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Abstract. In this paper, we present a method to automatically detect
and characterise interactions between genes in biomedical literature. Our
approach is based on a combination of data mining techniques: frequent
sequential patterns filtered by linguistic constraints and recursive min-
ing. Unlike most Natural Language Processing (NLP) approaches, our
approach does not use syntactic parsing to learn and apply linguistic
rules. It does not require any resource except the training corpus to
learn patterns.

The process is in two steps. First, frequent sequential patterns are
extracted from the training corpus. Second, after validation of those pat-
terns, they are applied on the application corpus to detect and charac-
terise new interactions. An advantage of our method is that interactions
can be enhanced with modalities and biological information.

We use two corpora containing only sentences with gene interactions
as training corpus. Another corpus from PubMed abstracts is used as
application corpus. We conduct an evaluation that shows that the pre-
cision of our approach is good and the recall correct for both targets:
interaction detection and interaction characterisation.

1 Introduction

Literature on biology and medicine represents a huge amount of knowledge:
more than 19 million publications are currently listed in PubMed repositor
A critical challenge is then to extract relevant and useful knowledge dispersed
in such collections. Natural Language Processing (NLP), in particular Informa-
tion Extraction (IE), and Machine Learning (ML) approaches have been widely
applied to extract specific knowledge, for example biological relations. The need
for linguistic resources (grammars or linguistic rules) is a common feature of
the IE methods. That kind of approach applies rules such as regular expressions
for surface searching [5] or syntactic patterns [4]. However rules are hand-
crafted, those methods are thus time consuming and very often devoted to a
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specific corpus. In contrast, machine learning based methods, for example sup-
port vector machines or conditional random fields [8], are less time consuming
than NLP methods. They give good results, but they need many features and
their outcomes are not really understandable by a user and not usable in NLP
systems as linguistic patterns. A good trade-off is the cross-fertilization of IE and
ML techniques which aims at automatically learning the linguistic rules [10} [17].
However in most cases the learning process is done from the syntactic parsing of
the text. Therefore, the quality of the learned rules relies on syntactic process
results. Some works such as [6] do not use syntactic parsing and learn surface
patterns using sequence alignment of sentences to derive “motifs”. That method
allows only interaction patterns to be learned and no new terms to be discov-
ered. Indeed, it is based on a list of terms that represent interactions. In contrast,
our proposed approach automatically discovers patterns of interactions and their
characterisations (e.g., kind of interaction, modality). In particular, terms rep-
resenting interactions (and characterisations) are automatically extracted from
texts without other knowledge. From our best knowledge, there is no method
that in the same time extract interactions and their characterisations.

In this paper, we aim at showing the benefit of using data mining methods
for Biological Natural Language Processing (BioNLP). Data mining allows im-
plicit, previously unknown, and potentially useful information to be extracted
from data [3]. We present an approach based on frequent sequential patterns [1],
a well-known data mining technique, to automatically discover linguistic rules.
The sequential pattern is a paradigm more powerful than n-grams. Indeed, n-
gram can be seen as a specific instance of sequential pattern. A drawback of
n-grams is that the size of the extracted patterns is set for all patterns to n
whereas in sequential pattern mining, discovered patterns can have different
sizes. In addition, items (i.e. words of texts) within sequential patterns are not
necessarily contiguous. Unlike most NLP approaches, the proposed method does
not require syntactic parsing to learn linguistic rules and to apply them. In addi-
tion, no resources are needed except the training corpus. Moreover, rules coming
from sequential patterns are understandable and manageable by an expert.

The process proposed in this paper is in two steps. First, frequent sequen-
tial patterns are automatically extracted from the training corpus. In addition,
constraints and recursive mining are used to give prominence to the most
significant patterns and to filter the specific ones. The goal is to retain frequent
sequential patterns which convey linguistic regularities (e.g., entity named re-
lations). Second, after a selection and categorisation of those patterns by an
expert, they are applied on the application corpus. The approach is used for
the detection of new gene interactions in biomedical literature. An advantage of
our method is that interactions can be enhanced with modalities and biologi-
cal information. Note that no knowledge except the training corpus is used. In
addition, in the training corpus the interactions are not annotated.

The paper is organized as follow. Section 2] presents the approach to compute
the linguistic rules that allow gene interactions to be extracted and characterised.
Section[3]gives an evaluation of our method on biomedical papers from PubMed.



2 Sequential Patterns for Information Extraction

In this section, we introduce sequential patterns defined by Agrawal et al. [1]. We
explain how we use sequential patterns to extract potential linguistic extraction
rules to discover interactions and to identify modalities and biological situations.
Linguistic constraints and recursive mining are then presented to reduce the
number of extracted patterns. Finally, we show the selection and categorisation
of extracted sequential patterns.

2.1 Sequential Patterns

Sequential pattern mining is a well-known technique introduced by Agrawal et
al. that finds regularities in sequence data. There exist a lot of algorithms
that efficiently compute frequent sequential patterns [20].

A sequence is an ordered list of literals called items, denoted by (i1 ...4m)
where 7 ...4,, are items. A sequence S1 = (i1 ...4,) is included in a sequence
So = (i} ...14,) if there exist integers 1 < j; < ... < j, < m such that i; = i;'p
ey Uy = z;n S1 is called a subsequence of Sy. Ss is called a supersequence of Si.
It is denoted by S7 < S5. For example the sequence (a b ¢ d) is a supersequence

of (bd): (bd) =< {abcd).

Table 1. SDB;, a sequence database

Sequence ID | Sequence
1 (abcd)
2 (bde)
3 (acde)
4 (a d c b)

A sequence database SDB is a set of tuples (sid, S), where sid is a sequence
identifier and S a sequence. Table [[] gives an example of database, SDB1, that
contains four sequences. A tuple (sid,S) contains a sequence S,, if S, is a
subsequence of S. The suppor of a sequence S, in a sequence database SDB
is the number of tuples in the database containing S,: sup(Sa) = |{(sid, S) €
SDB | (So = S)}| where |A| represents the cardinality of A. For example, in
SDB; sup({b d)) = 2. Indeed, sequences 1 and 2 contain (b d). A frequent
sequential pattern is a sequence such that its support is greater or equal to the
support threshold: minsup. The sequential pattern mining extracts all those
regularities which appear in the sequence database.

2.2 Extraction of Sequential Patterns in Texts

For the extraction of sequential patterns from biological texts, we use a train-
ing corpus which is a set of sentences that contain interactions and where the

2 Sometimes the relative support is used:
sid,S) | (sid,S) € SDB A (Sa XS
cup(s.) = (30, 5)| (i0.) € SDB A (S0 X S




Table 2. Excerpt of the sequence database

Sequence 1D Sequence

S1 ( here@rb we@pp show@uup that@in/that AGENE@np ,@, in@in
synergy@nn with@in AGENE@np ,Q, strongly@rb activate Quuz
AGENEQ@nyp expression@nn in@in transfection@nn assay@nns .@sent )
S2 ( the@dt AGENE@np -@: AGENE@np interaction@nn be@ubd
confirm@uun in@in vitro@nn and@cc in@in vivo@rb .@sent )

genes are identified. In this paper we consider sentences containing interactions
and at least two gene names to avoid problems introduced by the anaphoric
structures [21].

From those sentences, sequential patterns representing gene interactions are
extracted. The items are the combination of the lemma and their POS tag.
The sequences of the database are the interaction sentences where each word
is replaced by the corresponding item. The order relation between items in a
sequence is the order of words within the sentence. For example, let us consider
two sentences that contain gene interactions:

— “ Here we show that <Gene SOX10>, in synergy with <Gene PAXS5>,
strongly activates <Gene MITF > expression in transfection assays.”

— “ The <Gene Menin>-<Gene JunD> interaction was confirmed in vitro and
in vivo.”

The gene names are replaced by a specific item, AGENE@np, and the other
words are replaced by the combinations of the lemmas and their POS tag. An
excerpt of the database that contains the sequences associated to those two
sentences is given Table[2]

The choice of the support threshold minsup is a well-known problem in data
mining. With a high minsup, only few very general patterns can be extracted.
With a low minsup, a lot of patterns can be found. In our application, some
interesting words, for example “interaction”, are not very frequent so that we set
a low value of minsup. As a consequence, a huge set of patterns is discovered and
it needs to be filtered in order to return only interesting and relevant patterns.

2.3 Constraints and Recursive Mining

We use a combination of data mining methods which are well-known to select
the most interesting and promising patterns [12][2]. The constraint-based pattern
paradigm enables one to discover patterns under user-defined constraints in order
to drive the mining process towards the user objectives. Recursive mining gives
prominence to the most significant patterns and filters the specific ones.

Linguistic Constraints. In data mining, the constraints allow the user to
define more precisely what should be considered as interesting. Thus, the most



commonly used constraint is the constraint of frequency (minsup). However, it
is possible to use different constraints instead of the frequency [11]. We use three
constraints on sequential patterns to mine gene interactions.

The first constraint is that the pattern must contain two named entities
(Caone). SAT (Cape) represents the set of patterns that satisfy Cape:

SAT (Cone) ={S = (i1i2...im) | |{j s.t. i;, = AGENEQnp}| > 2}.

The second constraint is that the pattern must contain a verb or a noun
(Cun). SAT(Cyp) represents the set of patterns that satisfy Cyp,:

SAT(Cyr) = {S = (t1i2.. . im) | 3 ij, verb(ij) or noun(i;)}  where  verb(i)
(resp. noun(i)) is a predicate that returns true if 7 is a verb (resp. noun).

The last constraint is that the pattern must be mazimal (Cpnaz). A frequent
sequential pattern, Sy, is maximal if there is no other frequent sequential pattern,
Sa, such that S; < S3. SAT(Cpnas) represents the set of patterns that satisfy
Cmam:

SAT (Comaz) = {s | support(s) > minsup A Ps' s.t. support(s’) >
minsup, s =< s'}. That last constraint allows the redundancy between pat-
terns to be reduced.

All contrainsts can be grouped in only one constraint C which is a conjunction
of previously presented constraints. SAT(C¢) is the set of patterns satisfying
Cq.

Recursive Mining. Even if the new set of sequential patterns, SAT (Cg), is
significantly smaller, it can still be too large to be analysed and validated by
a human user. Therefore we use recursive mining to give prominence to the
most significant patterns and to filter the specific ones.

The key idea of recursive pattern mining |2] is to reduce the output by suc-
cessively repeating the mining process in order to preserve the most significant
patterns. More precisely, for each step, the previous result is considered as the
new dataset. That recursive process is ended when the result becomes stable.

We divide SAT(C¢) into several subsets Ex, where the subset Ex, is the set
of all sequential patterns of SAT(Cg) containing the item X;. More formally,
Ex, ={se€ SAT(Cq) | (Xi) = s}. Note that X; are elements labeled as a verb
or a noun. Indeed, we want to identify at least one pattern by verb or noun that
appears in the sequential patterns. All verbs and nouns are thus used.

The most k (k > 1) representative elements for each Ex, are then computed.

Each subset E;, is recursively mined with minsup equals to L in order to extract

frequent sequential patterns satisfying Cg previously introduced. The recursion
stop when the number of extracted sequential patterns satisfying Cq is less
than or equal to k. It means that the extracted sequential patterns become the
sequences of the new database to mine. This process ends when the number of
extracted patterns is less than or equal to k. For each subset Ex,, the k extracted
sequential patterns are frequent sequential patterns in the first database with
respect to minsup.

3 The constraint Ca. ensures ending of recursion.



At the end of that step, the number of sequential patterns is controlled. It is
less than or equal to n x k where n is the number of subsets Ex, in SAT(Cg).
Note that k is set a priori by the user. Thus, the number of sequential patterns
allows them to be analysed by a human user. The sequential patterns are then
validated by the user and considered as linguistic information extraction rules
for the detection of interactions between genes and their modalities or biological
situation. Moreover, it is interesting to note that the subcategorisation of the
verb given by the POS tagging indicates the passive or active verb and iden-
tifies the direction of the interaction. Prepositions can also allow that kind of
information to be found when the pattern does not contain a verb.

2.4 Selection and Categorisation of Patterns

After the extraction of sequential patterns, a human user analyses them as in-
formation extraction rules. Some extracted patterns, which are not relevant for
interaction detection or characterisation, are removed. The other patterns are se-
lected as information extraction rules. A selected pattern is classified with respect
to the kind on information that can be extracted with that pattern. Figure [I]
shows the taxonomy that we define and use in our experiments with biological
texts. That taxonomy is defined by observation of the extracted patterns. It can
be completed with other classes if other kinds of information extraction rules
are found. There are three main classes of patterns.

The first class is interaction patterns that allows interactions between genes
to be found.

The second class is modality patterns that allows modalities of interactions to
be found. Modalities induce the confidence in the detected interactions. For
example, the sentence “It suggests that <genename=MYC> interacts with
<genename=STAT3>.” has a lower confidence than “It was demonstrated that
<genename=MYC> interacts with <genename=STAT3>.”. We define four
levels of confidence: Assumption, Observation, Demonstration and Related work,
and another subclass representing the Negation. A negation modality pattern is
for example “AGENE@np absence AGENEQnn”.

Sequential Patterns

Interaction

Modality Biological Context

{Negation } [Assumption } [Observation ] [Demonstration ] Related Organism | [Component | | Biological | | Biological
work situation relation

Fig. 1. Taxonomy for pattern selection



The last class is biological context patterns that allow information about the
biological context of interactions, for example the disease or the organism in-
volved in the interaction, to be found. That class has four subclasses: organism,
component, biological situation and biological relation. The subclass organism en-
ables the organisms involved in the interaction to be found, for example “mouse”
or “human”. The subclass component enables the biological components (e.g.
“breast” or “fibroblast”) to be detected. The subclass biological situation en-
ables to give the framework of interactions, for example, “cancer”, “tumor” or
“in vitro”. The last subclass enables to give the type of biological relation when
it is possible, for example “homology”.

When the human user has selected and classified all patterns in the differ-
ent categories, they are applied as extraction rules on the application corpus
to discover and characterise new interactions. Note that detection with se-
quential patterns representing interaction, modalities or biological context is
much more elaborated than just a cooccurence detection. Indeed, the order of
the words and the context are important, for example (these@dt sug-
gest@uup AGENE@np AGENE@np) or (AGENEQ@np with@in AGENE@np
in@in Vitro@np .Q@sent).

3 Experiments

We conducted experiments with our method in order to discover interactions
between genes in biological and medical papers. In this section, we present the
extraction and validation of linguistic patterns for gene interaction detection
and characterisation, and then the application of the selected patterns on a real
dataset.

3.1 Extraction Rules

Training Data. Genes can interact with each other through the proteins they
synthesize. Moreover, although there are conventions, biologists generally do
not distinguish in their papers between the gene name and the protein name
synthesized by the gene. Biologists know in context if the sentence is about the
protein or gene. Thus, to discover the linguistic patterns of interactions between
genes, we merge two different corpus containing genes and proteins.

The first corpus contains sentences from PubMed abstracts, selected by Chris-
tine Bru as sentences that contain gene interactions. It contains 1806 sen-
tences. That corpus is available as a secondary source of learning tasks “Protein-
Protein Interaction Task (Interaction Award Sub-task, ISS)” from BioCreAtIvE
Challenge II [8].

The second corpus contains sentences of interactions between proteins selected
by an expert. That dataset, containing 2995 sentences with gene interactions, is
described in [15].

4 Institut de Biologie du Développement de Marseille-Luminy.



Sequential Pattern Extraction. We merged the two datasets previsouly pre-
sented and assigned a unique tag for the named entities: AGENE@np. A POS
tagging is then performed using the treetagger tool [16]. The sentences are then
ready to extract all the frequent sequential patterns. We set a support threshold,
minsup equals to 10. It means that a sequential pattern is frequent if it appears
in at least 10 sentences (i.e. 0.2% of sentences). Indeed, with that threshold some
irrelevant patterns are not taken into account while many patterns of true gene
interactions are discovered. Note that other experiments have been conducted
with greater minsup values (15 and 20). With those greater minsup relevant
patterns for interaction detection are lost. The number of frequent sequential
patterns that are extracted is high. More than 32 million sequences are discov-
ered. Although the number of extracted patterns is high the extraction of all
frequent patterns takes only 15 minutes. The extraction tool is dmt4 [9].

The application of constraints significantly reduces the number of sequential
patterns. Indeed, the number of sequential patterns satisfying the constraints is
about 65,000. However, this number is still prohibitive for analysis and valida-
tion by a human expert. Note that, the application of constraints is not time
consuming. It takes a couple of minutes.

The recursive mining reduces significantly the number of sequential patterns.
The sequential patterns obtained in the previous step are divided into several
subsets. The recursive mining of each subset exhibits at most k sequential pat-
terns to represent that subset. In this experiment, we set the parameter k to 4.
It allows several patterns to be kept for each noun or verb in order to cover
sufficient different cases (for example 4 patterns corresponding to 4 syntactic
constructions with the verb inhibit@uun are computed). In the same time it al-
lows the patterns to be analysed by a user. The number of subsets, which are
built, is 515 (365 for nouns, 150 for verbs). At the end of the recursive mining,
there remains 667 sequential patterns that can represent interactions or their
categorisations. That number, which is significantly smaller than previous one,
guarantees the feasibility of an analysis of those patterns as information ex-
traction rules by an expert. The recursive mining of those subsets is not time
consuming. It takes about 2 minutes.

The 667 remaining sequential patterns were analyzed by two users. They
validated 232 sequential patterns for interaction detection and 231 pat-
terns for categorisation of interactions in 90 minutes. It means that 232
sequential patterns represent several forms of interactions between genes.
Among those patterns, some explicitly represent interactions. For exam-
ple, (AGENE@np interact@uvz with@in AGENEQ@np .Q@sent), (AGENE@np
bind@uvz to@to AGENE@np .@sent), (AGENEQ@np deplete@uun AGENE@np
.@sent) and {(activation@nn of@in AGENE@np by@Qin AGENE@nyp .Q@sent) de-
scribe well-known interactions (binding, inhibition, activation). Note that when
the patterns are applied, 0 or several words may appear between two consecu-
tive items of the pattern. For example, the pattern (AGENE@np interact@uvz
with@in AGENE@np .@sent) matches the sentence “<gene name=MYC> inter-
acts with <gene_name=STAT3>.” and also the sentence “<gene_name=MYC>



interacts with genes in particular <gene.name=STAT3>.” Other patterns rep-
resent more general interactions between genes, meaning that a gene plays a role
in the activity of another gene like (AGENE@np involve@vun in@in AGENE@np
.@sent), (AGENEQ@np play@uvz role@nn in@in the@dt AGENE@np .@sent) and
(AGENE@np play@uuz role@nn in@in of@in AGENE@nyp .@sent). Note that the
“involve” verb and the “play role in” phrase do not belong to the word lists of
and [7], also used by Hakenberg et al. [6] as terms representing interactions.

The remaining patterns represent modalities or biological context as described
in Section

The sequential patterns obtained are linguistic rules that can be used on
biomedical texts to detect and characterise interactions between genes. Note that
to be applied, those patterns do not need a syntactic analysis of the sentence.
The process just tries to instantiate each element of the pattern in the sentence.

3.2 Application: Detection and Characterisation of Gene
Interactions

In order to test the quality of the sequential patterns found in the previous
section, we consider 442,040 biomedical papers from PubMed. In that dataset,
the names of genes or proteins are labeled thanks t. We randomly took 200
sentences and tested whether the linguistic patterns can be applied. For each
sentence, we manually measure the performance of linguistic sequential patterns
to detect those interactions and their characteristics. Note that we also carried
out a POS tagging of those sentences in order to correctly apply the pattern
language, most of applications of the linguistic sequential patterns is almost
instantaneous.

Table 3. Detection and characterisation of interactions

Precision | Recall | f-score
Interaction detection 0.83 0.75 0.79
Interaction categorisation 0.88 0.69 0.77

Table [3]| presents the scores of the application of the patterns as extraction
rules: Precision, Recall and f—score@. For the gene interaction detection, the
precision is good and the recall is correct. Those results are comparable to the
results of other methods in literature, however, we can note that the tasks are
not the same [8]. For the interaction characterisation, the precision is good and
the recall is about 69%. There are several reasons that explain why the recall is
not greater. They are discussed in the next section.

3.3 Discussion

About Interaction Detection. Although the results of the POS tagger tool
are mainly correct, there still be some labeling errors on lemmatization or
® http://bingotexte.greyc.fr/

2 X Precision X Recall
Precision + Recall

6 The used f-score function is : f-score =



assignment of a grammatical category. Our method is robust with respect to
that phenomenon, indeed those errors are also present in the extracted patterns.
Thus, if an error is frequent, it appears in a pattern. For example, treetagger
does not lemmatize the word cotransfected but some extracted patterns contain
cotransfected@uvun.

Note that for the experiments the scope of extracted linguistic patterns is
the whole sentence. That scope may introduce ambiguities in the detection of
interactions when more than two genes appear in sentences. Several cases are
possible: when several binary interactions are present in the sentence, when the
interaction is n-ary (n > 3) or when an interaction is found with a list of genes.
The case of n-ary interactions can be solved with a training dataset containing
n-ary interactions. The other two cases can be treated by introducing limitations
of pattern scope, for example cue-phrases (e.g. but, however).

False negatives depend on the absence of some nouns or verbs of interaction
in the patterns. For example, the noun “modulation” is not learned in a pattern
whereas the verb “modulate” appears in patterns. This suggests that the use of
linguistic resources (e.g. lexicon or dictionary), manually or semi-automatically,
can improve patterns and thus interaction detection.

About Interaction Characterisation. The false negatives, which are de-
pendent on the absence of some patterns, are also an important prob-
lem for interaction characterisation. For example, in our experiments in
the sentence “<gene_name=SP1> binding is enhanced by association with
<gene_name=CDK2> and <gene_name=CDKZ2>, both in vivo and in vitro .”
the biological situation “in vitro” is detected whereas “in vivo” is not detected.
Indeed, there is no sequential pattern extracted from the training corpus that
contains “in vivo”. That case is considered as a false negative. The recall (69%)
is strongly dependent on the number of false negatives. Note that the false neg-
atives mainly come from missing biological context (about 92%). It is explained
by the difficulty to have a training corpus that contains all biological context
(e.g. body parts (“liver”, “pituitary gland”, ...), disaeses). The false negatives
due to missing modalities are seldom (about 8%). Those false negatives are ex-
plained by the fact that patterns containing “perform” have not been validated
by the human users as IE rules whereas those patterns may find some modalities.

4 Conclusion

The proposed approach aims at automatically discovering linguistic IE rules us-
ing sequential patterns filtered by linguistic constraints and recursive mining.
Unlike existing methods, our approach is independent of syntactic parsing and
does not require any resource except the training corpus to learn patterns. Note
that in this training corpus interactions are not annotated. In addition, the im-
plementation is simple. The sequential patterns, which are automatically gener-
ated, are used as linguistic rules. An advantage of the use of sequential patterns
is that they are understandable and manageable IE rules. The expert can easily



modify the proposed rules or add other ones. We illustrated the method on the
problem of the detection and characterisation, with some modalities and biolog-
ical information, of gene interactions. However, the proposed approach can be
straightforwardly applied to other domains without additional effort to develop
custom features or handcrafted rules.

The experiments related on PubMed annotated corpus show that results are
close to other approaches in literature. We are convinced that those results can
be easily improved. Indeed, we used directly the discovered patterns as IE rules,
without modifying them. Adding or enhancing patterns with expert knowledge,
or using a specialized dictionary to enhance manually or semi-automatically the
discovered patterns should reduce false negatives (and false positives also). Using
heuristics to limit the scope of applied patterns (e.g. cue-phrases) should also
improve the precision.
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