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Abstract Nurse Rostering Problems (NRPs) consist of generating rosters where re-

quired shifts are assigned to nurses over a scheduling period satisfying a number of

constraints. In [25], we have shown how soft global constraints can be used to model

NRPs in a concise and elegant way. In this paper we go one step further by proposing

new neighborhood heuristics for VNS/LDS+CP. Experiments show that, despite its

genericity and flexibility, our approach supplies excellent results on small and middle

size problems and very promising results on large scale problems.
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1 Introduction

Due to their complexity and importance in real world modern hospitals, Nurse Ros-

tering Problems (NRPs) have been extensively studied in both Operational Research

(OR) and Artificial Intelligence (AI) for more than 40 years [5,13]. Most NRPs in real

world are NP-hard [20] and are particularly challenging as a large set of different rules

and specific nurse preferences need to be satisfied to warrant high quality rosters for

nurses in practice. Other wide ranges of heterogeneous and specific constraints usually

make the problem over-constrained and hard to solve efficiently [1,32].

NRPs consist of generating rosters where required shifts are assigned to nurses

over a scheduling period satisfying a number of constraints [5,10]. These constraints

are usually defined by regulations, working practices and preferences of nurses and are

usually categorised into two groups: hard constraints and soft constraints (with their

violation costs).
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VNS/LDS+CP [23] is a generic local search method based on VNDS (Variable

Neighborhood Decomposition Search [15]) for solving over-constrained problems. Neigh-

borhoods are obtained by unfixing a part of the current solution according to a neigh-

borhood heuristic. Then the exploration of the search space related to unfixed part of

the current solution is performed using LDS (Limited Discrepancy Search [16]) com-

bined with Constraint Propagation (Filtering).

Global constraints are often key elements in successfully modelling and solving

real-life problems due to their efficient filtering. Global constraints are particularly

well suited for modelling (hard) NRP constraints [3,35]. More recently, soft global

constraints proposed by [24,31,33,37] enable to quantify the violation while keeping

the efficiency of their filtering. In [25], we have shown how soft global constraints can

be used to model NRPs in a concise and elegant way. In this paper we go one step

further by proposing new neighborhood heuristics for VNS/LDS+CP. Such heuristics

provide results better than those described in [25]. Experiments show that, despite its

genericity and flexibility, our approach supplies excellent results on small and middle

size problems and very promising results on large scale problems.

Section 2 gives a synthetic overview of NRPs. Section 3 describes VNS/LDS+CP

and reviews neighborhood heuristics already proposed for solving NRPs using VNS.

We performed experiments over different instances selected to be representative of the

diversity and the size of NRPs (Section 4). For each selected instance, we compare

(Section 5) quality of solutions and computing times for our method with the best

known ad’hoc method for solving it [18]. Finally we conclude and draw some further

works.

2 Nurse Rostering Problems

2.1 An overview of NRPs

NRPs consist of generating rosters where required shifts are assigned to nurses over a

scheduling period (planning horizon) satisfying a number of constraints [5,13]. These

constraints are usually defined by regulations, working practices and nurses preference.

Constraints are usually categorised into two groups: hard and soft ones.

Hard constraints must be satisfied in order to obtain feasible solutions for use

in practice. A common hard constraint is to assign all shifts required to the limited

number of nurses.

Soft constraints are not mandatory but are desired to be satisfied as much as

possible. The violations of soft constraints in the roster are used to evaluate the quality

of solutions. A common soft constraint in NRPs is to generate rosters with a balanced

workload so that human resources are used efficiently.

Shift types are hospital duties which usually have a well-defined start and end time.

Many nurse rostering problems are concerned with the three traditional shifts Morn-

ing, (7:00–15:00), Evening (15:00–23:00), and Night (23:00–7:00). Nurses can possess

different skills and cover can be defined for each skill.

Different kinds of constraints can be imposed on the work planning of a nurse:

(i) Shift constraints set the minimal and/or maximal number of nurses of certain

skill level working in each shift as well as within each group during the planning period.
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(ii) Pattern constraints ensure a certain level of quality for the plannings produced

and may be specified either globally for the staff or only for certain individuals. Typical

requirements are:

– patterns of shifts (i.e. minimal and/or maximal total number of particular sequences

of shifts) between any two types of shifts in the planning period (e.g., at least one

day-off per week),

– length of stretches of shifts of identical type to avoid working too few or too many

days in a row on a certain shift (e.g. working more than 4 consecutive day shifts is

not permited),

– patterns of stretches such as forward rotation (going from day shifts to evening

shifts to night shifts to day shifts again),

– and patterns of stretches of a given length that ask for at least so many consecutive

shifts of a certain type right after shifts of another type (e.g., there must be a

day-off before and after working for three consecutive night shifts).

(iii) Workload constraints are used to model the requirements of min/max total

number of hours and/or shifts of specific type worked by each nurse in the planning

period.

2.2 Example: Valouxis Instance

For the Valouxis instance [36], 16 nurses must be planned over a period of 4 weeks.

Three shifts are considered: M (Morning), E (Evening) and N (Night). O (Off) will

represent repose. The following hard and soft constraints must be enforced. Fig. 1

describes a planning of cost 60 for this instance.

1. Hard constraints:

(H1) From Monday to Friday, M , E and N shifts require respectively (4,4,2) nurses.

(H2) For weekend, M , E and N shifts require respectively (3,3,2) nurses.

2. Soft constraints:

(S1) For each nurse, the number of M shifts should be within the range [5..8]. Any

deviation δ is penalised by a cost δ × 1000.

(S2) For each nurse, the number of E shifts should be within the range [5..8]. Any

deviation δ is penalised by a cost δ × 1000.

(S3) For each nurse, the number of N shifts should be within the range [2..4]. Any

deviation δ is penalised by a cost δ × 1000.

(S4) Each nurse must have at least 10 days Off. Any shortage δ generates a cost

δ × 1000.

(S5) Each nurse must have at most 13 days Off. Any excess δ generates a cost δ×100.

(S6) Over a period of 4 weeks, each nurse must have at least 1 free Sunday. Any

violation of this rule is penalised by a cost 1000.

(S7) Each nurse should not work more than 3 consecutive N shifts. Any excess δ

generates a cost δ × 1000.

(S8) Shift changes must be performed respecting the order: M , E, N . Any violation

of this rule is penalised by a cost 1000.

(S9) Each isolated working day is penalised by a cost 1000.

(S10) Each isolated day off is penalised by a cost 1000.

(S11) Each nurse should work 4 consecutive days. Any excess δ generates a cost

δ × 1000. Each period of 2 (resp. 3) consecutive working days is respectively

penalized by a cost 40 (resp. 20).
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Fig. 1 A solution of cost 60 for the Valouxis instance.

3 Solving NRPs

3.1 VNS/LDS+CP

A wide range of approaches and techniques have been proposed for solving NRPs.

These include ad’hoc OR methods (by means of mathematical programming with pre-

processing steps to reduce the problem size), constructive heuristics and local search

methods combining OR techniques to find an initial solution (see [5,13] for a compre-

hensive review). Of those techniques that have been applied to NRPs, metaheuristics

dealing with large-scale neighborhoods (2-opt, swap and interchange of large portions

of nurse plannings, . . . ) such as Variable Neighbourhood Search (VNS) seem to be well

suited and very effective.

VNS is a metaheuristic which systematically exploits the idea of large neighborhood

change, both in descent to local minima and in escape from the valleys which contain

them [27]. Variable Neighborhood Decomposition Search (VNDS) [15] extends basic

VNS within a successive approximations method. For a solution of size n, all but k

variables are fixed, and VNDS solves a sub-problem in the search space defined by the

k unfixed variables.

3.1.1 General overview

VNS/LDS+CP [23] is a generic local search method based on VNDS, where neighbor-

hoods are obtained by unfixing a part of the current solution according to a neighbor-

hood heuristic. Then the exploration of the search space related to the unfixed part

of the current solution is performed using a Limited Discrepancy Search (LDS [16])

combined with Filtering in order to benefit from the efficiency of soft global constraints

filtering (See Algorithm 1).
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Algorithm 1: Pseudo-code for VNS/LDS+CP.

function VNS/LDS+CP(X , C, kinit, kmax, δmax)

1 begin
2 s← genInitialSol(X )
3 k ← kinit

4 while (k < kmax) ∧ (not timeout) do
5 Xunaffected ← Hneighbor(Nk, s)
6 A ← s\{(xi = a) s.t. xi ∈ Xunaffected}
7 s′ ← NaryLDS(A,Xunaffected, δmax,V(s), s)
8 if V(s′) < V(s) then
9 s← s′

10 k ← kinit

11 else k ← k + 1

12 return s

Unlike an usual VNS scheme, our approach offers two main advantages: first, by

focusing efforts on improving only a part of the solution, we restrict the size of the

search space and intensify search to improve the current solution; second, even if the

exploration of (very) large neighborhoods requires a too expensive effort, the use of

LDS allows to efficiently explore parts of the search space.

Algorithm 1 shows the general pseudo-code of VNS/LDS+CP, with kinit (resp.

kmax) the minimal (resp. maximal) number of variables to be unassigned and δmax

the maximal number of discrepancies allowed for LDS. A subset of k variables (k is the

dimension of the neighborhood) is selected by the neighborhood heuristic Hneighbor

in Nk (set of all subsets of k variables among X ) (line 5). A partial assignment A

is generated from the current solution s by unassigning the k selected variables ; the

(n − k) non-selected variables keep their current value in s (line 6). Then, unassigned

variables are rebuilt by a partial tree search LDS, combined with constraint propagation

based on filtering of global constraints. If a solution of better quality s′ is found in the

neighborhood of s (line 8), then s′ becomes the current solution and k is reset to

kinit (lines 9-10). Otherwise, we look for improvements in the subspace where (k + 1)

variables will be unassigned (line 11). The algorithm stops when it reaches the maximal

dimension size allowed or the timeout (line 4).

3.1.2 LDS+CP

LDS is a tree search method introduced by Harvey and Ginsberg [16] allowing to

iteratively solve binary CSPs. Let H be a heuristic that is trusted. The main idea

of LDS is to follow H when exploring the search tree, and to consider that H may

make mistakes a small number (δ) of times. Thus, δ discrepancies are allowed during

search. For a given maximal number δmax of discrepancies, LDS explores the tree in

an iterative way with an increasing number of discrepancies (from δ = 0 to δ = δmax).

Depending on the value of δmax, LDS is either a partial or a complete tree search. In

[23], LDS has been extended to n-ary optimization problems, and only performs the

last iteration (for δ = δmax).

Our variable ordering for LDS first selects the variable having the lowest ratio

domain cardinality divided by its degree (Dom/Deg). Our value ordering (BestFirst)

selects the values according to the increasing order of their violation costs. We re-

use information gained from the filtering of soft global constraints to determine the
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violation cost for a value. Finally, Constraint Propagation is performed using soft global

constraints filtering (see [17,25]).

3.2 Neighborhood Heuristics: Related works

Neighborhood heuristics are crucial since they select parts of the search space to explore

in order to find solutions of better quality. However, designing efficient neighborhood

heuristics is a hard task and requires a great deal of expertise. Morever, as quoted in

[8], few neighborhood heuristics have been designed for NRPs. In this subsection, we

review these neighborhood heuristics and describe the context in which they have been

used.

(i) (VNS). In [6], three neighborhood heuristics based on swapping large parts of

nurse plannings have been proposed and used in a VNS scheme:

– Shuffle neighborhood considers different swaps between the worst nurse planning

and any other nurse planning.

– Greedy Shuffle neighborhood considers swaps between any two nurse plannings.

– Core Shuffle neighborhood considers two consecutive swaps between any two nurse

plannings at a time (see [6] for more details).

(ii) (VNS+HO). A hybrid method combining VNS with a heuristic ordering (HO)

has been proposed in [7]. The aim of the heuristic ordering is to sort all the shifts

by their estimated difficulty for assigning them or how likely they are to cause high

penalties. First, an initial planning is built using the heuristic ordering. Second, in

order to improve the initial planning, a VNS is performed, followed by a repair phase.

This phase selects the worst individual plannings, unassigns their shifts and reassigns

them using the heuristic ordering. This process is repeated until a stopping criterion

is reached. Two kinds of neighborhoods heuristics have been proposed:

– One-shift Swap: re-assigning a shift to another nurse working on the same day.

– Two-shift Swap: swapping a pair of shifts assigned to two nurses working on the

same day.

(iii) (VNS+CP). A 2-steps hybrid Constraint Programming approach has been pro-

posed in [32]. First, a constraint satisfaction model is used to generate weekly plannings

of high quality satisfying a subset of shift sequence constraints. An iterative forward

search is then used to combine them in order to build feasible solutions over the whole

scheduling period (4 weeks). Second, VNS combined with the neighborhood heuristics

described in (i) is used to quickly improve obtained solutions.

(iv) (VNS+IP). VNS has been used as a postprocessing step in [10] to make re-

finements on solutions found by an Integer Program (IP). Proposed neighborhood

heuristics are based on swapping groups of consecutive shifts and are very close to the

Greedy Shuffle neighborhood heuristic decribed in (i).

(v) (LNS). More recently, a LNS (Large Neighborhood Search [34]) scheme has been

used to tackle NRPs [17]. It proceeds by selecting fragments of nurse plannings to

be unassigned and then rebuilding them using F iltering. Such a use of LNS can be

considered as an instance of VNDS. Three neighborhood heuristics have been proposed

in [17]:

(a) Sliding window with a fixed length: Nurse plannings are selected over a sliding

window (i.e. covering fixed days of the roster of all nurses) of one week.
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(b) Sliding window with an overlap: It is a refinement of heuristic (a) by selecting

variables involved in the pattern constraints for which a part of variables is on

the boundary of the sliding window, whereas another part is outside the sliding

window.

(c) Detecting regions of low quality: Instead of selecting all nurse plannings like for

heuristics (a) and (b), only nurse plannings of low quality are considered. Moreover,

PGLNS [30] is used to determine the size of the sliding window and the set of

variables to be unassigned according to the information gained by filtering (see [30]

and [17] for more details).

3.3 Neighborhood Heuristics: Our proposal

Neighborhood heuristics based on swap cannot be combined with our VNDS approach

which requires an unassigning step and a rebuilding step. Moreover, we haven’t used

heuristics (a), (b) and (c) described Section 3.2 for two main reasons. First, selecting all

nurse plannings is only effective for small problems. For large problems, as neighbor-

hoods size can quickly grow, the exploration of (very) large neighborhoods may require

a too expensive effort. Second, as a lot of soft global constraints are stated over the

whole planning of a nurse, unassigning only the subset of variables that appear in the

sliding window will not lead the rebuilding step to find a new solution of better quality.

Indeed, the more the variables are linked, the more opportunities for the rebuilding

step to minimize violations.

All variables related to a nurse planning will be together unassigned. For our ap-

proach, k will represent the number of nurse plannings to be unassigned (and not the

number of variables to be unassigned as depicted in general Algorithm 1). We have

considered the following three heuristics:

– rand randomly selects nurse plannings,

– maxV selects nurse plannings having high violation costs,

– dilution combines the two previous heuristics. Among the k nurse plannings to be

unassigned, half of them are selected using maxV, and the other ones will be chosen

randomly. The idea is to mix intensification phases (by considering nurse plannings

with high violation cost) with diversification phases (by considering nurse plannings

randomly in order to escape from local minima).

4 Experimental protocol

The ASAP site (Automated Scheduling, optimization And Planning) of University of

Nottingham (http://www.cs.nott.ac.uk/~tec/NRP/) records a large and various set

of NRPs instances as well as the methods used to solve them.

We performed experiments over different instances we selected in order to be rep-

resentative of the diversity and the size of NRPs (see Table 1). For each instance,

we always compare our approach with the best methods for solving it [18].

As experiments have been run on various machines, we will report, for each instance,

the original CPU time and the processor. For all instances, except the first three ones

where the processor is too old to be normalised (they are noted in italic Table 1), CPU

times will be normalised1 and denoted CPUN.

1 For a machine κ times slower than ours, reported CPU times will be divided by κ.
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Instances |I |×|J | |D | Optimum
Ad hoc methods VNS/LDS+CP

Algo. Cost Time(s) Cost Time(s)

Ozkarahan 14×7 3 0⋆ [29] - - 0 1

Millar 8×14 3 0⋆ Network 2550 500
0 1

TS+B&B 0 1
Musa 11×14 2 175⋆ [28] 199 28 175 39
LLR 26×7 4 301⋆ TS+CP 366 16 312 275

BCV-5.4.1
4×28 5 48⋆

Hybrid TS 48 5
48 1

VDS 48 128

Valouxis 16×28 4 20⋆ VDS 60 32450
60 6570

SS+VDS 100 6000

Azaiez 13×28 3 0⋆ (0,1)-LGP 0 150 0 233

GPOST A 8×28 3 5⋆ SS+VDS 9 6457
8 474

MIP [14] 5 1285

GPOST B 8×28 3 3⋆
SS+VDS 5 5932

4 9892-Phases 3 14
MIP [14] 3 441

ORTEC 01 16×31 5 270⋆

GA [7]
775 3600

355 6818

681 86400

VNS+HO [7]
706 3085
541 37020

VNS+IP [10] 460 2571

VDS
355 14359
280 51420

MIP [14] 270 120
Ikegami

25×30 4 2⋆ TS+B&B 6 111060 63 671
3Shift-DATA1

Table 1 Best results for Ad hoc methods vs best results for VNS/LDS+CP.

Some methods include a pre-treatment. As CPU times for this step are not

given in papers, reported CPU times concern in fact the second step. In our approach,

we use LDS, combined with filtering of soft global constraints, to generate the initial

solution. So, reported CPU times for our method always include the computing

time for obtaining the initial solution.

Benchmarks we considered (see Table 1) represent a wide variety of NRPs with

non-trivial properties which are derived from real world complex instances. They are

significantly different from each other by the number of nurses (ranging from 4 to 26),

the number of shift types (ranging from 2 to 5), the duration of the planning period

(ranging from 7 to 31 days) and the constraints to be verified: Shift constraints, Pattern

constraints and Workload constraints (see Section 2.1). Finally, they may also differ

by the number of personal requests and preferences.

Each instance has been solved by VNS/LDS+CP using neighborhood heuristics

rand, maxV and dilution. kmin has been set to 2 and kmax to 66% of the total number

of nurses. Timeout has been set according to the size of each instance. For heuristics

rand and dilution, a set of 10 runs per instance has been performed. VNS/LDS+CP

has been implemented in C++. Experiments have been performed under Linux on a

2.8 GHz P4 processor, with 1GB RAM.
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5 Experimental results

5.1 Comparing with ad hoc methods

5.1.1 Ozkarahan instance [29]

We find the optimum in less than 1s. using maxV.

5.1.2 Millar instance (2 methods)

– B1) Network programming [26]: All feasible weekly shift patterns of length at most 4

days are generated. Then, an acyclic graph is defined, where nodes are the stretches,

while arcs represent feasible transitions between stretches. Costs are associated

to the transitions in order to reflect their desirability. The model is solved using

CPLEX.

– B2) TS+B&B [19]: Nurse constraints are used to produce all feasible shift pat-

terns for the whole scheduling period for each nurse (independently from shift con-

straints). Best combinations of these shift patterns are found using mathematical

programming and Tabu Search.

With B1, a solution of cost 2,550 is found after 500 s. on an IBM RISC6000/340.

With B2, a solution of cost 0 is obtained in 1 s. on a 1GHz Intel P3 processor. We find

the optimum in less than 1 s. using maxV.

5.1.3 Musa instance [28]

A solution of cost 199 is found in 28 s. on UNIVAC-1100. We find the optimum (cost

175) in 39 s. using maxV

5.1.4 LLR instance

A hybrid AI approach (TS+CP), which combines Constraint Propagation and Tabu

Search is used in [22]. First, a relaxed problem which only includes hard constraints is

solved as a CSP. Second, adjustments with local search and tabu search is then applied

to improve the solution. A solution of cost 366 is found after 96 s. on a PC/P-545MHz

(CPUN 16 s.). With rand, we obtain (on average) a solution of cost 316.1 after 600 s.

The best solution (over the 10 runs) has a cost 312 (275 s.). The first solution (cost

363) is obtained in less than 1 s.

5.1.5 BCV-5.4.1 instance (2 methods)

All the results are obtained on a same machine (2.66GHz Intel P4 processor). Hybrid

Tabu search [4] is the best of the 2 methods for this instance. The optimum is found

in 5 s. (CPUN 5 s.). With dilution, we obtain the optimum after 1 s.
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5.1.6 Valouxis instance

This instance [36] is described Section 2.2. In [8], Variable Depth Search (VDS) obtains

a solution of cost 60 (3 workstretches of length 3) after 23,175 s. on a 2.66GHz Intel

Core2 Duo processor (CPUN 32,450 s.). VDS works by chaining together single swaps

of shifts among nurse plannings. Several heuristics are used to select the swaps to be

chained in order to escape from local optima. In [9], VDS has also been used as an

improvement method in the Scatter Search (a population based optimisation method).

On this instance, (SS+VDS) obtains a solution of cost 100 in 4,000 s. on a 2.83GHz

Intel Core2 (CPUN 6,000 s.).

We obtain a solution of cost 60 (3 workstretches of length 3) after 6,570 s. using

rand (see Figure 1).

5.1.7 Azaiez instance

An optimal solution is provided with the (0,1)-Linear Goal Programming method [2]

after 600 s. on a PC/P-700MHz (CPUN 150 s.). rand (resp. maxV) finds the optimum in

233s. (resp. 1,050 s.).

5.1.8 GPOST (2 instances)

The first instance, GPOST A, has an optimal solution of cost 5. The optimum has been

found in 1,320 s. using MIP (Mixed Integer Programming) on a P4 2.66GHz (CPUN

1,285 s.) This approach [14] takes advantage of the structure of the problem in order to

derive new pattern rules to allocate particular shifts e.g. Night shifts. Such propagations

drastically reduce the size of the search space. On this instance, (SS+VDS) [9] obtains

a solution of cost 9 in 4,305 s. (CPUN 6,457 s.).

We find a solution of cost 8 in 474 s. using dilution.

The second instance, GPOST B, is a relaxed version of GPOST A where nurse requests

have been removed. For this instance, three approaches have been proposed:

– the same MIP approach [14] finds an optimal solution in 420 s. (CPUN 441 s.).

– a 2-steps method [18]. First, all feasible plannings are enumerated for each nurse.

Then, the final planning is generated using CPLEX. This method obtains an opti-

mal solution in 8 s. on a 2.83GHz Intel Core2 Duo processor (CPUN 14 s.) without

taking into account the time used in the first step.

– (SS+VDS) [9] obtains a solution of cost 5 in 3,955 s. (CPUN 5,932 s.).

We find a solution of cost 4 in 989 s. using rand.

5.1.9 Ikegami-3shift-DATA1 instance

Experiments have been performed on a P3 1GHz. TS+B&B [19] finds a solution of

cost 10 after 543 mns (CPUN 194 mns) with a timeout of 24h and a solution of cost 6

after 5,783 mns (CPUN 1,851 mns) with a timeout of 100h. maxV provides a solution of

cost 63 (where all unsatisfied constraints are of weight 1) after 671 s. with a timeout of

1h.

Contrary to other instances, nurse constraints are hard ones and shift constraints

are soft ones for Ikegami. So our neighborhood heuristics which unassign whole nurse
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Instance Opt. First Sol.
rand maxV dilution

timeout
best time avg. best time best time avg.

Millar 0 4800 0 2 0 0 1 0 1 0 300
BCV-5.4.1 48 69 48 5 48.8 48 202 48 1 48.6 300

LLR 301 363 312 275 316.1 337 385 315 440 321.3 600
Valouxis 20 37240 60 6570 132 160 3780 60 7160 102 7200
GPOST A 5 7876 8 654 11.4 14 1252 8 474 11 1800
GPOST B 3 7362 4 989 8.5 1365 44 5 1701 8.1 1800

Table 2 Comparing heuristics rand, maxV and dilution on several instances.

plannings are irrelevant. If the timeout is increased, the solution quality is improved

but it is not enough to bring the optimum. As it is more efficient to unassign variables

related to soft constraints than hard ones, one may consider that basic heuristics unas-

signing shift constraints would be efficient. But it is not the case as it is very difficult

to obtain a first solution: the number of nurse constraints is greater than the number

of shift ones.

5.1.10 First results for ORTEC 01

The ORTEC 01 instance is a benchmark from ORTEC’s Harmony software, an interna-

tional consultancy company in planning, optimization and decision support solutions.

This instance is a large and difficult one. Several approaches have been used to solve

it:

– The MIP approach [14] finds an optimal solution in 120 s. (CPUN 120 s.).

– (VNS+HO) [7] finds a solution of cost 706 in 1 h. on a P4 2.4GHz (CPUN 3,085 s.).

The same method finds a solution of cost 541 in 12 h. (CPUN 617 mns).

– (VNS+IP) [10] finds a solution of cost 460 in 3,000 s. on a P4 2.4GHz (CPUN 2,571

s.).

– VDS finds a solution of cost 355 in 16,755 s. (CPUN 14,359 s.) and a solution of cost

280 in 60,000 s. (CPUN 51,420 s.) on a P4 2.4GHz.

For a timeout set to 7, 200 s., we find a solution of cost 355 in 6,818 s. using rand,

and a solution of cost 375 in 4,231 s. using dilution. More experiments have to be

performed to confirm and improve these promising results.

5.2 Comparing our neighborhood heuristics

Table 2 compares the results produced by our neighborhood heuristics (i.e. rand, maxV

and dilution) on different instances. For each instance, the cost of the best solution

found, its computation time and average solutions over 10 runs are reported. The cost

of the first solution we obtained is also recorded in the third column. We can draw

some remarks:

– On average, dilution outperforms both rand and maxV, except for LLR, where rand

is the best one. Indeed, as two consecutive days off get a penalty of 5 and as there

are two nurses which require one week day off in their planning leading to a higher

violation cost (i.e. 30), heuristics maxV and dilution will almost select these two

nurses, while rand will enable to escape from such local optima.
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Fig. 3 GPOST B Instance, optimum=3

– For the best reported results, dilution and rand perform similarly, both in solution

quality and computing time. Indeed, when k becomes sufficiently large, the two

heuristics tend to have very similar neighborhoods.

– maxV is the less effective heuristic. This is probably due to its deterministic criterion,

which leads the heuristic to be stucked in local minima. Focussing only on the worst

nurse plannings will rarely improve the quality of the overall planning. So, using

some randomness enables diversification.

The performance profile of a method describes the evolution of the quality of ob-

tained solutions as a function of computation times. Fig. 2 and Fig. 3 depict the

performance profiles of VNS/LDS+CP for Valouxis and GPOST B instances. As maxV is

the less effective heuristic, (average) results are only reported for dilution and rand.

On Valouxis instance (see Fig. 2), dilution enables to quickly improve the quality

of the solution during the search. At the beginning, the performance profile of dilution

is very close to that of rand. But after a few seconds of computation (60 s.) dilution

always provides solutions of better quality, thus clearly outperforming rand. This be-

havior can be explained by the fact that dilution benefits from information provided

by MaxV tto improve nurse plannings having a high violation cost, but without selecting

them all the time.

On GPOST B instance (see Fig. 3), the same conclusions can be drawn: first, solu-

tion quality improvements are larger at the early stages of computation (property of

diminishing returns), particularly during the time interval of [0 . . . 1,000 s.]. Second,

the two curves show a decelerating phase leading to a quasi-plateau.

6 Conclusion

For each instance, we have compared our method with the best ad hoc method for

solving it [18]. Despite its genericity and flexibility, our method has obtained:

– solutions of better quality and better computing times for Ozkarahan, Millar, Musa,

LLR, BCV-5.4.1, and Valouxis ;

– solutions of equal quality with computing times close to those for BCV541 and

Azaiez,

– very promising solution quality on large scale instances as GPOST A, GPOST B or

ORTEC 01.
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For large instances as ORTEC or Montreal, or very specific ones as Ikegami, perfor-

mances of our method could be greatly improved by i) using neighborhood heuristics

especially designed for NRPs, and ii) reducing the lack of communication between soft

global constraints by extending arc consistency for soft binary constraints [11,12,21].

In 2009, [21] has shown for the first time that dedicated cost function filtering tech-

niques can also be used to define Global Cost Functions leading to important speedups

compared to the use of global constraints with cost variables.
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