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Abstract

The paper presents the positive and normative analysis of endogenous
R&D investment on two types of resources: renewable and non-renewable.
The specificity of the paper has to be found in the following assumption:
resource-specific R&D investment allows to increase the efficiency of re-
source exploitation, but the feasible efficiency improvements are globally
bounded from above. We make this crucial assumption to take into ac-
count the second principle of thermodynamics. It has important implica-
tions for the analysis.

First, the system does not admit any balanced path for the decentral-
ized economy, because the growth rate in the efficiency of exploitation of
any resource cannot be constant. Both effort in R&D sectors is decreasing
since the marginal reward to R&D activity declines as the upper bound
approaches. Second, in the decentralized economy, R&D effort is decreas-
ing in the resource-specific efficiency level, because the marginal reward to
R&D activity declines as the upper bound approaches. As a consequence,
the share of resources devoted to R&D falls asymptotically towards zero.
Third, the finiteness of efficiency improvements together with that of the
non-renewable resource supply, imply that the initial conditions deter-
mine the qualitative feature of the transition path. In this case, R&D
firms make choices taking into account a limited time horizon since suc-
cessive innovations make patents obsolete. R&D tends to concentrate in
the resource sector where the demand is the largest

and where the scope for efficiency improvement is the highest. When
the first effect dominates, the technological gap increases, giving rise to
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possible unbalanced rushes of R&D on one resource. When the initial
efficiency gap is favorable to the non-renewable resource, our model pre-
dicts that R&D activity focuses on this resource first, causing the gap to
increase. Eventually, as the growth of the resource rent reduces the com-
petitiveness of the non-renewable resource, R&D focuses gradually and
eventually exclusively on the renewable substitute.

This development is in contrast with the qualitative features of the
optimal path of technological change. Because of the limited availability
of the non renewable resource, whenever efficiency improvement on this
resource is worth, it is preferable from a social point of view to obtain it
as soon as possible. In fact, the improved efficiency can be applied to a
larger resource stock if it is obtained early rather than late.

The timing and the relative size of R&D effort are typically different
in the decentralized and the centralized economies.

Keywords: Direction of technological change, Energy augmenting techno-
logical progress, Resource substitution.
JEL codes: Q30, Q40.

1 Introduction

The paper presents the positive and normative analysis of endogenous R&D
investment on two types of resources: renewable and non-renewable. Resources
energy efficiencies are far different from each other: for instance fossil fuel en-
ergy (as oil or natural gas) for depletable resources; hydropower, wind energy,
solar energy (as photovoltaic or thermal), biomass and geothermal energy for
expendable energy. In a historical context, economies see their total energy use
increases as they are developing but they also know a transition path between
renewable to non-renewable energy resources. The latter path appears as (of
course) the non-renewable resources deplete and as (also) the R&D activities
improve the efficiency of back-stop technology (the renewable resource which
efficiency is high). The bi-sectoral model of R&D we propose is composed of
quality innovations devoted to each types of resources: the purpose of R&D
firms is to improve either the energy efficiency of the non-renewable resource or
that of the renewable resource; both energy forms can be used simultaneously
(differentiated inputs assumption).

The specificity of the paper has to be found in the following assumption:
resource-specific R&D investment allows to increase the efficiency of resource
exploitation, but the feasible efficiency improvements are globally bounded from
above. We make this crucial assumption to take into account the second princi-
ple of thermodynamics. Then it leads to differentiate the traditional quality in-
novations for capital intermediates goods (as depicted by Aghion-Howitt’s [1992]
vertical growth model) from the innovations for energy inputs. It has impor-
tant implications for the analysis. The well-known phenomenon that efficiency



of both natural resources is bounded below unity is absent from theoretical
literature although it proves quite relevant from thermodynamics principles.

We study both optimal dynamics and market (decentralized economy) dy-
namics. The issues we tend to answer are the following:

- Which R&D sector will be the first to reach a zero labor share (R&D
effort)? Non-renewable resource efficiency or Renewable resource
efficiency improvement?

- Does the transition between non-renewable resource to renewable
resource occur abruptly? or Do R&D activities prepare the renew-
able energy (the backstop technology) toward its future role in order
to ensure a smooth transition?

- Is there a difference of ”R&D exhaustion timing” between the op-
timum and the decentralized economies?

In section 2 we study the optimal dynamics. In section 3 we investigate the
decentralized economy with two models: no continuum and continuum of inter-
mediates goods models. We conclude in section 4. In section 5 (Appendices) we
mainly develop the optimal and the decentralized economies without substitute
resource.

2 Social Planner: Fossil and Renewable Substi-
tute

2.1 The Model Framework

Now we study the normative analysis of endogenous R&D investment on two
types of resources (renewable resource (RR) and non-renewable resource (NRR))
as two types of factors. The resource-specific R&D investment allows to increase
the efficiency of resource exploitation, but the feasible efficiency improvements
are globally bounded from above:

l1—a 1—

Y, = L@ [[(1 ) xtr [(1 ) st} 1_5} : (1)

with (1 — v;) the efficiency index for the NRR where v; is the efficiency waste,
v €10, 1]; (1 — ut) the efficiency index for the RR with u; € ]0, 1];

and
Uy = =AMV
Up = — oMU

In that first version of our work, we study the trivial results of the Cobb-Douglas
function (1) and no inter-sectoral R&D spillover. The CES function would prove
more interesting.

When the share of the renewable goes to zero (8 — 1), the model reduces
to the one in the Appendix 1, since Y; = L} =% (1 — v)" ™

Zl'ta.



The problem has 4 controls (z, s, n1, n2), 3 states (X, v, and u) with 3
(positive) costate variables (u, &, and ¢ respectively):

+oo
max [ e Pu(Cy)dt
{(ne,2) 15 0

Ci =Y —csy
Xt = —Xt

s.t.: .
Vg = =AMLV
Up = — oMUy

Taking into account that labor is available in fixed supply NV, the current
value Hamiltonian is:

H. = u(Y;—cs)+ ,UtXt — Kyl — G4ty
11—« «
"=y ([(N — e —nae) (1 — ) (1= ut)l_ﬁ} [wtﬁs,}_ﬁ} - c.st)
— T+ KA M1V + Aoty

The following are the first order conditions with respect to z, s, n1 and ny
respectively:

e = u’(C’t)aﬁ%
c=a(l-p)L

St

u'(Cy) (1 — «) +N—ni—vzzt < KA1y
with nq; u’(Ct) (1 — a) ﬁ% — fit)\l'Ut> =0 (2)

W (C) (1 — @) == < (Ao

nit—n2e —

with ng¢ <u’(C’t) (1-a)pg—2t— — Ct)\gut> =0

N—nit—nat

The first two conditions on resource allocation together give:

2.2 Interior Solution

In the case of an interior solution (n1; > 0 and ng; > 0) the last two conditions
on R&D effort equate the marginal product of labor in the final sector to its
marginal return in the two R&D sectors. Therefore equating the latter, we
obtain the following arbitrage across R&D sectors:

AR = AaCug (4)

The Euler condition with respect to the 3 states X, (—v), and (—u), respec-



tively, are:

f = puy & f1y = proe’”

fet Y; /

— = +A\ny —B(l —« u' (C,

Py P 1 — B ( )mt(l—vt) (Ch)

' Y,

St phagns — (1— B)(1—a) ——/(CY)

G G (1 —w)
i.e., using (32) and (33) in the case of an interior solution:
e = Pl < fy = poe” (5)
Kt N —nyi—ngg v
Bo— ptamu (1- 6
s P+ Aini ( B - 1 ”Ut> (6)
$ N —nyy —ng  wy
S = p A (1-(1— 7
Ct P+ Aamy (1-5) o~ — (7)
Logdifferentiating (35) and substituting using (37) and (38):
o R G W
A A
N =y — N — gy —
0 = —M\nuf N — N2t Ut 1 Aona(1— B) N1 — N2t Uyt
N1t 11— N2t 1T—u
0 = (N —ny—no) |—BM—t— + (1= B)ro—2t
= 1t — Mot 1, 2T w,
ie. vt us
A =(1-p8)A 8
/3117%f (1-5) 2T, (8)
ie. \
Uy = 6 1Vt (9)

(1 — 6))\2(1 — Ut) + ,6)\1Ut

Recall that these last two conditions hold for the interior solution, they do
not have to hold at the initial date. Equation (9) defines the optimal level of
renewable waste index for as function of the waste index for the non renewable.

‘We have:
€ have % - B(1 = B)Mh
e (1= B)A(l — vy) + B
Puy 1 26(1 — )M A
oo s — v ) (L= B)Ae = (1= B)Az = BA] vi)”
(‘92ut )\2
—_— < >
az =0 ® Py



Logdifferentiating (8) and using (9):

’l.)t ut i)t ut ﬁ >\1
== _— = — 1 _ —_—
'Ut(l — 'Ut) ut(l — ut) < V¢ Ut (( 'Ut) + Ut)

from which we deduce:

B
1-5

From (31) we have that Y/s is constant, i.e. Y/Y = §/s. Logdifferentiating
the production function as written in H (and dropping t), we obtain:

Ny A2
i A2
Nog¢ )\1( ve) +

vy (10)

Y n1 + fo 0

$
——(1- _ _
( @) N —ny —ng 1—v

<1ﬁ>%}+a[ﬁ—j+<1ﬁ>;}

Logdifferentiating (34) and using (36):

substituting in the previous expression:

Y N1+ N 0 i 1C H
?:(Pa) {N -3 (1B)—]+aﬁ<p;—>+a—

— Ny — N9 1—wv 1—u C s

and taking into account that Y /Y = C/C = §/s:

af 1\Y — (71 + M) ¥ m aBp

1+ ——=| = = - -1-8)— = —

<+1aa>Y N —n; —ny ’81711 ( mlfu 1-a
— *(7'11+7'12) vﬁ)\ln1+u(1fﬁ))\2n27 Oéﬁp“)

N —ny—no 1—v 1—u 1—o&

Next, logdifferentiating (32) in the case of an interior solution:

1\Y N1 + No kK 0
1—— — _— = — —
( J)Y+Nn1n2 /£+v

substituting for (37):

1\ Y i+ ne
(1_0>Y+Nn1n2_p BM N =m n2)17v

combining this result with (??) we have:

(452037 = (P aomnty) -5

1—u 11—«
v
1—w

—p + ﬁ)\l(N — Ny — ng)

7 ﬁAl(N—nz)lvv"‘(l—ﬁ))\znzluu—(1+1aﬁa)l)



i.e.

Y 11—« U
:0'|: v—|—(1—ﬁ))\2n217

v
Y aﬁJrla(’B)\l(N_nQ)l

and using (9):

Y 1l—« v
I N —
Y a{aﬁ—l—l—aﬁ)\ll—v p}
Then we have
n1 + Na v
—_— = = - N —n; — —(1
N p—BM\(N —ny nz)l_v <
v
Y= apfﬁ)\ll [MN —ny — no
—v

Define n = nj + ns and ¢ = ny/n, (10) then gives:

¢ A2 B
— = —=(1-
% )\1( v) + 1_ﬁfu
Interior solution system:
L —Aion
v
U
o = ~hl-9n
5 — %(1—v)+%v
1+32(1-v)+ 250
N —
L & op — B\ Y [MN —n]
n —v
n=N

n=0& or
— _ op 1-uy
n=MN Ao
v=u=0&n=0

Stationary solution:

n* =0

v* = 1
1+2L M N

u* 1

R EREEIECS VN
A * *
(1)* _ 2 (1-v )+%v

1
1+%2(17v*)+ B_y*

Y * _ afl

(?) - 70pa6+a(1—a)

1 1-8




2.3 Corner Solutions

Solution with ni; > 0 and ny; = 0, 4 = 0, uy = ug with

BA1vo
(1 — 6))\2(1 — U()) + 6)\11}0

ug <

Then we have:

Y,
u'(Cy) (1 — ) N——tnlt = A1k

AR < AaQpuy

i.e. during this initial phase investing in w is characterized by:

Y;
N —ny —nge

—u'(Cy) (1 - ) > —AaCuo
——

marg. reward
marginal cost

Most of the analysis carries over to this case, bar the foc (33), (38) to (10)
that suppose ne > 0. Yet output can be written as:

Yi = {(N —nu) (1—wv)” (1- uO)l_B} - [xfsi_ﬁr

while the growth rate is still given by equation (12).!
Dynamic system:

v = —>\1’I’L1U

’ﬁl = (N—nl) |:O'p—ﬁ)\1

(%

1—v

f
ny =0 )
U*:i
1+ 80 N

ap

[MN—m@

Stationary solution:

. —a af+o(l—a
WlthMZl—(1—0)1_1a+aB = i;_(l_a)

2.4 Full dynamics

As the figures (1) and (2) show us, the optimal path is characterized by three
phases (Tp, T, and T*):

! Actually (12) is obtained using (9) which holds for the interior solution. However, the
epression right before (12) is obtained without assuming ng > 0. Hence setting na = 0 we get
again (12).
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1. Unbalanced Path: At first investments in the resources which
part in output function is the bigger. That is to say the elasticity
in the C-D function. Historically, it is the case of the NRR and not
the RR back stop technology;

2. Balanced Path: Simultaneous investments when expected in-
vest profits are equalized in both R&D sectors;

3. Steady State: At some date, it stops because of marginal
benefits falls compared to the costs of R&D. So the economy reaches
a steady state.
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3 Decentralized Economy: Fossil and Renew-
able Substitute?

3.1 The Model Framework

The aggregate production function considered in the social planner’s problem

was:
—a 18 —a 1-8)¢
O |t (e
» o Ll—a (1 _ ,U)(l_a)ﬁ :L.Oéﬁ (1 _ u)(l—a)(l—ﬁ) 504(1_6)

- o ) T o )

= D1 0) @) 1w ()]

with e, = /(1 —v) and e5 = 2/ (1 — u).

For the decentralized economy, if we want to reproduce the problem solved
for the social planner, we need to have continuous improvements in energy ef-
ficiency, (1 —v) and (1 — w). To ensure continuous changes in technological
variables we should set up a model economy with a continuum of sectors, rep-
resented for instance by the following aggregate production function:

- By 1-8
y — [l-« /1_1)] em /1—% (esz) di
LO 0
B 1 1-p
o= ['7e /(1—vj)1 “ / 1— ) ™% (s5)™ di
LO 0

which rise two questions:

e how can we justify the choice of equal masses (both unitary) of sub-sectors
in z and in s?

e in general the aggregate production function does not correspond exactly
to that of the social planner’s problem, indeed:

B -5

/1 (=o) " wprdi] | - ) (s I (e I e
0

because even if x; =z Vj € [0, 1], still
1 |

1
/(1 o) di | s /(1—Uj)1*“ dj > /(1 vy dj = 1—/vjdj — 11—
0

0 0

2Notes on decentralized economy (29/3/02 (note so sure)).
See Appendix 3 for the decentralized economy without substitute.
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where: the first inequality holds because 1 —v; € (0,1) Vjand 1 —a <1
1

= [(1—v;))""*dj < 1, together with f(z) > = for f(.) concave and
0

€ (0,1); for the same reason (1 — vj)l_a > (1 —w;) Vj which explains
the second inequality.

e fortunately, when e,; = e, Vj € [0,1] and ey; = es Vi € [0,1] the two
aggregate configurations coincide:

1 1
/1—1}] ew /1—uZ esi)" di
0 0

1-8 1

0
"= v e

1 1 1
where we define [(1—wv;)dj = 1— [v;dj =1—v and [(1—u;)di =
0 0 0

1
1— [udi=1—u
0

3.2 The Fake Problem: i.e. No Continuum

We can study the false problem of a decentralized economy with only two firms
on the resource market, one for each resource. This ensures that the instan-
taneous representation of the aggregate production function coincides with the
one retained for the social planner’s problem. However, this is not accurate
because with only two firms innovations are discontinuous.

The final sector representative (competitive) firm chooses L, e, and eg to
maximize instantaneous profits

= L' [(1 =) ()1 [(1 = w) (e0)"]' ™" = wL — prea — pes

the inverse demand functions are:

Y

w = (1—oz)f
Y
Pz = af—
€x

Y

Ps = Ol(l*ﬁ)e—

The representative monopoly on the z market: demand of inputs z¢ =
(1 —v) ey, so that the marginal cost is (1 — v) ¢, where ¢ is the spot price of a
unit of resource x. Instantaneous profits are therefore m, = [ e — (1 —v) q] [
They are maximized by the monopolist taking into account the demand function:

maxafY — (1 —v) qe,

Ex

13

B

1
e‘;/(l—vj)dj e?/(l—ui)di
0
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foc: (B)*Y/ex = (1 —v)q

1
A A el
o l(aﬁ)le a(lv) q

The representative monopoly on the s market: demand of inputs s¢ =
(1 — u)es, so that the marginal cost is (1 — u) ¢, where ¢ is the cost of a unit
of resource s (asymmetry because there is no owner of resource s). Instanta-
neous profits are therefore 75 = [ps — (1 — u) ¢] e5. They are maximized by the
monopolist taking into account the demand function:

maxa (1 —B)Y — (1 —u) ces

€s

foc: [a (1= B)°Y/es = (1 —u)c

€ = l[a(l ~pPLie (g)ﬁ Q] =t

1—u c

Substitute for e, using the previous result:

B _
e, = FL(l—’U) [Cl—aﬁqaﬁ]ﬁ

1—u

1-B =1

e = AL (1 - “) [Ca(l—mql—a(l—/s)] e
1—v

_1
1—ag

where I' = {[a(l—ﬁ)]lf&ﬁ (a,@)aﬁ}& and A = (Fa(l_ﬁ) (045)2) =

2
{la (=)0 (@)=
Taking into account these partial equilibrium values of intermediate goods’
sales, we can compute aggregate output as:

Y =QL(1— u)lfﬁ (1- ”U)B (clfﬁqﬁ)ﬁ

where © = A*T208)  {[a (1 = B0~ ()} 7.

The profit for z producers are

Tg=qr=q(l—-v)e, =AL(1 —u)lfﬁ (1 —U)B (cl_Bqﬁ)ﬁ

while: .
cs=c(l—uw)es=TL(1—u)""(1-v)” (cFPgP) T
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We can now compute the value of profits as function of L, ¢ and technology:
= V00
r m
» =Y _ _q:|
Py
Q
r Al—aﬁ :|

< = vfos-2]

To= YaB- o

7= af(l-af)Y

and

- rl-a(-8)
To=Y a(l—ﬁ)—v}

"= a(l-B)[l-a(l-B)Y

The value of an innovation in the x sector arrived at date ¢ (with technology
Ty) is:

V;fm = ’/Txt/ ef.].oT(Tsﬁ*)\lnu)dsE <E) dr
t

Tt
v+ > [T (rs+A )d v+
” _ — Ts 1Mi1s)as T
= af(l-ap)y; /t e 70 E(}/tv-i-)dT
_ = [ - Yyt
7= aB(1-aB)QL (1 —u) P (1-5)° (clfﬁqf)“ >/ efo(’“s+)‘1"15)d5E(YTv+)dT
t t

for the term E (%’i) we notice that it depends on the expected rate of growth of
output conditional on no innovations arriving on sector z. Innovations improve
the overall energy efficiency, which tends to rise aggregate production, increasing
demand for the z intermediate inputs (effect through Y;/Y; = e/¢ 9v+%%) The
expected growth in demand for z intermediate inputs, runs also through the
evolution of R&D activity, because this sector competes with the final sector for
labor inputs. Hence, when R&D employment is expected to fall, employment in
the final sector is expected to rise, boosting the productivity of x intermediate
inputs (this effect is taken into account by the term Y, /Y; too).
Similarly for the value of an innovation in sector s:

Vi o= 7Tst/ e~ Jo (rstAanas)ds g (k) dr
t

T st
e’} - u+
= a(l-p)[1-a(l-p)] Ytqu/ e~ 1o (retAenza)ds g <—§Tu+> dr
t t
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The equilibrium on the labor market requires: V¢ L; + nit + not = N and

Y;
=(1l—a)———— =\ V"=V’
we={1-0) (N —n1t —nay) the 2
i.e.

(1-a) vt /°° — [rotxna.)ds (Y“*)
——— = MNaf(l—-« e E|= dr
(N_nlt_nzt) 1 B( B) }/t : }/tru_l,_

. }/tu+ o] —](7-5+)\2n25)ds YTu—i-
= Xa(l-58)[1-a(l-p) Y, /t e ! E(Yt“Jr)dT
3.3 A Continuum of Intermediate Goods
The aggregate production function is:
1 B 1-p
Y:Llia /(17Uj)(6zj)adj /(1*”&1‘) (esi)adi
0 0
Instantaneous profits of the fictitious final sector firm are:
1 B 1-p 1 1
I=rL" /(1 — ;) (ex5)" dj /(1 —u;) (es;)™ di —wL—/pwjewjdj—/psiesidi
0 0 0 0
hence the inverse demand functions are, Vi, j:
Y
= (1—a)=
wo= (1-a)7
Py = afg (- e
Y a
pi = (=g (1 -uw)e

where we define X = fol (1 —vj) (€z5)" dj and S = fol (1 — ;) (esi)™ di.

The representative monopolist in the z sector maximizes instantaneous
profits taking as given Y/X (because it is an aggregate variable over which a
single firm has no influence). The unit cost is proportional to the efficiency
of its product, since the production technology e,; = z/ (1 —v;) implies unit
cost (1 —v;)q, where ¢ is the spot price of the non renewable resource. The
monopolist takes into account the from of the demand function it is confronted
to:

maxwwj = [pwj — (1 — ’Uj) q] 61-]‘

€xj

Y
To= ab (L-v)eg;— (1)) geq
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which gives partial equilibrium sales, the price rule and profits:

aZBY ﬁ
€ri = —_— =e,(t Vi €10,1
- (%) 0 vieD]
1—v;
Pz = ( J)q
«
11—«
Moy = —— (1—vj)qe,
9 -« T—a Y= T—a
= — (25) (Y) (1—-v))q

Notice that the result implies that the aggregate representation of the decen-
tralized economy coincides with the one retained for the analysis of the social
planner’s problem, given that intermediate goods are sold uniformly across sec-
tors. It follows that X = fol (1 —v;) (ex5)* dj = €% (1 — v) and substituting®

o = (P

ey = —azﬁ
v (1-v)q !
Therefore:
11—«
m = (=) e

1—wy
b 1— J Y,
Bl —a) ( 1—-w > ‘
Similarly in the case of the monopolist in the s sector we get:

e = [(BE=D) )T o ey

c S
L er1-p)
T (1-we
1—wuy
ry = a(lﬁ)(la)<1_uj)Yt
Therefore we can compute aggregate output as follows:
Y = L7eXPS = es (1-v)) e (1—u)'
2 ap 2 a(1-8)
- 1-p) 1-
o [l-a aiﬁy 1— BLY 1— B
<(1v)qt t) (1—wv) (1—u)c (1—u)

B (GO e T e O

3The profit of non renewable resource suppliers is 7q = q [ 2;dj = q [ (1 —v;) exjdj =
2
aBY;
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We also have that:
T ext(1—v)) B ¢

st est (1 —ue) B 1-Baq
Define the instantaneous probability of survival in sector j = z,s as o;n;¢, to
distinguish it from the growth rate of the technological parameters, g, = —A1ni¢.
The value of an innovation arrived at date ¢ on sector x equals:

-

= [r(s)+ouny()lds 7, (7, By)

VT (t,v = t,v t
( >Ut) ﬂ'z( 7Ut) € . (t,z_)t)

dr

— [lr(s)+oonu()lds =2 (1 — 5;) grear
1

=2 (1 — V) qeeat

-

7= 7, (t,T) dr

€

-

T E@ e @lds g (1 v) @Yy
qt (1 - 'U'r) q- Y

— [ toens(o)ds [ Y, Y,
e dr
1—v,/ 1—v

r [ Auny(s)o(s) r

— [Ir(s)+ouny(s)lds [ 75d.s J gy (s)ds

t et et
N——

discounting and survival obsolescence general demand

? = Ty (t, 'l_)t) d’T

K = Tz (tv 'L_)t)

7= Ty (t,'l_)t) e T

”\8 ”\8 “\8 “\8 “\8

(91—v) = 7% = 212¥) We can use this result to write the R&D arbitrage

condition in the z sector:
(I—a)— = w=0,V*(t,0)

oo T
Y, _ = [Ir(s)+ouny(s)lds Y, Y,
(1—a)L—i = Uvﬂ'w(t,vt)/e ¢ (1_1)7/1 L >

t

(1-a) 7o (£, ) /OO - [r@en@las (Y, Y;
= o,—>——=[e
Ly Y; 1—v,/ 1—

t

and using previous results

Wz(t,@t)_lea(lfﬁt)qtewt_l’T“(lfﬁt)qt 042,8 Y—(l a)aﬁl—@t
= = = (1—
Y Y: Yy (1—vt) @ 1—wv
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thus

N 76—[[7-<s>+avnu(s>1ds Y. /YN,
Lt N Y 1- Ut 1-— Vr 1- V¢
t

-

[ee]
— (8)+oyny(s)]ds -
, avaﬁ/e {[7(3) 1y (8)] (11:}),5%> dr
t

f [r(s)+ouny(s)lds /1 — ¥ .T (s)ds
7 avozﬁ/ - ( vt) e{ ” dr
t

1—v,

We want to derive a dynamic system for the variables n = n, + n,,

o= o +n , v and u. We could use the Bellman equations:
%L +3F =r+oun,
%i + =Tt oun,

From the arbitrage condition we have that the value of an innovating firm at
date t that adopts technology o, satisfies, if n, > 0:

Y
ooV (t,54) = wy = (1 — ) Lf
t
using the value of 7 derived above:
Ty (t, 17,5) 1-— Ut
Lz \B 7t »aB8L
Va (t,94) = owep 1T—

Next, applying the same procedure as above to obtain the value at date t of a
firm with technology v; we have:

' T = [ torm(s)ds [ amome (5)d
Ve (t7”j):7fx(t,vj)/e {73 1m1 se{ s fgys s .
t
hence Vj
[ -1

Ta (t’vj) /Oo e f +0'v7lv(8)]d.s f %)%ilda f gy(s)ds 971
Ha \BY5) _ J ]
Va (t,v5) s h

7 (t,0t) — U 1
JAE N e 7/ L —l =2\ )
V, (t,00) =oaflig— =0 = (t,v))
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Let us study the growth rate of the value of the firm with the leading-edge
technology of date ¢. Taking logs and diﬁerentiating the expression obtained
above (V, (t,7:) = (1 —v) af (1 — ) = )Qt)

Vx (t7 ﬂt) _ ﬁ i}t &
Ve(t,or) Y (I—w)
While the value of the next innovation V,, (t + dt, U¢4-4t) = (1 — Tetar) a8 (1 — @) %

Consider now the expected growth rate of the value of innovations: the change
of the value of the most valuable firm across the economy, the one owning the
leading-edge technology. This firm will obviously change identity. We have:

E — lim Vm (t + dt? 'Dtert) - Vz (t, @t) 1
Va . o dio dt Ve (t,0t)
mnov
~ L—0gar\ Yerar [ 1—=ve \ Qeyar 1
7 — 1 _ 1 1
-0 {( L= ) Y 1—vgar Q dt
” )"Un'ut’r)t }/t i)t Qt
TR AR R
2 _ )‘vn’ut'r)t ‘/JL (t, 'Dt)
1— Ve (t,7¢)

This result can be useful because the arbitrage condition o, V;, (s,7) = (1 — «) %/j
holds for innovations at all dates s. That is we have that:

L I (7

Ve Y, L

innov

Instead the Bellman equations 17 Vo 4 Tz — y 4 g,n, describe the evolution of
the value of a firm with a fixed technology vj, for instance they apply to the
innovator of date ¢t. Hence:

Vx (t7 ﬂt) T
L =r+0o,Ny — —
V:L‘ (t7 'Dt) v V:L‘
Bringing together these last three equations we have
Y;g Lt )\ nvtvt Tt
2t ozt Zwlettt n Zat
Yo L 1-g T,
Finally, substituting for r, = p + a—f and Ji Q_
Y, Li  Aghott Y, -1
= —==— eE— n Q
Y, Lt 1—7, +p+ }/t+0v vt T S ét
if instead we use %;L = UvaﬁLtﬁ::
Y, L Anuty t 1—1
—t =t Zvwtit = L
}/t Lt 1—17,5 +P+€}/t+0vn/ut O'vOéB t —Ut
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Taking logs of aggregate output

1-811a _ Ta
Y = [(oﬂﬁ)ﬁ (a2 (1-— B)) B} L(1- U)B (1- u)l A (qﬁc 5) , and
differentiating :
Y, Ly Uy Ut af
It _ =t _(1—
}/t Lt Bl—’l)t ( 6)1—’1145 l1—«

U

Up af Yt
” — _ _ 17 — —
Bl—vt ( ml—ut 1—a<p+sYt>

(1—a+£aﬁ)¥ _ E—B 0 _a-p) i a,Bp
t t

1—« Lt 17'Ut 1—u l1—«
Y;t _ Lt Ut af
Y, l 5171;,5 =8, ~1-a"
where M = — +mﬂ hence
Y, LtiAnvtvt — Ut
(1 - 6) }/t Lt 1 _ 'Ut +p+ OyNyt — O—’UaﬁLtl —
Ly af
l—e)M-1= = (1-eM -
(-oM-1f = a9y +a B)l_m =
Aoy v
+ﬂ +p+ Nyt — avaﬁLt Y
1—17 — Ut
Ly _  (1-e)M Aoty Manuuy | of
L, (1—5)M—1[ e prral ) T g
1 )\nvtvt 1—17t
L
+[(17€)M71] ( 1—7, +p+oyne — opaf tlvt>
Ny Aty AUt o Aut Ut
1-(1—-e)M|—=— = 1—e) M —
[ ( 8) ]Lt |:( E) (1Ut ’6[1vt+1ut]>+<1@t+a

)\uut 1—17t
_ [(16)M(16) — alaﬁntl_vt} g

[(16)M1T6+1:| pfavaBNliﬁt

4 Conlusions

The timing and the relative size of R&D effort are typically different in the
decentralized and the centralized economies.
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First, the system does not admit any balanced path for the decentralized
economy, because the growth rate in the efficiency of exploitation of any resource
cannot be constant. Both effort in R&D sectors is decreasing since the marginal
reward to R&D activity declines as the upper bound approaches. Hence, we
pursue the analysis using numerical methods. Second, in the decentralized econ-
omy, R&D effort is decreasing in the resource-specific efficiency level, because
the marginal reward to R&D activity declines as the upper bound approaches.
As a consequence, the share of resources devoted to R&D falls asymptotically
towards zero. Third, the finiteness of efficiency improvements together with
that of the non-renewable resource supply, imply that the initial conditions de-
termine the qualitative feature of the transition path. In this case, R&D firms
make choices taking into account a limited time horizon since successive inno-
vations make patents obsolete. R&D tends to concentrate in the resource sector
where the demand is the largest (a scale effect that depends on the efficiency
gap between and on the relative scarcity of the two resources) and where the
scope for efficiency improvement is the highest (most important in the backward
sector). When the first effect dominates, the technological gap increases, giving
rise to possible unbalanced rushes of R&D on one resource. When the initial
efficiency gap is favorable to the non-renewable resource, our model predicts
that R&D activity focuses on this resource first, causing the gap to increase.
Eventually, as the growth of the resource rent reduces the competitiveness of
the non-renewable resource, R&D focuses gradually and eventually exclusively
on the renewable substitute.

This development is in contrast with the qualitative features of the optimal
path of technological change. Because of the limited availability of the non
renewable resource, whenever efficiency improvement on this resource is worth,
it is preferable from a social point of view to obtain it as soon as possible.
In fact, the improved efficiency can be applied to a larger resource stock if it
is obtained early rather than late. To sum up, we show the optimal path is
divided into three phases: first an unbalanced path with a rise in the efficiency
of one resource; second a balance path with a rise in both resources efficiency;
and last the steady state.

5 Appendices

5.1 Appendix 1: Social Planner With Only Fossil Re-
source

This version of the problem without substitute: it takes utility as the objective
function and is based on the crucial assumption of constant returns to scale
in R&D. In fact, the marginal return on R&D must be bounded from above,
otherwise as the resources employed in R&D fall, the marginal reward from
R&D investment increases indefinitely. Thus R&D never stops and the economy
converges toward the origin of the system (v = u = n = 0) without ever reaching
it. The origin is not a well behaved steady state, because the Jacobian of the
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linearized system is not defined. In fact the region of convergence shrinks to an
empty space. Assuming CRS in R&D allows us to derive a well defined steady
state.

The social planner problem is:

—+o0
max [ e Ptu(Cy)dt
{(ne, @) 55 0

Cr =Yy = [(1 =) (N = ny)]' " af (13)
S.t.: Xt
Uy = f)\ntvt
then
H. = u(Y)+r(=0)+pX
?o= <[(1 — o) (N — nt)]1 * "‘) + K Angvy — e
hence
%f u()(lfa)ﬁ+/€)\v:0
51 o) :—u’()(l—a) (1};}) + kAN = K — pk
=0=/p—pp
Using (25) to substitute for v/ (.) (1 —a)X = Av(N —n), we eliminate the
costate variable  from (14):
Eo_ (N (1—a)
Pl p+Ain—u ()(1 a)n(lffu)
v
b2 — _ N _ 1
p+An—A( n)l—v (15)
The ratio of (25) to (44) gives:
a(N-n) p
1—a)z kW
taking logs and differentiating:
LR
(N—-n) = u Kk w
which, when using (28) and (14), simplifies to
-n T v
T (N 16
(N—-n) = ( ") 1—w (16)

Furthermore, taking logs and differentiating (44) we have:

e Y _p i
u’ Y u oz
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Assuming constant intertemporal elasticity of substitution o = —u’/u”C, taking
into account that % = ¥ and using (14), the previous expression gives

i 1\ Y
Zo(1=Z2)= = 17
c-(1-5) 7 e (17)
>From the production function we have that the growth rate of output is:
Y ¥ 0 i
Yy (1—a) (11} + (Nn)) +Oé;
v n o n T
7= (1-— A - — — 18
( a)(nlv (Nn)n)+ax (18)

Therefore, substituting £ from (17) into( 16) and (18) we get the system:

oo foe(e-d)

(N—=n)n o
from which:

v

= (1—a))\n1_v

—ap

v

<= <l

= p—)\(N—n)liv

__n__
(N—n)

n
n

oo () - oo ][22

g

n n v
) (E) —ap—l—[n—(a—l—oz(l—a))N])\liv
7'1(Nn){ap+[n(a+a(10))N]Aliv} (19)
Plugging this result back into the system
Y v
?—U{(l—a))\va—p] (20)

so that (17) becomes:

v

E.:—Up—(l—o)(l—oz))\N

T 1—wv (21)

The system of differential equations (23)-(29) admits a stationary state in
(v*,0) since
1

- N
1+m0p

*

(22)
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where we define m = o+ a(l—0) = (1 —a)o + a > 0. The steady state is
characterized by:

aop
m
—op
m

8 la <=

The phase diagram is described by the locus ¥ = 0 which coincides with the
v-axis, and n =0 for n = N or

n = h(v):mN—%lgv
n > 0Vn>h(v) and n<0 Vn<h()
-l no_opl ~ _
h = )\v2>0 ' = 2)\v3<0 1}1;1&]1(1})— 00
1
N = h(p): o=
®): @ I-(1—a)(1-0)2X

P

—1
H_Eﬁﬁ} —0<0

a<[1—|—

The Jacobian of the system [n; 9]:

v* 2
—op+[L+m] AN —mpi
—\v* 0
The linearized system is

. o _ loptmAN]?

n| m 1 m n

v - [1 + m&} 0 v =0

op

hence A = —m (AN)? v*/ (1 —v*)? <0, Tr = po/m, implying that the station-
ary state is a saddle point.

5.2 Appendix 2: Social Planner, The Wrong Analysis (!)*
5.2.1 Social Planner: No Renewable Substitute

The social planner takes into account the technological constraints (53) and (69),
and maximizes output subject to the labor, resource and efficiency accumulation

4 An unfruitfull but stimulating analysis.
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constraints:

1 «
max Yi=(N—n)' " [(1-v) (755) 4
{nedesica} i, o AT
L (23)
ot X; = *{‘Tjtdj vt, X, >0
'[Jt = *)\n?'l}t

Notice that we have changed the law of motion of waste by introducing de-
creasing returns to R&D (6 € (0,1)) and that we are assuming that the social
planner controls directly the evolution of the average waste (and thus of average
efficiency) by adjusting appropriately R&D employment.®

First we consider the cross-sectoral allocation of the resource when its value
is denoted by p. he fo.c. is Vj € [0, 1]:

a(N=n) "1 —v) 2 =gy

thus Vj

. 1
Fp = —2 Ta T (N =) (24)

1-— 'th
Let us use directly this optimal allocation to write the current value Hamil-
tonian of the problem:

H, Y — ki + ,UJtXt

1

7= (N—ny) ™ / (1—wvj) Ozﬁut{j (N —n)* dj + ke nlv,
0

—1

1
i / (1 - vj0) ™5 5 (N = ny) dj
0

1 1
7= aﬁut (N —mny / 1—vj) dj—i—:‘it}\nt’l}t—al Sl (N—nt)/(l—vjt)dj
0 0

1

o (N—mny) | 1- /vjtdj —+ /it)\nffut
0

7= AM{T“ (N —ng) (1 — ;) 4 ke Andvy

defining A = o™= (1 — a). Let p be the social discount rate. The following are
the f.o.c. w.r.t. n, and the Euler conditions for X and (—v) (if & > 0):

Au (1 — ;) = ke And " oy (25)

5That is, for the moment we abstract from the fact that the simple relation between
efficiency growth and n exists for the leading edge technology and not for the average one. In
fact, the average index is computed taking into account the distribution of sales across sectors
7’s, which is controlled here by the social planner.
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fie = Piby = f1y = pige’ (26)
I%Jt = PRt — AM,{TG (N - nt) + fit)\nf (27)

Using (25) we can rewrite (27) as:

I%]t 5 5 N (0
— = Ang — oA ——1 28
Kor p+ Anyg Ty (nt )1”Ut (28)
Logdifferentiating (25):
—Q I%Zt ﬁt 'l.1t th
= st
1—ap ﬁtJr( )nt+vt+1—vt
which we can rearrange using (23) and (28) to obtain:
ht o 5 5 N Ut S Angvt
—(1-9) = — Ang — 0 ——1 —Anj —
nt( ) 170/)—1-/)—1- i i (nt >1vt i 11—
1 N V¢ Ut
"= ——p—dxmd(—=—-1 —An?
fap "t (nt >1vt ntl—vt
and finally:
7;Lt p S5 Ut 6 N
= ) 1 — 29
ne  (1—a)(l=9) ntl—vt[+1—(5nt} (29)

We have a system of two differential equations (23)-(29) that rules the path of
R&D effort and therefore of the resource efficiency.
Equation (29) can also be read as

. pny 145 Ut 6 N
=Pt 1 =
T a1 M 1vt[ +15nJ

By setting nn = 0, we define the function:
-1
v=f(n)= [1—1—(1—@)(1—5)&77,5 (1+Lﬁ>}
p n
with
(1—a)(1=08)50n°"2 (N —n)

o= [1+(17a)(1—5)%n5(1+ﬁ%)r =

o Aol
vo= nlgrjlvf(n){lJr(la);N}

Numerical simulations show that f (n) is concave and has an infinite slope at
n = 0. Hence the inverse of f defines the locus of n = 0 in the (v, n) phase plane
as a convex curve. Above the curve n > 0 and below n < 0. From the phase
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diagram we see that there exists a unique optimal path converging towards
the origin. Along this path, R&D employment falls steadily approaching zero
only asymptotically. Therefore, waste, v, decreases indefinitely and efficiency is
continuously improved.

Proof of the multiplicity of solutions.

Let us study the trajectories that are locally optimal within the region of
interest defined by the space below the » = 0 locus and inside the feasible region
n € [0, N] and v € (0,1) .

Define A =p/ (1 —a)(1-9).
First we analyze the slope of the locus 2 = 0 in the (v,n) space. A part for
the solution n = 0 the locus is defined by the implicit function:

F(v,n) = A—)\n‘s_llvv<n+165N):O
Z—Z = A‘szliv —n) >0
T i ( ><o

a| _ o)

dv |, _, 6(an)v(1—

~1
forn = N we have n = O only if v = 0 = [1+(17a) %N‘s} . Moreover

4 dn — 3 dn —
nliﬁgh dv ln=0 — 07 nEIE* dv lpn=0 — Q.

All the trajectories 7 (v) satisfying the local optimality conditions are char-
acterized by a slope:

dn n An1*5+ 1 n 1) N
= = = —— n
v aw) U A w 1-w 1-0

implying the following properties:

1. Define the function:

A 1-6
o(n) = n /A 3 such that dn =0
A?’Llfé/)\ﬁ’TL‘F HN d’U (v)
. dn _ dn
Yo > vd >0andVv<vd— <0
v 7 (v) v A (v)

since d?n/dv? = An'=°/v® + (n + 125 N)/ (1—v?) > 0. Notice that
©(0) = 0, so that at the origin the slope of the optimal policy is zero. In
other words, all trajectories have their minimum at ¢ (n) and only one of
this trajectories has its minimum at the origin, v =0 and n = 0.
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2. Yv € (0,7)

4,

dn \ dv |,
In fact: (‘fl—z ﬁ(v)) =g(v,n) =1/(1=v)—(1 = 6) A/ (An®) = Flocus
g (v,n) = 0in the (v,n) space [7 (v) = [(1 —v) (1 — §) A/ v]'/?] such that

d (dn

dn dv ﬁ(v)
Z—Z g=0 < 0, and g (7,n) = 0 implies n = N = the region v € (0,7) and
n € (0, N) is entirely below the g = 0 locus.

4 (il
dv dvﬁ(v)

8§ N . .. . .
}ﬁ(v) = 125 7—7 > 0 which is increasing in v.

< 0 below this locus. The g = 0 locus is characterized by

3. Forn=0:

. . dn
since lim 4Z
n—0 dv

4. ¥n > 0 the slope of the n = 0 locus is positive if it crosses the policy
function 7 (v) (the latter is flat by definition on the n = 0 locus). In fact,

substituting for @ (n) into 42 o We get:

2
nd |AnS~ 1+ X (n+ &N
- | AA(S(J\g—n)H ) >0

d_n
dv

n=0

Consider vy < ©. Define our candidate solution as the optimal policy n* (v)
starting at (vp,ng) and converging asymptotically towards the origin. From 1
we know that it is a increasing function with a minimum at the origin, i.e. a
zero slope asymptotically.

All policies starting with n > nf are described by a flatter schedule than
n* (v) (property2). The trajectory will cross the n = 0 schedule in finite time
(property 4). Thereafter n > 0 forever and the economy diverges from the
origin. (property 1). Asymptotically, either the trajectory converges towards
n = N with v > 0 or it first hits the v = 0 axes and then moves upwards along
it until n = N (since nn > 0). Both results are not optimal.

All policies starting with n < n{ are described by a steeper schedule than
n* (v) (property2). They attain the n = 0 axes in finite time and there the
system rests (remember that n = 0 along the n = 0 axes).

To discriminate between the policies starting with n < n§ and our candidate
n* (v), we have to use the transversality condition (using (28)):

. — A D

tllrgoe Py = o(E+e P)%Ovo

—

(pf%si75)\n271(N7n5)L+%§7p)d5

9 T—vg

]'t
= KoUpe’o

n o Hovoe—ts)\f(f'rLg*l(N—ns)l—ji:ds =0
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which is satisfied if and only if

t

. S—1(nr
tlggoo ny o (N —n) — Vs

v
f_ds=o00

that is when the integrand is unbounded. Consider our cases:

1. f oo =0>0:

i) and if noo =0 : limng_l(N—ns)l—“S— = %2% =00
t—o00 —Us —v

i) or if nee = f > 0: tliglong_l (N —ns) 12~ = (%V;?) L > 0; but

Neo > 0 = U4 < 0 in contradiction with v, = 0 > 0.

2. If v = 0:
i) and if 7o = 0 : lim nd~1 (N — ng) 2 = %1—90 = N0O? = 0 (as-

t—o0 1-v,
suming that n and v converge to 0 at the same rate) = the transversality
condition is not satisfied )
i) or if noe =n >0 : tlimn‘S*l(N—ns)—s— =& n)lTOO = 0 = the
— 00

s 1—vs nl-—

transversality condition is not satisfied.

For all policies starting with n < n§ we get voo =0 >0

We conclude that according to 17 all policies leading to the stationary states
defined by n = 0 are optimal. Hence our candidate solution n* (v) is not unique.
Furthermore if 27 is exact, then our candidate solution is not even optimal.

Open issues:
- Is 24 correct?
- What does it happen in the region v € (7,1) and n € (0, N)?

5.2.2 Social Planner: Introducing a Renewable Substitute

Let us consider the possibility of substituting the fossil fuel primary input for a
renewable one, denoted by s, available according to an infinitely elastic supply
schedule at a constant unit cost ¢ (in terms of output). Each resource input
is transformed in the final output production function according to a resource-
specific technology. The productivity of the intermediate good produced from
the renewable resource, eg, is denoted by (1 — ), where u measures the waste
of the potential energy in the unit of exploited resource. Symmetrically, for
(1 —wv) is the efficiency index for the intermediate input produced using the
fossil resource, e,. The waste in each specific technology is reduced by resource-
specific R&D activity. The latter employs labor according to:

'l-)t = f)\n?vt
'l.Lt = —)\ngut
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The two intermediate goods are imperfect substitutes in the aggregate final
sector production function. Consider for instance a CES technology:

E = [ﬁeg‘?lﬂuﬁ)e;’?l}ﬁ
I, = [6(17vt)%1+(176)(17ut)t’771ril
Y, = LI “LE?

Notice that with this specification, as the elasticity of substitution between
resources tends to unity the production function converges to the following two
stage Cobb-Douglas production function:

Vi = L [a-w)’ (1w e

To= L1 - ) el (1 —u) 2]

” 1&a{[u-—va%eJB[u-—;a%eJIB}a

As a result, when the share of the renewable goes to zero (5 — 1), the model
reduces to the one in the previous sections, since Y; = L1™ (1 — v;) e2.

As in the last two sections we let the primary resource intensity of interme-
diate goods be proportional to their efficiency index, i.e.:

T s
d s =
1—vw an ¢ 1—wu

er =

The problem has 4 controls (z, s, ni, na), 3 states, X, v, and u, with 3
(positive) costate variables, p, k, and ¢ respectively. Taking into account that
labor is available i fixed supply N, the current value Hamiltonian is:

H = }/t — CcSt + //LtXt — K}t’l.)t — Ctut

To= (N =m0 (=) (1) Klftvt)B(ljtut)l_T

B p)
—CSp — Ty + K AN v + CANG, Uy

11—« o
C o [ e ) (-] [ s

5 5
— 1Tt + K AN 0 + CANG Ut

The following are the first order condition with respect to z, s, n; and ns
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respectively:

p = @B [(N = my = ma) (1= ) (1 - )] a0 0)

¢ = @l B) [(V =m0 (1 —u) (1) ] " O]
l1-a B 1-p “

SrednlTlo, = a—awa—wﬁa—wfﬂ} lﬁi%%—gj (32)
11—« B -8B “

Snd e = (1—a) [(1—w) (1= w)' ] [N_xn—_n] (3)

The first two conditions on resource allocation can be rewritten as afY/x =
and a (1 — 8)Y/s = ¢, which together give:

Ty = b 2t

= ——ct

1=0

The last two conditions on R&D effort equate the marginal product of labor in

the final sector its marginal return in the two R&D sectors. Therefore equating

the latter, we obtain the following arbitrage across R&D sectors:

M _ (ﬂ) (35)

na¢ C Ut

(34)

The Euler condition with respect to the 3 states X, (—v), and (—u), respectively,
are:

o = py = f1y = o€’ (36)
Fe  _ S _g(1— Yi
Ky = P + Anlt /8 (1 Oé) Ky (1 . 'Ut) (37)
¢ 5 Y,
2= gt g, —(1—B)(1—a) —— 38
&= et A= (1= 8) (1= a) (39)
Logdifferentiating (35) and substituting using (37) and (38):
d(m/ng)dt 1 |k & b
ny/ng 1—6 ke ¢ v ue
nie Mot -« 1-8 p ]
P B _ Y, - 39
nit Nnot 1*5 t |:<t (17Ut) Kt (1 7'Ut) ( )
hence
d(ny/ne)dt KUy ke (1 — ) B8
> =<0 s 2L/ st L T R
ni/no Cru 4 ~ G (1 — ) 1-p5
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>From (31) we have that Y/s is constant, i.e. Y/Y = $/s. Logdifferentiating
the production function as written in H, we obtain:

Y n1 + Mo 0

?:(1_a) _(NfTLl*TLg) _ﬁ

-a-p g |a ot a-p2]

U
1—v 1—u

Logdifferentiating (34) and using (36):

T S5 s
—=—-—==-=9p
T s pu s
substituting in the previous expression:
Y My + g ¥ $
——=(1=- _ _ —(1=8)——| — 2
7= (-0 | - (- ) | - el
and taking into account that Y /Y = §/s:
v s My + oo ¥ U ap
==|- = - — —(1- — 40
(Y )s (N —ny —na) 61—1} ( 6)1—u 1-a” (40)
v u ny + N2 aB
o= A ) 1— § o o
<6n11—v+( B)nzl—u) (N —ny —ng) 1-a”
~~ & ~ S———
efficiency of energy inputs labor input fossil fuel input

notice that if the asymptotic behavior of the system is such that v,u — 1 and
ny, ng — 0, then Y/Y — —l—oi%p < 0, with equality only if output is inelastic
w.r.t. fossil fuel inputs (8 = 0).

Next, logdifferentiating (32) which can be written as (1 — a) Y/ (N —ny —ng) =

drAnS o .
Y n1 + ng k0 ny
Y+(an17n2) n+v ( )nl

substituting for (37)

Y+ n1 + N9

Y
v miﬂ*ﬁ(lfa)—*ﬂ*@—

k(1 =) ny
Similarly, using (33) we get:

Y ni + N2 . Y
?+(an17n2)_p_(l_ﬁ)(l_a)g(l—u) no

combining these results we have:

i 1-a(l-B) Y v
-ogt = e s0 ) A (i 0
ny l—a(l-7) o _ Y _




notice that substracting %i from % we obtain again (9).
Using (32) and (33) to substitute for (1 — a)Y/k = 6AnS~ 0 (N — ny — ny)
and (1 — ) Y/¢ = 6xnd u (N —ny — ng):

(1—5)% - 1(f(la)ﬁ)p—,@(l”U)J,\nf—l(N—nl—nz)
M+ a-amrt)
1-9%2 = 2 EE, 1) i (N o
Aot +a-amirts)
hence:
(0=0) [ 2 - 22) — o =y = o) | (1 ) sl = B
(1)

and the dynamic system is described by the following 4 differential equations:

L l—a(l-p) v S nd
ny = mpnl_ﬁ(l—v)(lfi;)(N_nl_n2)
(1A7—115) (B"‘fliv “15)@%)
T Ao (i—a)” (1-5) o 725) (N —nq —ny)
(1/\7_125) (Bn‘fliv +(1 5)nglfu>
Vo= —)\n‘lsv
u = —)\ngu
. _ l—a(l-7) v 5
ny = mpnl_ﬁ(l—v) (176))\77,? (N —ng)
v u nd
s (Bpiont + - ) )
. _ l—a(l-7) U 5
ny = mpnz_(1_@@(176))‘”%(]\]_”1)
v n5 U
—An (ﬁﬁ (1 ,15) +(1-p) ﬂ“g)
—Andv
W = —ndu

34



The Jacobian is shown in the appendix : file jack.tex
1—a(l 2 Ut
where A = Tlﬁa)f% B, = )\15 5 (N —nip —na), Cy = 1—35(51_—1%71‘12 +

(1= B) 72ndy), Dy = 25 (81250, + (1= 8) 24m5, ).

The hyperplane 7y = 0 defines: (' = 1;?1:)5 )

L (1 8)ndry
- (1-8)nis quBn Yy + 0 (N —ny —ny)]
np < 0You>v1,n>0Vve (0,0)
r— Bﬁn‘f_l P14+ 0 (N —n1 —na)]
I~ B1=nd " g +6 (N —ny —n2)] + (1 — B)nd
ny < 0Yu>q,n >0Vue (0,4)

01 (n1,n9,u) =

izl (n17 na, U)

while 1 = 0 for n; = 0 or ny et ny such that:

u (% §—1

H (n1,ng2,v,u) = F—(l—ﬁ)ngl_ —ﬁl_ n{ [ +d(N—n1—n2)=0
OH v _
Wltha—n1 = 5(1—(5)&?1171(15 2(N—T74—’I’L2)>0
oH v 51 U s < ni > B vl—wu|l
Oona 6{61 1 (1 ﬁ)l 2 ;0 < ne <|l—ful—v
0H BnS~t
-— = - O0(N —nq — 0
Ee (1_1))2[( nq n2)+n1]<
oH _ (-pW
ou (1—u)2
1-46
1Bul-v (m _ 1
hence% B nl[ﬁvl—u<n2> 1}2()(:)&2 B vl-u]T®
d?’Lg N (175)(N77’Ll*712) < 7”L2Z 1*BU1*U
dnq dny dng < dng < ny > 5 vl—u =
haidet huthd} and —2 = “a=z=1_£2 Z
dv > 0 and du>o’d s0a du =0 n2<{1—ﬁu1—v}

The hyperplane 1y = 0 defines the following functions:

_ I —(1-8)ny ' 1% [no + 6 (N —ny —ny)]
v2(n17n27u) = —1 5
I —(1-8)ny 1% [n2 + 6 (N —ny —n2)] + Ang
Ny < OVU>@2,n2>0V’UE(O ’Ug)
r-— ,8n11”
T — Bt + (1= B)ns " [na + 6 (N —ny —ng)]
ng < OVue(O,ag),h2>0Vu>ﬂ2

g (n1,n2,v) =
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while 19 = 0 for no = 0 or ny et ny such that:

qou v
G (ni,ng,v,u) = T —(1-p6)n 11_ [n2+6(N—n1—n2)]—Bn‘1sl_v:
., O0G U s v os_q| > n > B vli—-u =
h— = 1-— — = — = |—-
wit ony o B)l—un2 Bl— ™ <0® ng < |1—FBul—-w
aG - u §—2
oy = 0 (1 5) (1 6) 11— un2 (N n1 712) >0
oG 9
- = - ﬁn12<0
ov (1-v)
oG (1—B)n3"
— = - no+6(N—n1—mn2)] <0
™ 01— [n2 + 4 ( 1= n2)]
— — — — 1-6
e B = LDz [l
2 vi—u (n 2 - -
”2[T%ﬂ—v(z§> 1}
dns dns ~dng % ni > 15} El—u =
7 > 0 and T O,dv>0 and du>0©n22[—1ﬁulv}

5.2.3 Differentiating between control variables

Let us restate the problem and derive the dynamic system for the optimal
solution, defining n as the aggregate amount of labor employed in R&D, and
¢ the share of these resources devoted to R&D for the non renewable resource.

We drop the time subscript. The current value Hamiltonian:

H.= [(N —n)(1-v)’(1- u)lfﬂ e (z°517P) " —es—patrA no v+ (1 — ¢) ndu

whose first order conditions are:

(1-a) (N}:n) = oan’! [mb%-i—((l—qﬁ)éu
oo 8
t+(5)"
aﬁ% = K
01(176)Z = ¢

S

1

Notice that (43) is equivalent to Tib—

(44)

(45)

= (Tu) " as it was found in



the previous version. The Euler conditions are:

B

; p (46)
g = p+r’n’ —B(1-a) ﬁ (47)
% = p+>\(1—¢)5n5—(1—ﬁ)(1—a)ﬁ (48)

The first technical procedure is designed to express the growth rate of the
costate variables as function of the controls and states only. Substitute for
(1 — )Y using (42) into (47) we have:

in which we substitute for Cu = kv [(1 — ¢) /¢]' ™ from (43) to get:

: N — 1-
E = p+A’n® - L’{((l — 5)) SAn’~t [K¢§U + Kv (¢1?)}
» o p+)\¢6n5—i((]f_:;)5)\n5_lli¢5v |:1+(1;¢):|
"= pae’n® — ﬁ&Ané-lop‘**lFI’v) (N —n) (49)
Applying the procedure to the growth rate of ¢ we find:
¢ = 6,8 51 -1 U
Z—p+)\(1—¢) n’ = (1=p)0xn’"" (1-9) = (N=n) (50

Next we want to derive an expression describing the optimal growth rate of
the share of R&D allocated to the non renewable resource (it measures the

1-5
“direction” of R&D). Take logs and differentiate (43) written as <%> =&
and use (49) and (50):°

(ﬂ)é kv (o

1—-9¢/) ¢ kK v (¢ u
B 2 e . 5 (Y =m) =’
o= A1 =9) 0+ (1= BN (1= ) s (N =m) 44 (1= 9)"
9 _ 5— _ _ _ 6—1 U _ 6—1 v
= 0 N =) (=8 (=) s = 6

_ SConsider that dlog(¢/ (1 — ¢))/dt = dlog¢/dt — dlog (1 — ¢) /dt = d/d + ¢/ (1 —¢) =
/o1 +¢/(1—¢)] = ¢/[6(1 — ¢)].
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and the result follows:

¢ _ 6 - o
5= T T (V —m) [(1=5) (1) '

u . 5—1 v
el =]
(51)
To derive the growth rate of n first log differentiate the production function
as written in H:
Y 7 ¥ $

7= 1-0) |- A — - A | e st + - 5]

1—u

>From (44), (45) and (46) we have 3/s = Y/Y and i/z = Y)Y — p, thus
B+ (1—p)2 =Y/Y — Bp. The expression above can therefore be rearranged
as follows:and i — p. Taking these equalities into account together with the
result from ().substituting in the previous expression:

’ n v o af

Y
?7(N—n):761—v7(176)1—u (1-a)

P

notice that if 9,4 — 0 and 7 — 0, then Y/Y — —:22p < 0, with equality
only if output is inelastic w.r.t. fossil fuel inputs (8 = 0). Next, substituting
for Cu = kv [(1—9¢) /¢]1_5 from (43) into (42), we obtain (1 — @)Y/ (N —n) =
/{6)\77,571(;55_11). Taking logs and differentiating:

Y n kv i b

Ty R i S

equating the last two expressions:

“ kv . ¢
e TRty 703

n af
(1_6)E:(17a)

p+ B+ (1= f)
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Now we can substitute using (49) and (51) :

(1_5)% - (1aﬁa)p_ﬁ1vvw%é—(l_mﬁMl_@én(s

tpt APnd — BoAnS Lt ¢ iv) (N —n) — Ag'n?
1 _5)%5“1 —¢)n’ "t (N —n) {(1 —B)(1—¢)""" (ﬂu)

S l%%gigﬁp—éMﬁA(N—n)%%ﬁluvv)—ﬁwWl—@(lvm
*“5”1@5QEM}BT%EW%§“mI%ZA“¢fW

_— LT%%Jﬁp&m5WNnW@fuiv)+ﬂ5“1wéuﬁuﬂ
W [,8¢51—UU +(1=A)(1-96)" = u}

y Wp—m& (1+6N_"> {ﬁ¢5ﬁ+(1—5)(1_¢)51uu]

therefore:
n_ l-a(l-8) | 5 0 v B o6 u
e ma e (o o) [ s a-an ¢)(512)u]

To summarize our dynamic system is:

b e e () [ 0 -ma -
% = P () -8 (- s 8

% = A¢'n

% = A1-¢)n’

Remark 1 The case ¢ =0 and n = 0 is not optimal.

Proof. From (52) n/n =0 if:

6 (1-8 u 1-v\?
1—¢< 6 1—u v >

while (51) implies that ¢/¢ = 0 if:

¢ (1-08 wu 1-w w1
1¢_( B l—u w )

v

_ ﬁ¢5*17

(1—-v)

|



Hence ¢ =0 and n = 0 if and only if ¢ = .5, implying:

v 1-08 wu
l1—-v B 1-u

and this arbitrage condition should hold over time. taking logs and differenti-
ating, the condition implies:

Mnd 0 1 a1 A1-¢)’n’

1—v wl—v wul-u 1—u

o 17v%
- (=)

which together with ¢ = .5, gives v = w and § = .5. Unfortunately 3 is
an exogenous parameter included in the interval (0,1) and its value cannot be
restricted. M

that is:

5.3 Appendix 3: Decentralized Economy, No Substitute
5.3.1 No Substitute 17

The aim of this note is to check what are the implications of assuming:

1. that the economy depends upon a non renewable resource, x, available in
a given stock of size X;

2. that technological progress takes the following particular form: energy
efficiency is bounded below unity (thermodynamics principles) and can
approach this upper bound asymptotically if there is continuous R&D
activity.

The model is described by the following:
The final sector’s production function:

1
=L~ a/ — vjt) €5 (53)
0

with a € (0,1), L denotes labor input, and e; is the “energy good” sold by the
local monopolist of technology v;.
The monopolist produces e from the non renewable resource according to, Vj €
[0,1]):

ejt = Tjt (54)

"Notes on the Fossil Fuel Bias project (first draft 12/01/02 ; this one 25/2/02 (not so
sure)).
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The law of motion of the resource stock:
1
X, = -1 = —/xjtdj Vi X, x>0 (55)
0

The law of motion of the leading edge energy efficiency (defined by v™ =
min{v;} — €) resulting from R&D:

— =00 () (56)

where n is R&D employment, ¢’ > 0, ¢ < 0, and the aggregate flow of innova-
tions is:
1
/d) th
0

L+n=N (57)

The labor market clears:

N, Xo, vi’, a, o, A are exogenous parameters. Define the average efficiency
index:

=

vy = / vyedj (58)
0

Final sector. Perfect competition. Taking as given the wage, w, and the price
of the “energy goods”, p; Vj, the fictitious final sector firm problem is:

1 1
11—« -
max Ly~ / — Vjt) e —weLy —/pjtejtdj
Lt){eﬂ}j:o ) )

>From which one obtains the demand function for labor from the final sector:

1
1 o

1 i
—Q o 1 1 —
=(1-a)l; /(1 —wjt) €5 dj  or L= ( > / — vjt) €5,dj
0

0
(59)

and the demand for “energy good” Vj € [0, 1]:

1

pit = a(1—v;0) <ﬁ>l_a or el = (M)_ L. (60)

€t Pjt
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Local monopolist. Consider a monopolist in sector j endowed of the best
technology within the sector, v; at a given date. Under the technology of pro-
duction (54), the marginal and unit cost of the monopolist is the unit price of
the non renewable resource, which I denote by p,. The monopolist problem is:

maxmj; < max (pj¢ — Dat) €5t s.t. (60)
ejt ejt

which gives

L -«
P =a? (1) (£4)

ejt

and using again (60):

pir = Pt
it =,
1
R a?(1—v)\T°
Dzt
. 11—«
i = (1—a)pjeeje = ——parejt (62)
1l -« 1 —
e ) L

R&D. The R&D input is labor, and the marginal cost is the wage, w.

R&D is a stochastic activity whose output is governed by a Poisson process
(no memory). Employing a marginal researcher on product line j, firm 4 in-
creases by ¢’ (n;;) the instantaneous probability of innovating. Let me assume
¢' (ni;) = ¢’ (n;) Vi. An innovator obtains the patent to produce the good with
the leading edge efficiency at the date of innovation. Therefore the value,V;, of
an innovation arrived at date t is the expected present value of the stream of
profits. Since the innovator obtains the same technology regardless to the sector
in which it innovates, R&D employment is uniform across sectors. Given that
there is a unit mass of sectors: ¢’ (n;) = ¢’ (n) and ¢ (n;) = ¢ (n). Using (62):

T = Jrudu — [ o(na)dul — o
Vi - B /e {7 ue { ny)du aa[az(livgl)]l,a Lspg};ads
t
1 T = frudu [ o(n.)d
— 1 — | rydu — Ny )du —a
el (L (0] / e e N L T ds | (63)

t

The RE&D arbitrage condition equates the marginal cost to the expected mar-
ginal reward, that is, if ny > 0:

wy = ¢' (ny) V (64)

42



Resource Market. Using (61) I can compute the instantaneous aggregate
demand for the resource:

1
d ~ .
Ty = Eidj =
! /th (pxt)
0
2\ Toa
7= (a_> Liwy
Dzt

where I have defined the efficiency index:

_1

1
Lt/ 1 —vj)T ﬂdj
0

1
/ 1—vj)™ adj<1—vt
0

Assume perfect competition on the market. Resource suppliers take the price,
Pz, as given. Let the unit extraction cost be constant and equal to b. Define
the resource rent as:

gt = Pxt — b

The Hotelling rule can be derived with a simple arbitrage argument: delaying
extraction does not modify the extraction cost, hence the marginal return on
holding the non-extracted resource as an asset consists of its capital gain, which
is the appreciation of the rent. This implicit return must equal the return on
the riskless asset, r:

i

qt
Define by ¢g the initial rent, then the price of the resource is

=T (65)

fTudu
Pat = b+ qoed (66)

Use this in the aggregate demand function to impose the resource market-
clearing condition:

=
]Tudu
T = aTa Liw; | b+ goe? (67)

Condition (67) must hold at any instant. However, the extraction path must be
compatible with the limited availability of the resource. This constraint allows
us to pin down the unique value of the initial resource rent, go. The exhaustion

condition is:
[e'e] o' __1
9 f rodu e
= /xtdt = qT-« /Ltwt b+ goet dt (68)
0

0
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There is no balanced path with constant R&D employment. Suppose
that there exists a (balanced) path such that:

1. ry = r Vt, constant interest rate (small open economy, linear instantaneous
utility) ;

2. ny = n Vt, the solution is characterized by constant R&D employment.

2 is satisfied only if the R&D arbitrage condition (64) holds for a constant
level of n at all dates.

Let me reduce the model to a system of two equation in two unknowns, n
and go. First, using (61) in the labor demand function from the final sector
(59), I have:

wy = (1 — a)alz_aapgg_‘*wt
Let me also simplify by assuming ¢ (n) = An. Then (63) can be written (drop-
ping the expectation operator and taking into account):

1 e
V, = ;O‘aﬁ (1- v;ﬂ)ﬁ (N —n) / em(rHAn)(s—t) pT=a

t
plugging these two equations in (64) and simplifying, we get:

+o0 a

wy =Aa(l— v;")ﬁ (N —n) / e~ (r+An)(s—1) (%) e ds
+ s

Now I turn to two very special terms.
First, using the equilibrium price of the resource (66):

400 a +oo

T—a rt\ Toa
/e—(7.+)\7L)(s—t) <pxt> ds — /e—(7‘+)\n)(s—t) (b—i—qoe > ds
Pzs b+ qoe™
t

t
_ b+ qoert 2%
(r+An)u
€ <b + qoer(tJru) du

—+o0

I
o —

The second term in the integrand converges to zero and faster the greater is ¢.

Second, we can study the behavior of the efficiency indexes. I proceed to
evaluate it by adopting as the space of integration that of the age s € [0,¢].
Let h (s,t) denote the mass of goods of age s still on the market at date t. We
have that tli)rgoh (s,t) = Ane™*"*_ because a proportion e~*"* of goods of age
s has survived out of the initial mass An. However, initially the distribution
could be different, and its choice is actually arbitrary. Assuming that at date
t = 0 all goods share the same technology v§* (i.e. Vs € (—00,0) h(s,0) =0
and h (0,0) = 1) we have (see Appendix 5.4):

)\nef)\ns

h(s,t) = 1ot
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m

; —am —oAn(t—s
Using vt = v{* ¢ = v (t=s)

e , We can write:

1 t 1
- o = /(i_vﬁ) Ode:/(ll_vsl> h(s,t)ds
(1 _ ’U%n) T—a J *’Ut , — Uy

) 1— U a)\n(s t) —a
- / ( ,Ume oAnt ) h (57 t) ds
0
t
) 1— ngea)\n(s—t) == )\ne—)\na
/ ( 1— ,U('r)nefo)\nt 1— dS = (0’ 1)
0

This object measures the technological distance of the leading edge sector from
the average sector. It converges to unity asymptotically with ¢. This non sta-
tionary behavior explains why balanced paths do not exist.

Merging the last three equations, I write the (instantaneous) General Equi-
librium condition, that should give the constant R&D employment along the
balanced path as function of qq, V¢:

t 1 o] o
m ,oAn(s—t T—o —Ans rt o
/ 1—1}0:; ()\ t) = Ame ds=Aa(N /e (r+An)s b+ qoe 1 i
1— vte oA 1 — e—Ant b+ qoe” b+ oor(t+s)
0 0

(GE)
Finally, I rewrite condition (68) using w above and (57), to get the Full
Exhaustion condition:

u

)

2 = ] T AneAns

Xo = 0!130‘ (N — 7’L) / (b + qoem) lI—o / |:1 — ,Uglea)\n(s e wds du
0 0

and gives the initial resource rent, qg, as function of n.

Remark 2 The problem is non stationary because of the form of technological
progress that was assumed. This is clear because (GE) is non stationary even if
b= qo =0, that is if the resource is free and renewable.

5.3.2 No Substitute 2: Simplified Version (P&K)

In this section the previous model is simplified assuming that the monopolist
produces e from the non renewable resource according to, Vj € [0, 1]:

Tjt

€jt = m (69)

implying that a better technology is also more resource intensive. In this case
the unit cost for the monopolist producing with technology v; is (1 — v;) pas.
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The monopolist problem is modified to:

maxmj; < max (pjt — (L —vj) Dat) €5t s.t. (60)
which gives
9 (Lt > 11—«
Pat = Q7 | —
€4t
and using again (60):
~ Dat
hie = (1—v)==
2\ o=
. !
€t = <p_1.t> Lt (70)
. l—a = =
T = o Ql-«o (1 7Uj)Ltp$t

As consequence the value of a patent for producing with technology v;" is pro-
portional to the efficiency index of the technology:

7 —S'rudu —qu(nu)dul_
Vi = E; /e { ¢ { aaﬁ(l_vt) spxaads
«
t
1 [ = rudu —] o(mu)a
— — ) rudu — | ¢(nu)du —
vo= ot (1 —ov") By /e t et spzsads
[0

t

Concerning the resource market we have:

J ! o2\ == .
xy = / —vj¢) éjpdj = <—> L; /(1fvjt)dj
Dt
0 0
2\ Toa
()
Pzt

Notice that now the crucial variable in aggregate demand is simply the average

efficiency index:
1

(I)t:/(lfvjt)djilfvt
0

which is relatively simple to compute, knowing the cross sectoral distribution of
technologies. Now the resource market-clearing condition is:

-1

wek °
Ty = OéﬁLt(:)t (b + q0€{7 u) (71)
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Condition (67) must hold at any instant. However, the extraction path must be
compatible with the limited availability of the resource. This constraint allows
us to pin down the unique value of the initial resource rent, go. The exhaustion
condition is:

7 2 7 fs'r'udu 1
Xo= /xtdt =T« /Lt&)t b+ qoet dt (72)
0

0

There is no balanced path with constant R&D employment. Suppose
that there exists a (balanced) path such that:

1. ry = r Vt, constant interest rate (small open economy, linear instantaneous
utility) ;

2. ny = n Vt, the solution is characterized by constant R&D employment.

2 is satisfied only if the R&D arbitrage condition (64) holds for a constant
level of n at all dates.
Let me reduce the model to a system of two equation in two unknowns, n

and go. First, using (70) in the labor demand function from the final sector
(59), T have:

wy = (1—a) ai_aapﬁ&;t
Let me also simplify by assuming ¢ (n) = An. Then (63) can be written (drop-

ping the expectation operator and taking into account):

1 A
Vi = aaa% (1=2")(N —n) /e_(7+>‘")("_t)p§§“ ds

t
plugging these two equations in (64) and simplifying, we get:

a

T—o
&= Aa(1— o) (N —n) /e—(rﬂn)(s—t) (@) s
t p"lfs
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Using h (s,t) = Ane™*"% (1 — e7*) and vy = v}, = vfe A=) we have:
t

(1 —vjt)d, /1—1}3,5 (s,t)ds
0

(1 —vf"e” ™) h(s,t) ds

_ ,m_oAns )\nef)\ns
(1 v e ) (1 _ ef)\nt)ds

I
o, O Y——_ O\"H

(1 — e=Ant) o (1—0)An
—oAnt (1 _ e—(l—o))\nt)

» n ll — e~ Ant Ul” (1 _ e—(l—a))\nt)

vg'e

B R s )

€(0,1) if o<1

that is:
. (1 _ e—(l—a))\nt)

E(1—0) (1 —e2nt)

This object measures the average efficiency and:

l—vy=1—v

m

limw, =1-—
t—o0 — 0

<l—-w" if o<1

This finding implies that the technological distance of the leading edge sector
from the average sector falls over time. The picture below depicts vy /v}™.
The General Equilibrium condition is now Vi:

—oA\nt _ —(1—0o)Ant o0 -+ =
1— ,Ugne " (1 € ) — (1 U(’r)n —a)\nt) )\Oé _ n e —(r4+An)s b+ q067 ! ds
A=0)  (—e) bt e

0

(GE)

and the Full Exhaustion condition:

o m.—oAnu —(1—0)Anu

-2 U %1& Yo € (1 —° )
Xog=at-« (N — 7’L) / (b + qoe )1 (1 - (1 _ 0.) (1 _ e—)\nu) ) du
0

(FE)
and gives the initial resource rent, qg, as function of n.
5.4 Appendix 4: Distribution of vintages across sectors

Recall the definition of h (s,t): the mass of goods that at date ¢ have age s,
implying that they are characterized by a technology that was the leading edge
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one at date t — s. Assume that Vs € (—00,0) h(s,0) =0 and ~(0,0) = 1. In
other words, suppose that at date ¢ = 0 all goods share the same technology
vg*. In this appendix, I derive heuristically the distribution function:

)\nef)\ns
h(s,t) = 1= ot
Let me construct the table below:
date mass technology
0 h(0,0) =1 vy
p h(dr,d7) = e *"Ih(0,0) = e~ "7 o
T h(0,dr) =1— [¥ (s, dr)ds = 1 — e Xndr v
h(2dr,2d1) = e "ITh (dr,dT) = =247 o
2dr h (d’T 2d7’) _ ef)\nd'rh (0 d’T) _ ef)\ndr . 7)\n2d7' vd‘r
h(0,2dr) =1 — fsz h(s,dr)ds=1— e And7 Vg,
h (3dr,3dr) = e MITh (2dr,2dT) = =397 o
24 h (QdT, 3dT) _ e—)\ndrh (ClT, 2dT) _ e—)\nZdT _ —)\nSdT Ugj_
T L (dT, 3dT) _ e—)\ndrh (0, 2d7’) — e—)\nd‘r _ e—)\nZd‘r Usz
h(0,3dT) =1 — [27 h(s,dr)ds =1— e >ndT oy

Hence the distribution seems to behave according to e="% (1 — e¢=And7)
which tends to e™*"* as dr — 0. Recalling that there is a unit mass of sec-
tors and using the fact that a flow An of innovations enter the economy at each
instant, the distribution should be described by the following law, if the memory
of the initial distribution h (0,0) had faded away: fooo Ane~"$ds = 1. However
in this model the initial distribution cannot be ruled out. In fact, the efficiency
index 1 — vg; of old-enough goods turns negative if we let s — 00.® Hence if we
restrict the domain of the distribution to s € [0,¢] we have:

t t t
Ane= s An —ns
/h(s,t)ds = /1767)\mds:1767)\m/e AR s
0 0 0
n _e—)\ns t n _e—)\nt +1
IL—e | An |, 1—ent An

Finally, the property tlim h(s,t) = Ane="* is clearly verified.
—00
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