom 8124 119 0.19
Soybean 630 50 0.32
Primary-Tumor 336 36 0.48
Zoo 101 36 0.44
Meningitis 329 82 0.26

Table IV

DESCRIPTION OF THE DATASETS.

to prevent prohibitive grounding. Using such an encoding,
the size of the CNF modelling a threshold constraint is
independent from the value of the threshold but depends on
the maximal value for the considered measure. For example,
the size of the CNF for constraint (freq(X;) > d1) is
O(mxlog(m)), and does not depend on d;. The size of the
CNF for constraint (size(X;) < d5) is O(nxlog(n)), and
does not depend on 5. Threshold constraints for measures
like overlapItems and overlapTransactions are
encoded in the same way.

C. Ensuring completeness while using a SAT solver

Given a CNF, SAT solvers either find one instanciation
(and only one) for the variables evaluating the formula to
True, or prove there is no such an instanciation. In order
to ensure the completeness of our approach, restarts are
performed.

Let F be the CNF modeling a query (). F is the con-
junction of the CNF associated to the modeling of unknown
patterns (see Section IV-A) and the CNFs associated to the
modeling of the constraints involved in ) (see Section IV-B).
Resolution begins with F. Then, after having obtained the
i-th solution s;, its negation —s; is added to the (current)
CNF and resolution is restarted in order to look for another
solution. The process ends when a failure occurs, i.e. when
all solutions have been found.

Using restarts may seem too naive, but in practice is
powerful (see experiments in Section V-A). This is because
the CNF F contains much binary clauses (see Section IV-A),
and so, filtering by unit propagation will be very effective.

The SAT solver MiniSat® [5] has been used for exper-
iments, because its implementation proved easy to modify
and MiniSat is one of the most efficient SAT solvers.

V. EXPERIMENTS

Recalling that the key contribution of this paper is to
propose a constraint-based language to model and mine
global patterns in a declarative way. Therefore, the goal of
the experiments is to provide better insights on the use of
our approach in order to discover global patterns with the
example of clustering based on associations.

‘http://minisat.se/
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Figure 2. Number of solutions for refinements Q1 to @3 (Meningitis).

Experiments were performed on several benchmarks
from the UCI repository’ and also a real-world dataset
Meningitis gathering 329 children hospitalized for acute
meningitis. Characteristics of datasets are presented in Ta-
ble IV. Experiments were conducted on a PC having a 2.83
GHz Intel Core 2 Duo Processor and 4GB of RAM, running
Ubuntu Linux.

A. Clustering Queries

This section illustrates the successive query refinement
depicted in Section III and leading to the query Qs.

Fig. 1 (resp. Fig. 2) gives the total number of solutions
for queries @1, @2, and @3 for the dataset Soybean
(resp. Meningitis) according to k (i.e., the number of
patterns). Applying the stepwise refinements from query Q)
to query (s drastically reduces the number of clusterings
and highlights on the most promising ones (note that the
y-axis is a logarithmic scale).

Fig. 3 depicts the number of solutions to query ()3 on sev-
eral datasets. In some cases, the query can be satisfied by a
large number of solutions and we do not report results when

Shttp://www.ics.uci.edu/ mlearn/MLRepository.html
P P Y
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Figure 3. Number of solutions to query @23 on several datasets.
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Figure 4. Computing times for query Q3 on several datasets.

there are more than one million of solutions. It especially
happens with Australian because this dataset provides a
huge number of closed patterns. In such situations, the query
should be refined (by increasing the minimal frequency
and/or size thresholds or adding new constraints).

The completeness of our approach is ensured by restarting
the SAT solver. Each time a new solution is found, its
negation is stored and added to the current CNF. Memory
consumption becomes too high above millions of solutions.
From a practical point of view, as the data analyst is
interested in extracting a small number of solutions, it does
not make sense to perform mining providing millions of
patterns. Once again, the stepwise refinement query should
be used to avoid these situations and to focus on the most
relevant patterns.

Fig. 4 gives the computing times on several datasets,
showing the efficiency of our approach. Even for rather
large datasets like Mushroom, computing times are still
affordable.

B. Soft Clustering

Fig. 5 and Fig. 6 provide soft clustering results with
query (4 on datasets Soybean and Primary-Tumor.
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Figure 5. No. of sol. according to k for several d values (Soybean).
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Curves indicate the number of solutions according to &
and the maximal overlap threshold J7 on transactions. As
expected, the number of solutions increases with the size of
the overlap. The number of solutions can be easily controlled
by adjusting (decreasing/increasing) dr.

C. Balanced Clustering

We performed experiments with query Q7. Fig. 7 and
Fig. 8 display curves indicating the number of solutions
on datasets Zoo and Primary-Tumor according to k
and A. Adding the balanced frequencies constraint strongly
reduces the number of solutions. For dataset Zoo, only a
gap A=40% allows to find a solution for k=2. Moreover,
with k=3 and k=4, there is no solution with a gap A=10%.

VI. RELATED WORK

The data mining literature includes many approaches
to reduce the number of produced patterns such as the
condensed representations of patterns [3], the compression
of the dataset by exploiting Minimum Description Length
Principle [24], the discovery of k representative patterns with
probabilistic models for summarizing frequent patterns [18].
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Figure 7. No. of sol. according to k for several A values (Zoo).
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Figure 8. No. of sol. according to k for several A values

(Primary-Tumor).

These approaches mainly aim at reducing the redundancy
between patterns and often focus on frequent patterns.
Taking into account the relationships between patterns
is explicitly required to produce global patterns or pattern
sets [2], [4], [9]. A large number of these methods are
based on two-step techniques. The first step generates an
exhaustive collection of local patterns and then the patterns
are heuristically post-processed to select a smaller subset
of complementary relevant patterns such as in associative
classification [17]. There are few methods without heuristic
to mine complete and correct pattern sets or global patterns
and in practice running techniques are devoted to specific
kinds of global patterns [16], [23]. General data mining
frameworks based on the notion of local patterns to design
global models are presented in [9], [14]. These frameworks
help to analyze and improve current methods in the area.
Recent works [11], [12], [13], [22] have shown the
cross-fertilization between data mining and Constraint Pro-
gramming (CP). Indeed, CP provides a general declarative
methodology for modeling and solving constraint problems.
CP facilitates the design of generic methods handling several
patterns, that is a key point in pattern set mining. Techniques



for mining itemsets and n-ary patterns (i.e., the combination
of n patterns) have been proposed. Looking for declarative
techniques in pattern mining was also recently investigated
in [10]: by using relational algebra, the authors propose an
algebraic framework for pattern discovery for expressing a
wide range of queries.

VII. CONCLUSION AND FUTURE WORK

We have proposed a constraint-based language allowing
to easily express different mining tasks in a declarative way.
Thanks to the declarative process, extending or changing
the specification to refine the results and discover more
relevant patterns or address new global patterns is very
simple. Moreover, all constraints can be combined together
and new constraints can be added. The efficiency and the
flexibility of our approach is shown on several examples
coming from clustering based on associations. Thanks to
query refinements, the data analyst is able to produce clus-
terings satisfying different constraints and generating more
meaningful clusters.

As future work, we want to enrich our constraint-based
language with further constraints to capture and model a
wider range of data mining tasks. The scalability of the
approach to larger values of k and larger datasets will also
be investigated. Another promising direction is to integrate
optimisation criteria in our framework.
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