J-P Métivier

P Boizumault

Samir Loudni

Jean-Philippe Métivier

Patrice Boizumaut

Combining VNDS with Soft Global Constraints Filtering for Solving NRPs

Keywords: NRP, Constraint Programming, VNS, VNDS, Soft Global Constraints

Nurse Rostering Problems (NRPs) consist of generating rosters where required shifts are assigned to nurses over a scheduling period satisfying a number of constraints. In [25], we have shown how soft global constraints can be used to model NRPs in a concise and elegant way. In this paper we go one step further by proposing new neighborhood heuristics for VNS/LDS+CP. Experiments show that, despite its genericity and flexibility, our approach supplies excellent results on small and middle size problems and very promising results on large scale problems.

Introduction

Due to their complexity and importance in real world modern hospitals, Nurse Rostering Problems (NRPs) have been extensively studied in both Operational Research (OR) and Artificial Intelligence (AI) for more than 40 years [START_REF] Burke | The state of the art of nurse rostering[END_REF][START_REF] Ernst | Staff scheduling and rostering: A review of applications, methods and models[END_REF]. Most NRPs in real world are NP-hard [START_REF] Karp | Reducibility among combinatorial problems[END_REF] and are particularly challenging as a large set of different rules and specific nurse preferences need to be satisfied to warrant high quality rosters for nurses in practice. Other wide ranges of heterogeneous and specific constraints usually make the problem over-constrained and hard to solve efficiently [START_REF] Meyer Auf'm Hofe | Solving rostering tasks as constraint optimisation[END_REF][START_REF] Qu | A hybrid constraint programming approach for nurse rostering problems[END_REF].

NRPs consist of generating rosters where required shifts are assigned to nurses over a scheduling period satisfying a number of constraints [START_REF] Burke | The state of the art of nurse rostering[END_REF][START_REF] Burke | A hybrid model of integer programming and variable neighbourhood search for highly-constrained nurse rostering problems[END_REF]. These constraints are usually defined by regulations, working practices and preferences of nurses and are usually categorised into two groups: hard constraints and soft constraints (with their violation costs). VNS/LDS+CP [START_REF] Loudni | Combining VNS with constraint programming for solving anytime optimization problems[END_REF] is a generic local search method based on VNDS (Variable Neighborhood Decomposition Search [START_REF] Hansen | Variable neighborhood decomposition search[END_REF]) for solving over-constrained problems. Neighborhoods are obtained by unfixing a part of the current solution according to a neighborhood heuristic. Then the exploration of the search space related to unfixed part of the current solution is performed using LDS (Limited Discrepancy Search [START_REF] Harvey | Limited Discrepancy Search[END_REF]) combined with Constraint Propagation (Filtering).

Global constraints are often key elements in successfully modelling and solving real-life problems due to their efficient filtering. Global constraints are particularly well suited for modelling (hard) NRP constraints [START_REF] Bourdais | HIBISCUS: A constraint programming application to staff scheduling in health care[END_REF][START_REF] Simonis | Models for global constraint applications[END_REF]. More recently, soft global constraints proposed by [START_REF] Métivier | Softening Gcc and Regular with preferences[END_REF][START_REF] Petit | Specific filtering algorithms for over-constrained problems[END_REF][START_REF] Régin | An original constraint based approach for solving over-constrained problems[END_REF][START_REF] Van Hoeve | On global warming: Flow-based soft global constraints[END_REF] enable to quantify the violation while keeping the efficiency of their filtering. In [START_REF] Métivier | Solving nurse rostering problems using soft global constraints[END_REF], we have shown how soft global constraints can be used to model NRPs in a concise and elegant way. In this paper we go one step further by proposing new neighborhood heuristics for VNS/LDS+CP. Such heuristics provide results better than those described in [START_REF] Métivier | Solving nurse rostering problems using soft global constraints[END_REF]. Experiments show that, despite its genericity and flexibility, our approach supplies excellent results on small and middle size problems and very promising results on large scale problems.

Section 2 gives a synthetic overview of NRPs. Section 3 describes VNS/LDS+CP and reviews neighborhood heuristics already proposed for solving NRPs using VNS. We performed experiments over different instances selected to be representative of the diversity and the size of NRPs (Section 4). For each selected instance, we compare (Section 5) quality of solutions and computing times for our method with the best known ad'hoc method for solving it [18]. Finally we conclude and draw some further works.

Nurse Rostering Problems

An overview of NRPs

NRPs consist of generating rosters where required shifts are assigned to nurses over a scheduling period (planning horizon) satisfying a number of constraints [START_REF] Burke | The state of the art of nurse rostering[END_REF][START_REF] Ernst | Staff scheduling and rostering: A review of applications, methods and models[END_REF]. These constraints are usually defined by regulations, working practices and nurses preference. Constraints are usually categorised into two groups: hard and soft ones.

Hard constraints must be satisfied in order to obtain feasible solutions for use in practice. A common hard constraint is to assign all shifts required to the limited number of nurses.

Soft constraints are not mandatory but are desired to be satisfied as much as possible. The violations of soft constraints in the roster are used to evaluate the quality of solutions. A common soft constraint in NRPs is to generate rosters with a balanced workload so that human resources are used efficiently.

Shift types are hospital duties which usually have a well-defined start and end time. Many nurse rostering problems are concerned with the three traditional shifts Morning, (7:00-15:00), Evening (15:00-23:00), and Night (23:00-7:00). Nurses can possess different skills and cover can be defined for each skill.

Different kinds of constraints can be imposed on the work planning of a nurse: (i) Shift constraints set the minimal and/or maximal number of nurses of certain skill level working in each shift as well as within each group during the planning period.

(ii) Pattern constraints ensure a certain level of quality for the plannings produced and may be specified either globally for the staff or only for certain individuals. Typical requirements are:

patterns of shifts (i.e. minimal and/or maximal total number of particular sequences of shifts) between any two types of shifts in the planning period (e.g., at least one day-off per week), -length of stretches of shifts of identical type to avoid working too few or too many days in a row on a certain shift (e.g. working more than 4 consecutive day shifts is not permited), -patterns of stretches such as forward rotation (going from day shifts to evening shifts to night shifts to day shifts again), -and patterns of stretches of a given length that ask for at least so many consecutive shifts of a certain type right after shifts of another type (e.g., there must be a day-off before and after working for three consecutive night shifts).

(iii) Workload constraints are used to model the requirements of min/max total number of hours and/or shifts of specific type worked by each nurse in the planning period.

M M E E N M M E M N M E E N M M E N E N M E M N M E M E N M E M E E N E N M M E N M E M E M E M N E M N M E M E M E N E M E M E M E N M N E M E N E N M N E N M M E M E N E N M N M M E M E M N M N M E E M E N M E M N M E N M E M E E N M M E M E N E N M E M E N M E E N M
Fig. 1 A solution of cost 60 for the Valouxis instance.

3 Solving NRPs

VNS/LDS+CP

A wide range of approaches and techniques have been proposed for solving NRPs. These include ad'hoc OR methods (by means of mathematical programming with preprocessing steps to reduce the problem size), constructive heuristics and local search methods combining OR techniques to find an initial solution (see [START_REF] Burke | The state of the art of nurse rostering[END_REF][START_REF] Ernst | Staff scheduling and rostering: A review of applications, methods and models[END_REF] for a comprehensive review). Of those techniques that have been applied to NRPs, metaheuristics dealing with large-scale neighborhoods (2-opt, swap and interchange of large portions of nurse plannings, . . .) such as Variable Neighbourhood Search (VNS) seem to be well suited and very effective. VNS is a metaheuristic which systematically exploits the idea of large neighborhood change, both in descent to local minima and in escape from the valleys which contain them [START_REF] Mladenovic | Variable neighborhood search[END_REF]. Variable Neighborhood Decomposition Search (VNDS) [START_REF] Hansen | Variable neighborhood decomposition search[END_REF] extends basic VNS within a successive approximations method. For a solution of size n, all but k variables are fixed, and VNDS solves a sub-problem in the search space defined by the k unfixed variables. [START_REF] Loudni | Combining VNS with constraint programming for solving anytime optimization problems[END_REF] is a generic local search method based on VNDS, where neighborhoods are obtained by unfixing a part of the current solution according to a neighborhood heuristic. Then the exploration of the search space related to the unfixed part of the current solution is performed using a Limited Discrepancy Search (LDS [START_REF] Harvey | Limited Discrepancy Search[END_REF]) combined with Filtering in order to benefit from the efficiency of soft global constraints filtering (See Algorithm 1).

General overview

VNS/LDS+CP

Algorithm 1: Pseudo-code for VNS/LDS+CP. function VNS/LDS+CP(X , C, k init , kmax, δmax) 1 begin 2 s ← genInitialSol(X) 3 k ← k init 4 while (k < kmax) ∧ (not timeout) do 5 X unaf f ected ← H neighbor (N k , s) 6 A ← s\{(x i = a) s.t. x i ∈ X unaf f ected } 7 s ′ ← NaryLDS(A, X unaf f ected , δmax, V(s), s) 8 if V(s ′) < V(s) then 9 s ← s ′ 10 k ← k init 11 else k ← k + 1 12 return s
Unlike an usual VNS scheme, our approach offers two main advantages: first, by focusing efforts on improving only a part of the solution, we restrict the size of the search space and intensify search to improve the current solution; second, even if the exploration of (very) large neighborhoods requires a too expensive effort, the use of LDS allows to efficiently explore parts of the search space.

Algorithm 1 shows the general pseudo-code of VNS/LDS+CP, with k init (resp. kmax) the minimal (resp. maximal) number of variables to be unassigned and δmax the maximal number of discrepancies allowed for LDS. A subset of k variables (k is the dimension of the neighborhood) is selected by the neighborhood heuristic H neighbor in N k (set of all subsets of k variables among X) (line 5). A partial assignment A is generated from the current solution s by unassigning the k selected variables ; the (nk) non-selected variables keep their current value in s (line 6). Then, unassigned variables are rebuilt by a partial tree search LDS, combined with constraint propagation based on filtering of global constraints. If a solution of better quality s ′ is found in the neighborhood of s (line 8), then s ′ becomes the current solution and k is reset to k init (lines 9-10). Otherwise, we look for improvements in the subspace where (k + 1) variables will be unassigned (line 11). The algorithm stops when it reaches the maximal dimension size allowed or the timeout (line 4).

LDS+CP

LDS is a tree search method introduced by Harvey and Ginsberg [START_REF] Harvey | Limited Discrepancy Search[END_REF] allowing to iteratively solve binary CSPs. Let H be a heuristic that is trusted. The main idea of LDS is to follow H when exploring the search tree, and to consider that H may make mistakes a small number (δ) of times. Thus, δ discrepancies are allowed during search. For a given maximal number δmax of discrepancies, LDS explores the tree in an iterative way with an increasing number of discrepancies (from δ = 0 to δ = δmax). Depending on the value of δmax, LDS is either a partial or a complete tree search. In [START_REF] Loudni | Combining VNS with constraint programming for solving anytime optimization problems[END_REF], LDS has been extended to n-ary optimization problems, and only performs the last iteration (for δ = δmax).

Our variable ordering for LDS first selects the variable having the lowest ratio domain cardinality divided by its degree (Dom/Deg). Our value ordering (BestFirst) selects the values according to the increasing order of their violation costs. We reuse information gained from the filtering of soft global constraints to determine the violation cost for a value. Finally, Constraint Propagation is performed using soft global constraints filtering (see [START_REF] He | Constraint-directed local search to nurse rostering problems[END_REF][START_REF] Métivier | Solving nurse rostering problems using soft global constraints[END_REF]).

Neighborhood Heuristics: Related works

Neighborhood heuristics are crucial since they select parts of the search space to explore in order to find solutions of better quality. However, designing efficient neighborhood heuristics is a hard task and requires a great deal of expertise. Morever, as quoted in [START_REF] Burke | A time predefined variable depth search for nurse rostering[END_REF], few neighborhood heuristics have been designed for NRPs. In this subsection, we review these neighborhood heuristics and describe the context in which they have been used. (i) (VNS). In [START_REF] Burke | Variable neighborhood search for nurse rostering problems[END_REF], three neighborhood heuristics based on swapping large parts of nurse plannings have been proposed and used in a VNS scheme:

-Shuffle neighborhood considers different swaps between the worst nurse planning and any other nurse planning. -Greedy Shuffle neighborhood considers swaps between any two nurse plannings.

-Core Shuffle neighborhood considers two consecutive swaps between any two nurse plannings at a time (see [START_REF] Burke | Variable neighborhood search for nurse rostering problems[END_REF] for more details).

(ii) (VNS+HO). A hybrid method combining VNS with a heuristic ordering (HO) has been proposed in [START_REF] Burke | A hybrid heuristic ordering and variable neighbourhood search for the nurse rostering problem[END_REF]. The aim of the heuristic ordering is to sort all the shifts by their estimated difficulty for assigning them or how likely they are to cause high penalties. First, an initial planning is built using the heuristic ordering. Second, in order to improve the initial planning, a VNS is performed, followed by a repair phase. This phase selects the worst individual plannings, unassigns their shifts and reassigns them using the heuristic ordering. This process is repeated until a stopping criterion is reached. Two kinds of neighborhoods heuristics have been proposed:

-One-shift Swap: re-assigning a shift to another nurse working on the same day.

-Two-shift Swap: swapping a pair of shifts assigned to two nurses working on the same day.

(iii) (VNS+CP). A 2-steps hybrid Constraint Programming approach has been proposed in [START_REF] Qu | A hybrid constraint programming approach for nurse rostering problems[END_REF]. First, a constraint satisfaction model is used to generate weekly plannings of high quality satisfying a subset of shift sequence constraints. An iterative forward search is then used to combine them in order to build feasible solutions over the whole scheduling period (4 weeks). Second, VNS combined with the neighborhood heuristics described in (i) is used to quickly improve obtained solutions.

(iv) (VNS+IP). VNS has been used as a postprocessing step in [START_REF] Burke | A hybrid model of integer programming and variable neighbourhood search for highly-constrained nurse rostering problems[END_REF] to make refinements on solutions found by an Integer Program (IP). Proposed neighborhood heuristics are based on swapping groups of consecutive shifts and are very close to the Greedy Shuffle neighborhood heuristic decribed in (i).

(v) (LNS). More recently, a LNS (Large Neighborhood Search [START_REF] Shaw | Using constraint programming and local search methods to solve vehicle routing problems[END_REF]) scheme has been used to tackle NRPs [START_REF] He | Constraint-directed local search to nurse rostering problems[END_REF]. It proceeds by selecting fragments of nurse plannings to be unassigned and then rebuilding them using F iltering. Such a use of LNS can be considered as an instance of VNDS. Three neighborhood heuristics have been proposed in [START_REF] He | Constraint-directed local search to nurse rostering problems[END_REF]:

(a) Sliding window with a fixed length: Nurse plannings are selected over a sliding window (i.e. covering fixed days of the roster of all nurses) of one week.

(b) Sliding window with an overlap: It is a refinement of heuristic (a) by selecting variables involved in the pattern constraints for which a part of variables is on the boundary of the sliding window, whereas another part is outside the sliding window. (c) Detecting regions of low quality: Instead of selecting all nurse plannings like for heuristics (a) and (b), only nurse plannings of low quality are considered. Moreover, PGLNS [START_REF] Perron | Propagation guided large neighborhood search[END_REF] is used to determine the size of the sliding window and the set of variables to be unassigned according to the information gained by filtering (see [START_REF] Perron | Propagation guided large neighborhood search[END_REF] and [START_REF] He | Constraint-directed local search to nurse rostering problems[END_REF] for more details).

Neighborhood Heuristics: Our proposal

Neighborhood heuristics based on swap cannot be combined with our VNDS approach which requires an unassigning step and a rebuilding step. Moreover, we haven't used heuristics (a), (b) and (c) described Section 3.2 for two main reasons. First, selecting all nurse plannings is only effective for small problems. For large problems, as neighborhoods size can quickly grow, the exploration of (very) large neighborhoods may require a too expensive effort. Second, as a lot of soft global constraints are stated over the whole planning of a nurse, unassigning only the subset of variables that appear in the sliding window will not lead the rebuilding step to find a new solution of better quality. Indeed, the more the variables are linked, the more opportunities for the rebuilding step to minimize violations. All variables related to a nurse planning will be together unassigned. For our approach, k will represent the number of nurse plannings to be unassigned (and not the number of variables to be unassigned as depicted in general Algorithm 1). We have considered the following three heuristics:

rand randomly selects nurse plannings, -maxV selects nurse plannings having high violation costs, dilution combines the two previous heuristics. Among the k nurse plannings to be unassigned, half of them are selected using maxV, and the other ones will be chosen randomly. The idea is to mix intensification phases (by considering nurse plannings with high violation cost) with diversification phases (by considering nurse plannings randomly in order to escape from local minima).

Experimental protocol

The ASAP site (Automated Scheduling, optimization And Planning) of University of Nottingham (http://www.cs.nott.ac.uk/~tec/NRP/) records a large and various set of NRPs instances as well as the methods used to solve them. We performed experiments over different instances we selected in order to be representative of the diversity and the size of NRPs (see Table 1). For each instance, we always compare our approach with the best methods for solving it [18]. As experiments have been run on various machines, we will report, for each instance, the original CPU time and the processor. For all instances, except the first three ones where the processor is too old to be normalised (they are noted in italic Table 1), CPU times will be normalised1 and denoted CPUN. Some methods include a pre-treatment. As CPU times for this step are not given in papers, reported CPU times concern in fact the second step. In our approach, we use LDS, combined with filtering of soft global constraints, to generate the initial solution. So, reported CPU times for our method always include the computing time for obtaining the initial solution.

Instances | I |×| J | | D | Optimum Ad
Benchmarks we considered (see Table 1) represent a wide variety of NRPs with non-trivial properties which are derived from real world complex instances. They are significantly different from each other by the number of nurses (ranging from 4 to 26), the number of shift types (ranging from 2 to 5), the duration of the planning period (ranging from 7 to 31 days) and the constraints to be verified: Shift constraints, Pattern constraints and Workload constraints (see Section 2.1). Finally, they may also differ by the number of personal requests and preferences.

Each instance has been solved by VNS/LDS+CP using neighborhood heuristics rand, maxV and dilution. k min has been set to 2 and kmax to 66% of the total number of nurses. Timeout has been set according to the size of each instance. For heuristics rand and dilution, a set of 10 runs per instance has been performed. VNS/LDS+CP has been implemented in C++. Experiments have been performed under Linux on a 2.8 GHz P4 processor, with 1GB RAM.

Experimental results

Comparing with ad hoc methods

Ozkarahan instance [29]

We find the optimum in less than 1s. using maxV.

Millar instance (2 methods)

-B1) Network programming [START_REF] Millar | Cyclic and non-cyclic sheduling of 12h shift nurses by network programming[END_REF]: All feasible weekly shift patterns of length at most 4 days are generated. Then, an acyclic graph is defined, where nodes are the stretches, while arcs represent feasible transitions between stretches. Costs are associated to the transitions in order to reflect their desirability. The model is solved using CPLEX. -B2) TS+B&B [START_REF] Ikegami | A subproblem-centric model and approach to the nurse scheduling problem[END_REF]: Nurse constraints are used to produce all feasible shift patterns for the whole scheduling period for each nurse (independently from shift constraints). Best combinations of these shift patterns are found using mathematical programming and Tabu Search.

With B1, a solution of cost 2,550 is found after 500 s. on an IBM RISC6000/340. With B2, a solution of cost 0 is obtained in 1 s. on a 1GHz Intel P3 processor. We find the optimum in less than 1 s. using maxV.

Musa instance [28]

A solution of cost 199 is found in 28 s. on UNIVAC-1100. We find the optimum (cost 175) in 39 s. using maxV

LLR instance

A hybrid AI approach (TS+CP), which combines Constraint Propagation and Tabu Search is used in [START_REF] Li | A hybrid AI approach for nurse rostering problem[END_REF]. First, a relaxed problem which only includes hard constraints is solved as a CSP. Second, adjustments with local search and tabu search is then applied to improve the solution. A solution of cost 366 is found after 96 s. on a PC/P-545MHz (CPUN 16 s.). With rand, we obtain (on average) a solution of cost 316.1 after 600 s. The best solution (over the 10 runs) has a cost 312 (275 s.). The first solution (cost 363) is obtained in less than 1 s.

BCV-5.4.1 instance (2 methods)

All the results are obtained on a same machine (2.66GHz Intel P4 processor). Hybrid Tabu search [START_REF] Burke | A hybrid tabu search algorithm for the nurse rostering problem[END_REF] is the best of the 2 methods for this instance. The optimum is found in 5 s. (CPUN 5 s.). With dilution, we obtain the optimum after 1 s.

Valouxis instance

This instance [START_REF] Valouxis | Hybrid optimization techniques for the workshift and rest assignment of nursing personnel[END_REF] is described Section 2.2. In [START_REF] Burke | A time predefined variable depth search for nurse rostering[END_REF], Variable Depth Search (VDS) obtains a solution of cost 60 (3 workstretches of length 3) after 23,175 s. on a 2.66GHz Intel Core2 Duo processor (CPUN 32,450 s.). VDS works by chaining together single swaps of shifts among nurse plannings. Several heuristics are used to select the swaps to be chained in order to escape from local optima. In [START_REF] Burke | A scatter search methodology for the nurse rosetering problem[END_REF], VDS has also been used as an improvement method in the Scatter Search (a population based optimisation method). On this instance, (SS+VDS) obtains a solution of cost 100 in 4,000 s. on a 2.83GHz Intel Core2 (CPUN 6,000 s.).

We obtain a solution of cost 60 (3 workstretches of length 3) after 6,570 s. using rand (see Figure 1).

Azaiez instance

An optimal solution is provided with the (0,1)-Linear Goal Programming method [START_REF] Azaiez | A 0-1 goal programming model for nurse scheduling[END_REF] after 600 s. on a PC/P-700MHz (CPUN 150 s.). rand (resp. maxV) finds the optimum in 233s. (resp. 1,050 s.).

GPOST (2 instances)

The first instance, GPOST A, has an optimal solution of cost 5. The optimum has been found in 1,320 s. using MIP (Mixed Integer Programming) on a P4 2.66GHz (CPUN 1,285 s.) This approach [START_REF] Glass | The nurse rostering problem: A critical appraisal of the problem structure[END_REF] takes advantage of the structure of the problem in order to derive new pattern rules to allocate particular shifts e.g. Night shifts. Such propagations drastically reduce the size of the search space. On this instance, (SS+VDS) [START_REF] Burke | A scatter search methodology for the nurse rosetering problem[END_REF] obtains a solution of cost 9 in 4,305 s. (CPUN 6,457 s.).

We find a solution of cost 8 in 474 s. using dilution.

The second instance, GPOST B, is a relaxed version of GPOST A where nurse requests have been removed. For this instance, three approaches have been proposed:

the same MIP approach [START_REF] Glass | The nurse rostering problem: A critical appraisal of the problem structure[END_REF] finds an optimal solution in 420 s. (CPUN 441 s.).

a 2-steps method [18]. First, all feasible plannings are enumerated for each nurse.

Then, the final planning is generated using CPLEX. This method obtains an optimal solution in 8 s. on a 2.83GHz Intel Core2 Duo processor (CPUN 14 s.) without taking into account the time used in the first step. -(SS+VDS) [START_REF] Burke | A scatter search methodology for the nurse rosetering problem[END_REF] obtains a solution of cost 5 in 3,955 s. (CPUN 5,932 s.).

We find a solution of cost 4 in 989 s. using rand.

Ikegami-3shift-DATA1 instance

Experiments have been performed on a P3 1GHz. TS+B&B [START_REF] Ikegami | A subproblem-centric model and approach to the nurse scheduling problem[END_REF] finds a solution of cost 10 after 543 mns (CPUN 194 mns) with a timeout of 24h and a solution of cost 6 after 5,783 mns (CPUN 1,851 mns) with a timeout of 100h. maxV provides a solution of cost 63 (where all unsatisfied constraints are of weight 1) after 671 s. with a timeout of 1h.

Contrary to other instances, nurse constraints are hard ones and shift constraints are soft ones for Ikegami. So our neighborhood heuristics which unassign whole nurse plannings are irrelevant. If the timeout is increased, the solution quality is improved but it is not enough to bring the optimum. As it is more efficient to unassign variables related to soft constraints than hard ones, one may consider that basic heuristics unassigning shift constraints would be efficient. But it is not the case as it is very difficult to obtain a first solution: the number of nurse constraints is greater than the number of shift ones.

First results for ORTEC 01

The ORTEC 01 instance is a benchmark from ORTEC's Harmony software, an international consultancy company in planning, optimization and decision support solutions. This instance is a large and difficult one. Several approaches have been used to solve it:

-The MIP approach [START_REF] Glass | The nurse rostering problem: A critical appraisal of the problem structure[END_REF] finds an optimal solution in 120 s. (CPUN 120 s.).

-(VNS+HO) [START_REF] Burke | A hybrid heuristic ordering and variable neighbourhood search for the nurse rostering problem[END_REF] For a timeout set to 7, 200 s., we find a solution of cost 355 in 6,818 s. using rand, and a solution of cost 375 in 4,231 s. using dilution. More experiments have to be performed to confirm and improve these promising results.

Comparing our neighborhood heuristics

Table 2 compares the results produced by our neighborhood heuristics (i.e. rand, maxV and dilution) on different instances. For each instance, the cost of the best solution found, its computation time and average solutions over 10 runs are reported. The cost of the first solution we obtained is also recorded in the third column. We can draw some remarks:

-On average, dilution outperforms both rand and maxV, except for LLR, where rand is the best one. Indeed, as two consecutive days off get a penalty of 5 and as there are two nurses which require one week day off in their planning leading to a higher violation cost (i.e. 30), heuristics maxV and dilution will almost select these two nurses, while rand will enable to escape from such local optima. -For the best reported results, dilution and rand perform similarly, both in solution quality and computing time. Indeed, when k becomes sufficiently large, the two heuristics tend to have very similar neighborhoods. -maxV is the less effective heuristic. This is probably due to its deterministic criterion, which leads the heuristic to be stucked in local minima. Focussing only on the worst nurse plannings will rarely improve the quality of the overall planning. So, using some randomness enables diversification.

The performance profile of a method describes the evolution of the quality of obtained solutions as a function of computation times. Fig. 2 and Fig. 3 depict the performance profiles of VNS/LDS+CP for Valouxis and GPOST B instances. As maxV is the less effective heuristic, (average) results are only reported for dilution and rand.

On Valouxis instance (see Fig. 2), dilution enables to quickly improve the quality of the solution during the search. At the beginning, the performance profile of dilution is very close to that of rand. But after a few seconds of computation (60 s.) dilution always provides solutions of better quality, thus clearly outperforming rand. This behavior can be explained by the fact that dilution benefits from information provided by MaxV tto improve nurse plannings having a high violation cost, but without selecting them all the time.

On GPOST B instance (see Fig. 3), the same conclusions can be drawn: first, solution quality improvements are larger at the early stages of computation (property of diminishing returns), particularly during the time interval of [0 . . . 1,000 s.]. Second, the two curves show a decelerating phase leading to a quasi-plateau.

Conclusion

For each instance, we have compared our method with the best ad hoc method for solving it [18]. Despite its genericity and flexibility, our method has obtained:

solutions of better quality and better computing times for Ozkarahan, Millar, Musa, LLR, BCV-5.4.1, and Valouxis ; -solutions of equal quality with computing times close to those for BCV541 and Azaiez, -very promising solution quality on large scale instances as GPOST A, GPOST B or ORTEC 01.

For large instances as ORTEC or Montreal, or very specific ones as Ikegami, performances of our method could be greatly improved by i) using neighborhood heuristics especially designed for NRPs, and ii) reducing the lack of communication between soft global constraints by extending arc consistency for soft binary constraints [START_REF] Cooper | Virtual arc consistency for Weighted CSP[END_REF][START_REF] Cooper | Arc consistency for soft constraints[END_REF][START_REF] Lee | Towards efficient consistency enforcement for global constraints in weighted constraint satisfaction[END_REF]. In 2009, [START_REF] Lee | Towards efficient consistency enforcement for global constraints in weighted constraint satisfaction[END_REF] has shown for the first time that dedicated cost function filtering techniques can also be used to define Global Cost Functions leading to important speedups compared to the use of global constraints with cost variables.

Fig. 3

 3 Fig. 2 Valouxis Instance, optimum=20

Table 1

 1 Best results for Ad hoc methods vs best results for VNS/LDS+CP.

					hoc methods		VNS/LDS+CP
					Algo.	Cost Time(s)	Cost Time(s)
	Ozkarahan	14×7	3	0 ⋆	[29]	-	-	0	1
	Millar	8×14	3	0 ⋆	Network TS+B&B	2550 0	500 1	0	1
	Musa	11×14	2	175 ⋆	[28]	199	28	175	39
	LLR	26×7	4	301 ⋆	TS+CP	366	16	312	275
	BCV-5.4.1	4×28	5	48 ⋆	Hybrid TS VDS	48 48	5 128	48	1
	Valouxis	16×28	4	20 ⋆	VDS SS+VDS	60 100	32450 6000	60	6570
	Azaiez	13×28	3	0 ⋆	(0,1)-LGP	0	150	0	233
	GPOST A	8×28	3	5 ⋆	SS+VDS MIP [14]	9 5	6457 1285	8	474
					SS+VDS	5	5932		
	GPOST B	8×28	3	3 ⋆	2-Phases	3	14	4	989
					MIP [14]	3	441		
					GA [7]	775 681	3600 86400		
	ORTEC 01	16×31	5	270 ⋆	VNS+HO [7] VNS+IP [10]	706 541 460	3085 37020 2571	355	6818
					VDS	355 280	14359 51420		
					MIP [14]	270	120		
	Ikegami 3Shift-DATA1	25×30	4	2 ⋆	TS+B&B	6	111060	63	671

Table 2

 2 Comparing heuristics rand, maxV and dilution on several instances.

	Instance	Opt.	First Sol.	best	rand time	avg.	maxV best time	best	dilution time	avg.	timeout
	Millar	0	4800	0	2	0	0	1	0	1	0	300
	BCV-5.4.1	48	69	48	5	48.8	48	202	48	1	48.6	300
	LLR	301	363	312	275	316.1	337	385	315	440	321.3	600
	Valouxis	20	37240	60	6570	132	160	3780	60	7160	102	7200
	GPOST A	5	7876	8	654	11.4	14	1252	8	474	11	1800
	GPOST B	3	7362	4	989	8.5	1365	44	5	1701	8.1	1800

 finds a solution of cost 706 in 1 h. on a P4 2.4GHz (CPUN 3,085 s.). The same method finds a solution of cost 541 in 12 h. (CPUN 617 mns).

	-(VNS+IP) [10] finds a solution of cost 460 in 3,000 s. on a P4 2.4GHz (CPUN 2,571
	s.).
	-VDS finds a solution of cost 355 in 16,755 s. (CPUN 14,359 s.) and a solution of cost
	280 in 60,000 s. (CPUN 51,420 s.) on a P4 2.4GHz.

For a machine κ times slower than ours, reported CPU times will be divided by κ.