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Abstract

We study the valuation of variable annuities for an insurer. We concentrate on

two types of these contracts that are the guaranteed minimum death benefits and

the guaranteed minimum living benefits ones and that allow the insured to withdraw

money from the associated account. As for many insurance contracts, the price of

variable annuities consists in a fee, fixed at the beginning of the contract, that is

continuously taken from the associated account. We use a utility indifference approach

to determine this fee and, in particular, we consider the indifference fee rate in the

worst case for the insurer i.e. when the insured makes the withdrawals that minimize

the expected utility of the insurer. To compute this indifference fee rate, we link the

utility maximization in the worst case for the insurer to a sequence of maximization

and minimization problems that can be computed recursively. This allows to provide

an optimal investment strategy for the insurer when the insured follows the worst

withdrawals strategy and to compute the indifference fee. We finally explain how to

approximate these quantities via the previous results and give numerical illustrations

of parameter sensibility.
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1 Introduction

Variable annuities are insurance contracts that were introduced in the 1970s in the United

States (see Sloane [16]). These insurance products provide, during a given period, deferred

annuities that are fund linked. More precisely, the policyholder gives at the beginning an

initial amount of money to the insurer who invests this amount in a reference portfolio.

In return, the insurer provides annuities that depend on the performance of this reference

portfolio.

In the 1990s, insurers add certain guarantees to these policies. They propose contracts

with annuities that are at least greater than some guaranteed value. Nowadays, the most

spread are Guaranteed Minimum Death Benefits (GMDB for short) and Guaranteed Min-

imum Living Benefits (GMLB for short) contracts. For a GMDB contract, the dependents

of the insured obtain a guaranteed benefit if she dies before the maturity of the contract.

On the contrary, the holder of a GMLB contract obtains a guaranteed benefit if she is still

alive at the maturity of the contract. There are various ways to fix this guaranteed benefit

and we refer to [2] for more details.

These new added guarantees developed the interest of the investors for these products

and have made the variable annuities contracts highly demanded on financial markets.

Therefore, their pricing and hedging have attracted a lot of interest in a growing literature.

In their pioneering work, Boyle and Schwartz [6] used non-arbitrage models to extend the

Black & Scholes framework to insurance issues. Then, Milevsky and Posner [12] applied risk

neutral option pricing theory to value GMDB variable annuities. The case of withdrawal

options is studied by Chu and Kwok in [8] and by Siu in [15], and a general framework to

define variable annuities is presented by Bauer et al. in [2]. Milevsky and Salisbury studied

in [13] the links between American put options and dynamic optimal withdrawal policies.

In [3], Belanger et al. described the valuation of GMDB as an impulse control problem.

They derive an HJB equation in a Markov framework and solve it numerically.

An important risk faced by the seller of a variable annuities contract concerns the

characteristics of the buyer. The insurer has to take into account the behavior of the

insured, i.e. her withdrawals, and her exit time from the contract, i.e. her death time,. In

this paper, we study a valuation of GMDB and GMLB contracts that takes into account

this uncertainty on the insured. We consider the worst case for the withdrawal strategy

of the insured from the insurer point of view. Concerning the death time, we model it as

a random time enlarging the initial filtration related to the market information. As such

contracts are generally priced for a class of insured, we suppose that this random time

corresponds to the death time of a representative agent in a specific class of clients that

satisfy several conditions (age, job, wealth,...). We shall assume that such a class is small

enough to be unable to affect the market. From a probabilistic point of view, this justifies

that the well known assumption (H) holds true i.e. any martingale for the initial filtration

remains a martingale for the initial filtration enlarged by the exit time.

Due to these risks coming from the insured, the market is incomplete and we have to

choose a pricing definition. Following the approach of Chevalier et al. [7], we therefore

consider the indifference utility valuation with an exponential criterion, which is commonly
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admitted to be pertinent for the study of insurance products. We suppose that the price of

a variable annuities contract is defined as a continuous time fee rate p that is taken from

the fund related to the contract. The indifference pricing procedure consists in finding the

fee rate p for which V 0 = V (p) where

• V 0 is the maximal expected utility that the insurer can get when she invests the

related fund on the market,

• V (p) is the maximal expected utility that the insurer can get when she invests the

related fund on the market and she sells a variable annuities contract at the price p.

The computation of V 0 is a classical problem that has been solved in [10] if the coefficients

of the model do not depend on the death time and by [11] if these ones depend on the

death time. However the computation of V (p) is a challenging problem since it involves

the behavior of the buyer of the variable annuities contract. Especially, we have to take

into account the possible withdrawals that can be done by the insured. In [7], the insured

withdraw strategy is assumed to be a given random process. We use a more robust pricing

approach by considering the worst case for the insurer i.e. the insured chooses the with-

drawal strategy that minimizes the expected utility of the insurer. This leads to study

an optimization problem of max-min-type. Such a problem is in general difficult to solve

due to the dependence of the maximizing strategy on the minimizing one. Here we take

advantage of the multiplicative structure of the utility function to break this dependence.

This allows us to transform the initial max-min problem into separated maximization and

minimization problems on different time intervals. This decomposition allows then to give

an optimal strategy for the insurer and the worst withdrawals from the insured for the

insurer.

The rest of the paper is organized as follows. In Section 2, we present the probabilistic

space and the financial market. In Section 3, we present the variable annuities products and

their indifference princing valuation. We then show in Section 4 that the utility maximiza-

tion in the worst case for the insurer can be reduced to a sequential utility maximization

problem, and we provide the optimal strategy and worst withdrawals for the insurer. In

Section 5 we explain how to solve numerically this indifference pricing and provide numer-

ical examples. Finally, we relegate to the Appendix the proof of our main result (Theorem

4.1) and some additional results that are needed to complete this proof.

2 The model

2.1 Probability space

Let (Ω,G,P) be a complete probability space. We assume that this space is equipped with

a one-dimensional standard Brownian motion B and we denote by F := (Ft)t≥0 the right

continuous complete filtration generated by B. We consider on this space a random time

τ , which represents the death time of a representative agent. The random time τ is not

assumed to be an F-stopping time. We therefore use the standard approach of filtration

enlargement by considering the smallest right-continuous extension G of F that turns τ into
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a G-stopping time. More precisely G := (Gt)t≥0 is defined by

Gt :=
⋂

ε>0

G̃t+ε ,

for any t ≥ 0, where G̃s := Fs ∨ σ(1τ≤u , u ∈ [0, s]), for any s ≥ 0.

We denote by P(F) (resp. P(G)) the σ-algebra of F (resp. G)-predictable subsets of Ω×R+,

i.e. the σ-algebra generated by the left-continuous F (resp. G)-adapted processes.

We impose the following assumption, which is classical in the filtration enlargement theory.

Assumption 2.1. The process B remains a G-Brownian motion.

The interpretation of the H-hypothesis is an assymetric dependance structure between B

and τ . From a financial point of view, it means that the exit time τ may depend on the

financial market randomness represented by B. On the contrary, the financial market does

not depend on τ .

In the sequel N denotes the process 1τ≤..

Assumption 2.2. The process N admits a G-compensator of the form
∫ .∧τ
0 λtdt, i.e. N −

∫ .∧τ
0 λtdt is a G-martingale, where λ is a positive bounded P(F)-measurable process.

We denote by M the G-martingale defined by

Mt := Nt −

∫ t∧τ

0
λsds

for any t ≥ 0.

2.2 Financial market

We consider that the insurer can invest in a financial market which is composed by two

assets. The first one is a riskless bond Ŝ0 satisfying the following stochastic differential

equation

dŜ0
t = rtŜ

0
t dt , t ≥ 0 , Ŝ0

0 = 1 , (2.1)

where r is a P(G)-measurable process representing the riskless interest rate. The second

asset Ŝ is a reference portfolio of risky assets underlying the variable annuities policy. Ŝ is

assumed to be solution of the linear stochastic differential equation

dŜt = Ŝt(µtdt+ σtdBt) , t ≥ 0 , Ŝ0 = s ≥ 0 , (2.2)

where µ and σ are P(G)-measurable processes. In our case the coefficients are P(F)-

measurable processes since we assume that the exit time τ does not affect the market. But

to simplify the notations we assume that the coefficients are P(G)-measurable processes.

We refer to [7] for the case with P(F)-measurable processes.

To ensure the existence and uniqueness of the processes Ŝ0 and Ŝ, we make the following

assumptions.
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Assumption 2.3. (i) The processes µ, σ and r are bounded.

(ii) The process σ is lower bounded by a positive constant σ .

We shall denote by S the discounted value of Ŝ and by θ the risk premium of Ŝ:

St = e−
∫ t

0 rsdsŜt and θt =
µt − rt

σt

for all t ∈ [0, T ].

A G-predictable process π = (πt)0≤t≤T is called a trading strategy if
∫

π dS
S

is well defined

(for example if
∫ T

0 |πtσt|
2dt < ∞ P− a.s.). The process π describes the discounted amount

of money invested in the portfolio of risky assets. Assuming that the investment strategy

is self-financed and denoting by Xπ
t the discounted value of the insurance portfolio with

initial capital 0 and following the strategy π, we have

Xπ
t =

∫ t

0
πs(µs − rs) ds+

∫ t

0
πsσs dBs , t ≥ 0 .

We also denote by Xs,π
t the discounted wealth at time t when the initial capital at time s

is 0 and the investment strategy is π.

We consider an insurance company (or an insurer) with preferences given by the utility

function U defined by

U(y) = −e−γy , y ∈ R

where γ is a positive constant. Both theory and pratice have shown that it is appropriate

to use this utility function. It is relevant since optimal controls do not depend on the

initial wealth of the insurer. Moreover an appealing feature of decision making using this

utility function is that decisions are based on comparisons between moment generating

functions, which capture all the characteristics of the random outcomes being compared,

so that comparisons are based on a wide range of features. We refer to [4] for more details

about this choice.

In the following definition we precise its admissible strategies on a given random interval.

Definition 2.1. Let ν1 and ν2 be two G-stopping times such that 0 ≤ ν1 ≤ ν2 ≤ T .

The set A[ν1, ν2] of admissible strategies on the stochastic interval [ν1, ν2] consists of all

G-predictable processes π = (πt)0≤t≤T which satisfy

E

[

∫ ν2

ν1

∣

∣πt
∣

∣

2
dt
]

< ∞ ,

and

{

exp(−γXπ
ν ), ν is a stopping time such that ν1 ≤ ν ≤ ν2

}

is a uniformly integrable family.
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3 Utility indifference pricing of variable annuities

3.1 Variable annuities

We consider a variable annuities product with a maturity T > 0. It consists in a deferred

fund-linked annuity contract that we describe in the following lines.

Initial investment. The insured invests an initial capital, denoted by A0, in the fund

related to this product (also called insured account) at time t = 0.

Withdrawals. Let T := (ti)0≤i≤n the set of policy anniversary dates, with t0 = 0 and

tn = T . By convention we set tn+1 = +∞.

At any date ti, for i ∈ {1, . . . , n−1}, the insured, if she is still alive, is allowed to withdraw

an amount of money. This should be lower than a bounded non-negative Gti-measurable

random variable Ĝi which may depend on previous withdrawals, on previous account values

and on some guarantees determined in the policy.

We define Ŵ as a finite subset of [0, 1] which contains 0 and 1 and introduce the set of

admissible withdraw policies

Ê =
{

(αiĜi)1≤i≤n−1 : αi is a Gti-measurable random variable such that

αi ∈ Ŵ for all i ∈ {1, . . . , n− 1}
}

.

For ξ̂ ∈ Ê and i ∈ {1, . . . , n−1}, ξ̂i is the withdrawal made by the insured at time ti and we

introduce the family (ξi)1≤i≤n−1 such that ξi := e−
∫ ti
0 rs dsξ̂i is the discounted withdrawal

made at time ti. We define by E the admissible discounted withdraw policies with ξ ∈ E if

and only if the vector ξ̂ ∈ Ê . For any k ∈ {0, . . . , n− 2} and i ∈ {1, . . . , n− k− 1}, we also

define the set E i
k by

E i
k =

{

ξ ∈ E s.t. ξj = 0 for all j /∈ {k + 1, . . . , k + i}
}

.

E i
k is the set of admissible withdraw policies such that all withdrawals are made between

times tk+1 and tk+i.

Dynamics of the related fund. We denote by Ap
t the discounted value at time t of the

fund related to the variable annuities contract sold at fee rate p. If the insured follows the

withdraw policy ξ̂ ∈ Ê , we have

{

dAp
t = Ap

t

[

(µt − rt − p)dt+ σtdBt

]

, for t 6∈ T ,

Ap
ti

=
(

Ap

t−i
− fi

)

∨ 0 , for 1 ≤ i ≤ n− 1 ,
(3.3)

where fi is a Gti-measurable random variable greater than ξi for any i ∈ {1, . . . , n− 1} and

depending on previous withdrawals, on previous account values and on some guarantees

determined in the policy. The simplest case would be to have fi = ξi but variable annuities

contracts may be more complex. For instance, for a given withdrawal ξ̂i the insurer may
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withdraw a larger amount of money from the insured account.

We now focus on the dependancies of fi and Ĝi. Let ĝ be a bounded non-negative deter-

ministic function, defined on [0, T ]×Rn+1 ×Rn−1 such that for any i ∈ {1, . . . , n− 1} and

(t, x, e) ∈ [0, T ]×Rn+1×Rn−1, the function y 7→ ĝ(t, x, e1, . . . , ei−1, y, ei+1, . . . , en−1) is non-

increasing and for any j ∈ {1, . . . , n+1}, the function y 7→ ĝ(t, x1, . . . , xj−1, y, xj+1, . . . , xn+1, e)

is non-decreasing. We assume that, for any i ∈ {1, . . . , n− 1},

Ĝi = ĝ(ti, Â
p
t0
, . . . , Âp

ti−1
, Âp

ti−
, 0, . . . , 0, ξ̂1, . . . , ξ̂i−1, 0, . . . , 0) ,

where Âp
t = e

∫ t

0 rs dsAp
t for all t ∈ [0, T ]. In the same way, we define the random vari-

ables (fi)1≤i≤n−1. Let f̂ be a deterministic function bounded and non-negative, defined

on {1, . . . , n} × Rn+1 × Rn−1 such that for any (j, x, e) ∈ {1, . . . , n} × Rn+1 × Rn−1 and

i ∈ {1, . . . , n + 1}, y 7→ f̂(j, x, e1, . . . , ei−1, y, ei+1, . . . , en−1) is non-decreasing and for any

i ∈ {1, . . . , n+1}, the function y 7→ f̂(j, x1, . . . , xi−1, y, xi+1, . . . , xn+1, e) is non-increasing.

We assume that, for any i ∈ {1, . . . , n− 1},

f(i, Âp
t0
, . . . , Âp

ti−1
, Âp

ti−
, 0, . . . , 0, ξ̂1, . . . , ξ̂i, 0, . . . , 0) =

e
∫ ti
0 rs dsf̂(i, Âp

t0
, . . . , Âp

ti−1
, Âp

ti−
, 0, . . . , 0, ξ̂1, . . . , ξ̂i, 0, . . . , 0) .

We give concrete examples of functions ĝ and f in the next subsection.

Pay off contract. The last quantity to define is the pay-off of the variable annuities.

Let F̂L and F̂D be bounded and non-negative functions defined on [0, T ] × Rn+1 × Rn−1

such that for any Q ∈ {L,D}, i ∈ {1, . . . , n + 1} and (t, x, e) ∈ [0, T ] × Rn+1 × Rn−1, the

following function

y 7→ F̂Q(t, x1, . . . , xi−1, y, xi+1, . . . , xn+1, e)

is non-decreasing and the function

y 7→ F̂Q(t, x, e1, . . . , ei−1, y, ei+1, . . . , en−1)

is non-increasing. The pay-off is paid at time T ∧ τ to the insured or her dependents and

is equal to the following random variable

F̂ (p, ξ̂) := F̂L(T, âp, ξ̂)1{T<τ} + F̂D(τ, âp, ξ̂)1{τ≤T} , (3.4)

where âp =
(

Âp
ti∧τ

)

0≤i≤n
. F̂L is the pay-off if the policyholder is alive at time T and F̂D

is the pay-off if the policyholder is dead at time τ . Notice that F̂ (p, ξ̂) is GT∧τ -measurable.

In the following, we denote by F (p, ξ̂) the discounted pay-off defined by

F (p, ξ̂) = e−
∫ T∧τ

0 rs dsF̂ (p, ξ̂) .
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3.2 GMDB and GMLB contracts

Usual examples of variable annuities are GMDB and GMLB. In that case, there exist

non-negative functions ĜD, ĜL and ĜW defined on [0, T ] × Rn+1 × Rn−1 such that for

any Q ∈ {L,D,W}, i ∈ {1, . . . , n + 1} and (t, x, e) ∈ [0, T ] × Rn+1 × Rn−1, the func-

tion y 7→ ĜQ(t, x1, . . . , xi−1, y, xi+1, . . . , xn+1, e) is non-decreasing and the function y 7→

ĜQ(t, x1, x, e1, . . . , ei−1, y, ei+1, . . . , en−1) is non-increasing . Moreover, for any Q ∈ {D,L},

on [0, T ]× Rn+1 × Rn−1, we have

F̂Q(t, x, e) = xn+1 ∨ ĜQ(t, x, e) ,

and

ĝ(t, x, e) =
n
∑

i=0

[

xi+1 ∨ ĜW (t, x0, . . . , xi+1, 0, . . . , 0, e1, . . . , ei−1, 0, . . . , 0)
]

1{ti≤t<ti+1} .

In that case, the penalty function f is often given by

f(i, x, e) =

{

ei if ei ≤ Gi ,

Gi + κ(ei −Gi) if ei > Gi ,

where κ > 1 and Gi := GW (ti, x0, . . . , xi+1, 0, . . . , 0, e1, . . . , ei−1, 0, . . . , 0). The insurer takes

a fee if the insured withdraws more than the guarantee Gi, this fee is equal to (κ−1)(ei−Gi).

The usual guarantee functions used to define GMDB and GMLB are listed below (see [2]

for more details).

• Constant guarantee. For i ∈ {0, . . . , n} and ti ≤ t < ti+1, we set

ĜQ(t, x, e) = x1 −
i

∑

k=1

f̂(k, x, e) on [0, T ]× Rn+1 × R̂n−1 .

Hence, following the withdraw strategy ξ ∈ E , the insured will get

F (p, ξ̂) = Ap
T∧τ ∨

(

e−
∫ T∧τ

0 rs ds
n
∑

i=0

(

A0 −
i

∑

k=1

f̂(k, âp, ξ̂)
)

1{ti≤T∧τ<ti+1}

)

.

• Roll-up guarantee. For η > 0, i ∈ {0, . . . , n} and ti ≤ t < ti+1, we set

ĜQ(t, x, e) = x1(1 + η)i −
i

∑

k=1

f̂(k, x, e)(1 + η)i−k on [0, T ]× Rn+1 × Rn−1 ,

and then if the insured follows the withdraw strategy ξ ∈ E , she will get

F (p, ξ̂) = Ap
T∧τ ∨

(

e−
∫ T∧τ

0 rs ds
n
∑

i=0

(

A0(1 + η)i −
i

∑

k=1

f̂(k, âp, ξ̂)(1 + η)i−k
)

1{ti≤T∧τ<ti+1}

)

.
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• Ratchet guarantee. The guarantee depends on the path of A in the following way

ĜQ(t, x, e) =

n
∑

i=0

max
(

x1 −
i

∑

k=1

f̂(k, x, e), . . . , xi − f̂(i, x, e), xi+1

)

1{ti≤T∧τ<ti+1} ,

for any (t, x, e) ∈ [0, T ]× Rn+1 × Rn−1. The insured will get

F (p, ξ̂) = Ap
T∧τ ∨

(

e−
∫ T∧τ

0 rs ds
n
∑

i=0

max
(

âp0 −
i

∑

k=1

f̂(k, âp, ξ̂), . . . , âpi

)

1{ti≤T∧τ<ti+1}

)

.

Remark 3.1. We notice that such classical pay-offs are not bounded. Unfortunately,

we need to suppose them to be bounded in our approach (see Remark A.1). From an

economical point of view, the boundedness of the pay-offs can be justified by saying that

the insurer can provide at the best an amount m which corresponds to her cash account.

Therefore, the real pay-off that the insurer can provide is not F (p, ξ̂) but F (p, ξ̂) ∧m.

3.3 Utility maximization and indifference pricing

Since the financial market is incomplete we propose to use an indifference pricing approach

to determine the fee rate to fixe. We look for, if it exists, a fee rate p∗ such that

• the insurer has better to sell the policy if the fee rate is greater than p∗,

• she has better not to sell the contract if the fee rate is smaller than p∗.

The optimal fee rate p∗ is then the smallest p such that

sup
π∈A[0,T ]

E
[

U
(

Xπ
T

)]

≤ sup
π∈A[0,T ]

inf
ξ∈E

E

[

U
(

A0 +Xπ
T −

n−1
∑

i=1

ξi1ti≤τ − F (p, ξ̂)
)]

. (3.5)

A solution of inequality (3.5) will be called an indifference fee rate. Notice that, since the

utility function is an exponential function, indifference fee rates will not depend on the ini-

tial wealth invested by the insurer but only on the initial deposit A0 made by the insured.

For this reason, we do not consider the initial wealth of the insurer and we assume w.l.o.g.

that her initial endowment is zero.

In order to find the indifference fees, we shall compute the following quantities

V 0 := sup
π∈A[0,T ]

E
[

U
(

Xπ
T

)]

, (3.6)

and

V (p) := sup
π∈A[0,T ]

inf
ξ∈E

E

[

U
(

A0 +Xπ
T −

n−1
∑

i=1

ξi1ti≤τ − F (p, ξ̂)
)]

= −e−γA0w(p) , p ∈ R , (3.7)

9



where w is defined for any p ∈ R by

w(p) := inf
π∈A[0,T ]

sup
ξ∈E

E

[

u
(

Xπ
T −

n−1
∑

i=1

ξi1ti≤τ − F (p, ξ̂)
)]

, (3.8)

with u(y) = e−γy for all y ∈ R.

The quantity V 0 corresponds to the maximal expected utility time T when the insurance

company has not sold the variable annuities policy. We can characterize this value function

V 0 and the optimal strategy π∗ by mean of BSDEs as done by Kharroubi and Lim in [11].

To this end we define the following spaces.

• S∞
G is the set of càdlàg G-adapted processes essentially bounded.

• L2
G is the set of P(G)-measurable processes z such that E

∫ T

0 |zs|
2ds < ∞.

• L2(λ) is the set of P(G)-measurable processes u such that E
∫ T∧τ
0 |us|

2λsds < ∞.

We then have the following result which is a consequence of Theorem 5.1 in [11].

Proposition 3.1. The value function V 0 := supπ∈A[0,T ] E
[

U
(

Xπ
T

)]

is given by

V 0 = − exp(γy0) ,

where (y, z, u) is the solution in S∞
G × L2

G × L2(λ) to the BSDE

{

dyt =
(

θ2t
2γ + θtzt − λt

eγut−1
γ

)

dt+ ztdBt + utdNt ,

yT = 0 .
(3.9)

Moreover, the optimal strategy associated to this problem is defined by

π∗
t :=

θt
γσt

+
zt
σt

, ∀t ∈ [0, T ] .

Remark 3.2. When the coefficients of the model, µ, r and σ, are F-predictable we can

prove that u = 0 and we then have a Brownian BSDEs to solve as in [10]..

In the classical case, to determine the utility indfference price p of a contingent claim ξ we

have to solve the equation

exp(−γp) sup
π

E
[

− exp(−γ(Xπ
T − ξ))

]

= sup
π

E
[

− exp(−γXπ
T )
]

.

Therefore, we can isolate p and we get a semi-explicit formula for the indifference price.

A difficulty with our approach is that fees are continuously payed by the insured and that

the fee rate p appears in the pay-off F (p, ξ̂). Therefore, one cannot use algebraic properties

of utility function to get semi-explicit formula for indifference fees. Nevertheless, we can

prove some monotonic results on the value function V which will be used to prove that the

indifference fee rate exists or not and to compute it.

Proposition 3.2. The value function V is non-decreasing on R.
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Proof. Let p1 and p2 two reals such as p1 < p2 and Ep1 (resp. Ep2) the set of admissible

discounted withdraw policies for a fees p1 (resp. p2). It is obvious that E
p2 ⊂ Ep1 . Moreover,

the function p 7→ E

[

u
(

Xπ
T −

∑n−1
i=1 ξi1ti≤τ − F (p, ξ̂)

)

]

is non-increasing with respect to p

because of the monotonicity properties of the functions ĝ, f and FQ for any Q ∈ {L,D}.

The result follows from the definition of V .

This monotonic property of the function V allows to conclude about the existence of indif-

ference fees.

• If V (−∞) < V 0 < V (+∞), then there exists p∗ such if p < p∗, the insurance company

has no interest to sell the contract, and if p ≥ p∗ then the company has interest to

sell the contract.

• If V (−∞) > V 0, the insurance should always sell the contract.

• If V (+∞) < V 0, the insurance should never sell the contract.

The asymptotic behavior of V is then studied in the following subsection for usual guaran-

tees.

3.4 Indifference fee for usual guarantees

In this part, we consider usual guarantees and study conditions for the existence of indif-

ference fees.

Proposition 3.3 (Ratchet guarantee). Let m > A0. We assume that

F (p, ξ̂) = m ∧
[

Ap
T∧τ ∨

(

e−
∫ T∧τ

0 rs ds
n
∑

i=0

max
(

âp0 −
i

∑

k=1

f̂(k, âp, ξ̂), . . . , âpi

)

1{ti≤T∧τ<ti+1}

)]

for (p, ξ) ∈ R × E. Then, there exists p∗ ∈ R ∪ {−∞} such that V (p) ≥ V 0 for all p ≥ p∗

and V (p) < V 0 for all p < p∗.

Proof. From Proposition 3.2, we just have to show that limp→+∞ V (p) ≥ V 0 .

It would follow from the monotonicity of V that there exists p∗ ∈ R ∪ {−∞} such that

V (p) ≥ V 0 for p ≥ p∗ and V (p) < V 0 for p < p∗. First, notice that we may deduce

from Assumption 2.3 that there exists a positive constant C such that, for any t ∈ [0, T ],

E[Ap
t ] ≤ Ce−pt. Therefore, as Ap

t ≥ 0, we get

lim
p→+∞

Ap
t = 0 a.s. for any t ∈ (0, T ] .

Now, set i ∈ {1, . . . , n− 1}, as fi ≥ ξi we obtain that

lim
p→+∞

Ĝi ≤ lim
p→+∞

max
(

A0 −
i−1
∑

k=1

ξ̂k, Â
p
t1
−

i−1
∑

k=2

ξ̂k, . . . , Â
p

t−i

)

= A0 −
i−1
∑

k=1

ξ̂k .

11



In the same way, we get

lim
p→+∞

F (p, ξ̂) ≤ lim
p→+∞

m ∧
[

Ap
T∧τ ∨

(

e−
∫ T∧τ

0 rs ds
n
∑

i=0

max(âp0 −
i

∑

k=1

ξ̂k, . . . , â
p
i )1{ti≤T∧τ<ti+1}

)]

≤ e−
∫ T∧τ

0 rs ds
n
∑

i=0

(

A0 −
i

∑

k=1

ξ̂k
)

1{ti≤T∧τ<ti+1} .

We now study the limit of V at +∞. For all π ∈ A[0, T ], there exists ξπ,∗ ∈ E such that

V (p) ≥ inf
ξ∈E

E

[

− exp
(

− γ
(

Xπ
T +A0 −

n−1
∑

i=1

ξi1ti≤τ − F (p, ξ̂)
))]

= E

[

− exp
(

− γ
(

Xπ
T +A0 −

n−1
∑

i=1

ξ̂π,∗i 1ti≤τ − F (p, ξ̂π,∗)
))]

.

The last equality follows from the fact that E is a finite set and ξ̂i ≥ ξi. We deduce from

the monotone convergence theorem that

lim
p→+∞

V (p) ≥ E

[

− exp
(

− γ
(

Xπ
T +A0 −

n−1
∑

i=1

ξ̂π,∗i 1ti≤τ − lim
p→+∞

F (p, 0)
)

)]

= E

[

− exp
(

− γ
(

Xπ
T +

n
∑

i=0

(

A0 −
i

∑

k=1

ξ̂π,∗k

)

1{ti≤T∧τ<ti+1}(1− e−
∫ T∧τ

0 rs ds)
))]

≥ E
[

− exp(−γXπ
T )
]

.

We recall that, from Proposition 3.1, there exists π∗ ∈ A[0, T ], such that V 0 = E[− exp(−γXπ∗

T )].

Therefore, we obtain that limp→+∞ V (p) ≥ V 0 which is the expected result.

Proposition 3.4 (Roll-up guarantee). Let m > A0 and η ≥ 0. Assume that

F (p, ξ̂) = m ∧
[

Ap
T∧τ ∨

(

e−
∫ T∧τ

0 rs ds
n
∑

i=0

(

A0(1 + η)i −
i

∑

k=1

f̂(k, âp, ξ̂)(1 + η)i−k
)

1{ti≤T∧τ<ti+1}

)]

,

for all (p, ξ) ∈ R × E. There exists η∗ ≥ 0 such that for all η ∈ [0, η∗], there exists

p∗ ∈ R ∪ {−∞} such that V (p) ≥ V 0 for all p ≥ p∗ and V (p) < V 0 for all p < p∗.

Proof. Let η ≥ 0. Following the proof of Proposition 3.3, we can prove that, for i ∈

{1, . . . , n− 1}, we have

lim
p→+∞

Ĝi ≤ lim
p→+∞

Âp

t−i
∨
(

A0(1 + η)i −
i−1
∑

k=1

ξ̂k(1 + η)i−k
)

= A0(1 + η)i −
i−1
∑

k=1

ξ̂k(1 + η)i−k .
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In the same way, we get

lim
p→+∞

F (p, ξ̂) ≤ lim
p→+∞

m ∧
[

Ap
T∧τ ∨

(

e−
∫ T∧τ

0 rs ds
n
∑

i=0

(

A0(1 + η)i −
i

∑

k=1

ξ̂k(1 + η)i−k
)

1{ti≤T∧τ<ti+1}

)]

≤ e−
∫ T∧τ

0 rs ds
n
∑

i=0

(

A0(1 + η)i −
i

∑

k=1

ξ̂k(1 + η)i−k
)

1{ti≤T∧τ<ti+1} .

From Proposition 3.1, there exists π∗ ∈ A[0, T ], such that V 0 = E[− exp(−γXπ∗

T )]. From

the fact that E is a finite set, we deduce that

V (p) ≥ inf
ξ∈E

E

[

− exp
(

− γ
(

Xπ∗

T +A0 −
n−1
∑

i=1

ξi1ti≤τ − F (p, ξ̂)
))]

= E

[

− exp
(

− γ
(

Xπ∗

T +A0 −
n−1
∑

i=1

ξ∗i 1ti≤τ − F (p, ξ̂∗)
))]

.

It follows from the monotone convergence theorem that

lim
p→+∞

V (p) ≥ E

[

− exp
(

− γ
(

Xπ∗

T +A0 −
n−1
∑

i=1

ξi1ti≤τ − lim
p→+∞

F (p, 0)
))

]

≥ Φ(η) ,

where we have set

Φ(η) =

n
∑

i=0

E

[

− exp
(

− γ(Xπ∗

T +Φi(η))
)

1{ti≤T∧τ<ti+1}

]

,

with, for i ∈ {1, . . . , n},

Φi(η) := A0

(

1− e−
∫ T∧τ

0 rs ds(1 + η)i
)

−
i

∑

k=1

ξk

(

e
∫ tk
0 rs ds − e−

∫ T∧τ

0 rs ds(1 + η)i−k
)

.

Obviously, Φ is continuous and non-increasing on R+. Moreover, we have

Φ(0) ≥ E
[

− exp(−γXπ∗

T )
]

= V 0 and lim
η→+∞

Φ(η) = −∞ .

From the mean value theorem, we may define η∗ ≥ 0 as

η∗ := sup{η ≥ 0 : Φ(η) = V 0} .

We conclude the proof by noticing that for 0 ≤ η ≤ η∗, we have

lim
p→+∞

V (p) ≥ V 0 .
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4 Min-Max optimization problem

In this section we study the optimization problem (3.8). We determine the value function

w using a sequential utility maximization.

In the sequel we use the following notations. For x ∈ Rn and 1 ≤ k ≤ n we denote by x(k)

the vector of Rk defined by

x(k) := (x1, . . . , xk) .

For y ∈ Rk we denote by ŷ the vector

ŷ :=
(

y1e
∫ t1
0 rsds, . . . , yke

∫ tk
0 rsds

)

.

4.1 Sequential utility maximization

The problem (3.8) is not classical for the following two reasons

• the terminal wealth is GT -measurable and the pay-off is GT∧τ -measurable,

• there are a maximization w.r.t. the withdrawals ξ and a minimization w.r.t. the

investment strategies π.

We first modify the problem to get a GT∧τ -measurable wealth and a GT∧τ -measurable pay-

off.

Proposition 4.5 (Initialization). We have

w(p) = inf
π∈A[0,T∧τ ]

sup
ξ∈E

E

[

u
(

Xπ
T∧τ −

n−1
∑

i=1

ξi1ti≤τ −H(p, ξ̂)
)

]

,

with

H(p, ξ̂) := F (p, ξ̂) +
1

γ
log

[

ess inf
π∈A[T∧τ,T ]

E
[

u
(

XT∧τ ,π
T

)
∣

∣GT∧τ

]

]

,

for any p ∈ R.

Proof. We first prove the following inequality

w(p) ≥ inf
π∈A[0,T∧τ ]

sup
ξ∈E

E

[

u
(

Xπ
T∧τ −

n−1
∑

i=1

ξi1ti≤τ −H(p, ξ̂)
)

]

. (4.10)

For any π ∈ A[0, T ] and ξ ∈ E , it follows from the fact that u(x + y) = u(x)u(y) for any

x ∈ R and y ∈ R that

E

[

u
(

Xπ
T −

n−1
∑

i=1

ξi1ti≤τ − F (p, ξ̂)
)

]

= E

[

u
(

Xπ
T∧τ −

n−1
∑

i=1

ξi1ti≤τ − F (p, ξ̂)
)

E
[

u(XT∧τ ,π
T )|GT∧τ

]

]

≥ E

[

u
(

Xπ
T∧τ −

n−1
∑

i=1

ξi1ti≤τ −H(p, ξ̂)
)

]

.
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Therefore, we can see that the inequality (4.10) holds.

We now prove the following inequality

w(p) ≤ inf
π∈A[0,T∧τ ]

sup
ξ∈E

E

[

u
(

Xπ
T∧τ −

n−1
∑

i=1

ξi1ti≤τ −H(p, ξ̂)
)

]

.

From Lemma A.1 we know that there exists π∗,τ ∈ A[T ∧ τ , T ] such that

ess inf
π∈A[T∧τ ,T ]

E
[

u(XT∧τ ,π
T )|GT∧τ

]

= E
[

u(XT∧τ ,π∗,τ

T )|GT∧τ

]

.

Then, we consider the subset A∗[0, T ] of A[0, T ] defined by A∗[0, T ] := {πt1t≤T∧τ +

π∗,τ
t 1t>T∧τ , π ∈ A[0, T ∧ τ ]}. Since A∗[0, T ] ⊂ A[0, T ], we get

w(p) ≤ inf
π∈A∗[0,T ]

sup
ξ∈E

E

[

u
(

Xπ
T −

n−1
∑

i=1

ξi1ti≤τ − F (p, ξ̂)
)

]

≤ inf
π∈A[0,T∧τ ]

sup
ξ∈E

E

[

u
(

Xπ
T∧τ −

n−1
∑

i=1

ξi1ti≤τ −H(p, ξ̂)
)

]

.

Hence, we get the equality. ✷

Remark 4.3. If F is a bounded random variable then H is also bounded since, from Lemma

A.1, we have

ess inf
π∈A[T∧τ,T ]

E
[

u
(

XT∧τ ,π
T

)∣

∣GT∧τ

]

= exp
(

γY
(n)
T∧τ

)

,

and we know that Y (n) is bounded.

We now decompose the initial problem in n subproblems.

Theorem 4.1. The value function w is given by

w(p) = inf
π∈A[0,t1∧τ ]

E
[

u
(

Xπ
t1∧τ

)

v(1)
]

,

where

• v(i, ξ(i−1)) is defined recursively for any i ∈ {2, . . . , n} and ξ ∈ E by






v(n, ξ(n−1)) := eγH(p,ξ̂(n−1)) ,

v(i, ξ(i−1)) := ess sup
ζ∈E1

i−1

ess inf
π∈A[ti∧τ,ti+1∧τ ]

J(i, π, ξ(i−1), ζ) ,

with for any i ∈ {1, . . . , n− 1}, π ∈ A[ti ∧ τ, ti+1 ∧ τ ] and ζ ∈ E1
i−1

J(i, π, ξ(i−1), ζ) := E

[

u
(

Xti∧τ,π
ti+1∧τ

− ζ1ti<τ

)

v
(

i+ 1, (ξ(i−1), ζ)
)

∣

∣

∣
Gti∧τ

]

,

• v(1) := ess sup
ζ∈E1

0

ess inf
π∈A[t1∧τ,t2∧τ ]

E

[

u
(

Xt1∧τ,π
t2∧τ

− ζ1t1<τ

)

v
(

2, ζ
)

∣

∣

∣
Gt1∧τ

]

.

The proof of this theorem is postponed to Subsection A.3 of the Appendix.

In the sequel, by abuse of notation, we write v(1, ξ0) for v(1).
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4.2 Optimal investment and worst withdrawals for the insurer

In the following result, we provide withdrawals ξ∗i and investment strategies π∗,i that attain

the value functions v(i, .). From Theorem 4.1, they correspond to the optimal investment

strategy and the worst withdrawals for the insurer.

Proposition 4.6. For any i ∈ {0, . . . , n−1} there exists a strategy π∗,i ∈ A[ti∧τ, ti+1∧τ ],

a withdraw ξ∗i ∈ E1
i−1 and a map y(i),∗ from Ŵ i−1 to L∞(Ω,Gti∧τ ,P) such that

v(i, ξ(i−1)) = E

[

u
(

Xti∧τ,π
∗,i

ti+1∧τ
− ξ∗i 1ti<τ

)

v
(

i+ 1, (ξ(i−1), ξ∗i )
)

∣

∣

∣
Gti∧τ

]

= exp
(

γy(i),∗(ξ̂(i−1))
)

,

with y(n) = H. Moreover the value function v of the initial problem (3.8) is given by

w(p) = exp(y(0)) .

Proof. We prove by backward induction on i ∈ {1, . . . , n− 2} that

• the map H i defined on Ŵ i−1 by

H i(x1, . . . , xi−1) = v
(

i,
(

x1e
∫ t1
0 rsds, . . . , xie

∫ ti−1
0 rsds

)

)

, x(i−1) ∈ Ŵ i−1 ,

is valued in L∞(Ω,Gti ∧ τ,P),

• there exists a strategy π∗,i ∈ A[ti ∧ τ, ti+1 ∧ τ ], a withdraw ξ∗i ∈ E1
i−1 and a map y(i),∗

from Ŵ i−1 to L∞(Ω,Gti∧τ ,P) such that

v(i, ξ(i−1)) = E

[

u
(

Xti∧τ,π
∗,i

ti+1∧τ
− ξ∗i 1ti<τ

)

v
(

i+ 1, (ξ(i−1), ξ∗i )
)

∣

∣

∣
Gti∧τ

]

= exp
(

γy(i),∗(ξ̂(i−1))
)

.

Fix i = n − 1. Since H is valued in L∞(Ω,Gtn ∧ τ,P), we can apply Lemma A.3 and

we get a strategy π∗,n−1
(

ξ(n−2), ζ
)

∈ A[tn−1 ∧ τ, tn ∧ τ ] and a map y(n−1) from Ŵn−1 to

L∞(Ω,Gti∧τ ,P) such that

v(n− 1, ξ(n−2)) = ess sup
ζ∈E1

n−2

E

[

u
(

X
tn−1∧τ,π∗,n−1(ξ(n−2),ζ)
tn∧τ − ζ1tn−1<τ

)

v
(

n, (ξ(n−2), ζ)
)

∣

∣

∣
Gtn−1∧τ

]

= ess sup
ζ∈E1

n−2

exp
(

γy(n−1)(ξ̂(n−2), ζ)
)

.

We can then apply Lemma A.4 and we get a withdraw ξ∗n−1 ∈ E1
n−2 such that

v(n− 1, ξ(n−2)) = exp
(

γy(n−1)(ξ̂(i−2), ξ∗n−1)
)

.

Then ξ∗n−1 ∈ E1
n−2, π

∗,n−1(ξ(n−2), ξ∗n−1) ∈ A[τ ∧ tn−1, τ ∧ tn] and the map y(n−1) defined by

y(n−1),∗(.) = y(n−1)
(

., ξ∗n−1e
∫ tn−1
0 rsds

)

satisfy the conditions. Moreover, since y(n−1),∗ is uniformly bounded, we get the same

property for Hn−1.
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We now suppose that the result holds for some i ∈ {2, . . . , n − 1} and we prove it for

i− 1. By definition we have

v(i− 1, ξ(i−2))

= ess sup
ζ∈E1

i−2

ess inf
π∈A[ti−1∧τ,ti∧τ ]

E

[

u
(

X
ti−1∧τ,π
ti∧τ

− ζ1ti−1<τ

)

v
(

i, (ξ(i−2), ζ)
)

∣

∣

∣
Gti−1∧τ

]

= ess sup
ζ∈E1

i−2

ess inf
π∈A[ti−1∧τ,ti∧τ ]

E

[

u
(

X
ti−1∧τ,π
ti∧τ

− ζ1ti−1<τ

)

H i
(

ξ̂(i−2), ζe
∫ ti−1
0 rsds

)

∣

∣

∣
Gti−1∧τ

]

.

By the induction hypothesisH i is valued in L∞(Ω,Gti∧τ ,P). We can therefore apply Lemma

A.3 and we get a strategy π∗,i−1
(

ξ(i−2), ζ
)

∈ A[ti−1 ∧ τ, ti ∧ τ ] and a map y(i−1) from Ŵ i−1

to L∞(Ω,Gti∧τ ,P) such that

v(i− 1, ξ(i−2)) = ess sup
ζ∈E1

i−2

E

[

u
(

X
ti−1∧τ,π

∗,i(ξ(i−2),ζ)
ti∧τ

− ζ1ti−1<τ

)

v
(

i, (ξ(i−2), ζ)
)

∣

∣

∣
Gti−1∧τ

]

= ess sup
ζ∈E1

i−2

exp
(

γy(i−1)(ξ̂(i−2), ζ)
)

.

We can then apply Lemma A.4 and we get a withdraw ξ∗i−1 ∈ E1
i−2 such that

v(i− 1, ξ(i−2)) = E

[

u
(

X
ti−1∧τ,π
ti∧τ

− ξ∗i−11ti−1<τ

)

v
(

i, (ξ(i−2), ξ∗i−1)
)

∣

∣

∣
Gti−1∧τ

]

.

Then ξ∗i−1 ∈ E1
i−2, π

∗,i−1(ξ(i−2), ξ∗i−1) ∈ A[τ ∧ ti−1, τ ∧ ti] and the map y(i−1) defined by

y(i−1),∗(.) = y(i−1)
(

., ξ∗i−1e
∫ ti−1
0 rsds

)

satisfy the conditions. Moreover, since y(i−1),∗ is uniformly bounded, we get the same

property for H i−1.

5 Numerical resolution

5.1 Approximation procedure

Max-min problem. We first propose a scheme to solve the problem (3.7) by using The-

orem 4.1. We describe the procedure in an induction way. We present the step 0 which

corresponds to the initialization given by Proposition 4.5. Then the step i corresponds to

the computation of the function v(n − i, .) and the optimal strategy π∗,n−i and the worst

withdrawal ξ∗n−i once the previous steps have been done.

Step 0: We solve the following problem

ess inf
π∈A[T∧τ,T ]

E
[

u
(

XT∧τ ,π
T

)
∣

∣GT∧τ

]

.

From Lemma A.1 we know that

ess inf
π∈A[T∧τ,T ]

E
[

u
(

XT∧τ ,π
T

)
∣

∣GT∧τ

]

= exp(γY
(n)
T∧τ ) ,
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where Y (n) is the solution to the linear BSDE

{

dY
(n)
t =

[

|θt|2

γ
+ θtZ

(n)
t

]

dt+ Z
(n)
t dWt ,

Y
(n)
T = 0 .

Therefore, we have

Y
(n)
T∧τ = EQ

[

−

∫ T

T∧τ

|θt|
2

γ
dt
∣

∣

∣
GT∧τ

]

,

with dQ/dP|Gt = E(−
∫ .

0 θsdWs)t. This conditional expectation can be approximated by

regression methods.

Step 1: We solve the following problem

v(n− 1, ξ(n−2)) =

ess sup
ζ∈E1

n−2

ess inf
π∈A[tn−1∧τ,tn∧τ ]

E

[

u
(

X
tn−1∧τ,π
tn∧τ − ζ1tn−1<τ − F (p, (ξ̂(n−2), ζ̂))− Y

(n)
T∧τ

)
∣

∣

∣
Gtn−1∧τ

]

.

For that we first solve the infimum problem, and we know from Lemma A.3 that there

exists a r.v. y(n−1)
(

ξ(n−2), ζ
)

such that

ess inf
π∈A[tn−1∧τ,tn∧τ ]

E

[

u
(

X
tn−1∧τ,π
tn∧τ − ζ1tn−1<τ − F (p, (ξ̂(n−2), ζ̂))− Y

(n)
T∧τ

)∣

∣

∣
Gtn−1∧τ

]

= exp
(

γy(n−1)
(

ξ(n−2), ζ
))

.

The r.v. y(n−1)
(

ξ(n−2), ζ
)

is defined by ζ1tn−1<τ+Y
(n−1)
tn−1

(

ξ(n−2), ζ
)

where Y (n−1)
(

ξ(n−2), ζ
)

is solution to the BSDE






−dY
(n−1)
t =

(

λt
eγU

(n−1)
t −1
γ

− θtZ
(n−1)
t − |θt|2

2γ

)

dt− Z
(n−1)
t dBt − U

(n−1)
t dNt ,

Y
(n−1)
T∧τ = F (p, (ξ̂(n−2), ζ̂)) + Y

(n)
T∧τ .

We also get the optimal investment strategy π∗,n−1 by the formula

π∗,n−1 =
1

σ

[ θ

γ
+ Z(n−1)

]

.

We can now find ζ∗n−1 ∈ E1
n−2 such that

ess sup
ζ∈E1

n−2

y(n−1)
(

ξ(n−2), ζ
)

= y(n−1)
(

ξ(n−2), ζ∗n−1

)

.

Step i: We now compute

v(n− i, ξ(n−i−1))

= ess sup
ζ∈E1

n−i−1

ess inf
π∈A[tn−i∧τ,tn−i+1∧τ ]

E

[

u
(

X
tn−i∧τ,π
tn−i+1∧τ

−ζ1tn−i<τ−y(n−i+1)(ξ(n−i−1), ζ, ζ∗n−i+1)
)∣

∣

∣
Gtn−i∧τ

]

.
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As previously, the infimum problem is solved using Lemma A.3. We have just adapted the

terminal condition in the BSDE. Let Y (n−i)
(

ξ(n−i−1), ζ
)

is solution to the BSDE







−dY
(n−i)
t =

(

λt
eγU

(n−i)
t −1
γ

− θtZ
(n−i)
t − |θt|2

2γ

)

dt− Z
(n−i)
t dBt − U

(n−i)
t dNt ,

Y
(n−i)
tn−i∧τ

= y(n−i+1)(ξ(n−i−1), ζ, ζ∗n−i+1) .

Then the r.v. y(n−i)
(

ξ(n−i−1), ζ
)

defined by ζ1tn−i<τ + Y
(n−i)
tn−i

(

ξ(n−i−1), ζ
)

satisfies

ess inf
π∈A[tn−i∧τ,tn−i+1∧τ ]

E

[

u
(

X
tn−i∧τ,π
tn−i+1∧τ

− ζ1tn−i<τ − y(n−i+1)(ξ(n−i−1), ζ, ζ∗n−i+1)
)∣

∣

∣
Gtn−i∧τ

]

= exp
(

γy(n−i)
(

ξ(n−i−1), ζ
))

.

We get the optimal investment strategy for the insurer by the formula

π∗,n−i =
1

σ

[ θ

γ
+ Z(n−i)

]

.

Finally we get the worst withdrawal ζ∗n−i ∈ E1
n−i−1 such that

ess sup
ζ∈E1

n−i−1

y(n−i)
(

ξ(n−i−1), ζ
)

= y(n−i)
(

ξ(n−i−1), ζ∗n−i

)

.

Step n: We finish by solving the optimisation problem

ess inf
π∈A[t0,t1∧τ ]

E

[

u
(

Xt0,π
t1∧τ

− y(1)(ζ∗1 )
)]

.

From Lemma A.3, there exists a r.v. y(0) such that

ess inf
π∈A[t0,t1∧τ ]

E

[

u
(

Xt0,π
t1∧τ

− y(1)(ζ∗1 )
)]

= exp
(

γy(0)
)

where y(0) is the value at time 0 of the solution to the BSDE






−dY
(0)
t =

(

λt
eγU

(0)
t −1
γ

− θtZ
(0)
t − |θt|2

2γ

)

dt− Z
(0)
t dBt − U

(0)
t dNt ,

Y
(0)
t1∧τ

= y(1)(ζ∗1 ) .

We get the optimal investment strategy for the insurer by the formula

π∗,0 =
1

σ

[ θ

γ
+ Z(0)

]

.

The value function associated to the optimization problem (3.7) is given by

− exp(γ(y(0) −A0)) ,

and the worst withdrawals for the insurer are given by (ζ∗1 , . . . , ζ
∗
n−1).

We can compute (Y (n−i), Z(n−i), U (n−i)) for any 1 ≤ i ≤ n by using discretization

methods for BSDEs (see for example [7]).
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Indifference price. We now know how to calculate V 0 and V (p) for any p ∈ R. The

next step is to calculate the indifference fee rate p∗ which is defined by

p∗ = inf{p ∈ R , V0 ≤ V (p)} .

From the previous results, we can rewrite this problem as follows

p∗ = inf{p ∈ R , − exp(γy0) ≤ − exp(γ(y(0)(p)−A0)} ,

where y(0)(p) is defined by the step n.

Therefore p∗ is defined by

p∗ = inf{p ∈ R , y(0)(p) ≤ y0 +A0} .

Then by dichotomy method we can approximate p∗.

5.2 Simulations

In this section we present numerical illustrations of parameters sensibility for indifference

fee rates. We compute solutions for both optimization problems: V 0, the utility maximiza-

tion problem without variable annuities, and V (0)(p), the utility maximization problem

with variable annuities. We simulate the BSDEs involved, using the discretization scheme

studied in [5]. For the computation of the conditional expectations, we use non-parametric

regression method with the Gaussian function as kernel. Following a dichotomy method,

we find p∗ such that

p∗ = inf{p ∈ R , V0 ≤ V (p)} .

We consider that the insured can withdraw only every ten years. We shall give the following

numerical values to parameters

γ = 1.3, T = 30, A0 = 1, r0 = 0.02, µ0 = 0.15, σ = 0.3 .

We describe the dependence with respect to the market parameters: the initial interest

rate, the initial drift and the volatility.
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Figure 1: Indifference fee rate w.r.t. to r

We notice that indifference fee rates increase with interest rate. This is due to the guarantee

structure of the product: a growth of interest rate will lead to a growth of the quantity

V (0)(p) with respect to V 0 and to compensate this growth we will have to increase p, as

p 7→ V (0)(p) is non-increasing.
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Figure 2: Indifference fee rate w.r.t. to µ

Notice that indifference fee rates decrease with respect to the drift. The bigger is the drift

the less usefull are the guarantees, then the fees payed to get these guarantees have to

decrease.
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Figure 3: Indifference fee rate w.r.t. to σ

Once again, we can get a financial interpretation of the monotonicity of the fees w.r.t.

market volatility. The bigger is the volatility the more usefull are the guarantees, then the

fees payed to get these guarantees have to increase.
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Figure 4: Indifference fee rate w.r.t. to A0
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A Appendix

A.1 Preliminary results

Lemma A.1. There exists a strategy π∗,n ∈ A[T ∧ τ , T ] such that

inf
π∈A[T∧τ ,T ]

E
[

exp(−γXT∧τ,π
T )|GT∧τ

]

= E
[

exp(−γXT∧τ,π∗,n

T )|GT∧τ

]

.

Moreover, there exists a process Y (n) such that

inf
π∈A[T∧τ ,T ]

E
[

exp(−γXT∧τ,π
T )|GT∧τ

]

= exp(γY
(n)
T∧τ ) ,

where (Y (n), Z(n)) is solution of the BSDE

{

dY
(n)
t =

[

|θt|2

γ
+ θtZ

(n)
t

]

dt+ Z
(n)
t dWt ,

Y
(n)
T = 0 .

The optimal strategy π∗,n is given by

π∗,n
t =

1

σt

[θt
γ

+ Z
(n)
t

]

.

Proof. The proof of this lemma is similar to the proof of Theorem 7 in [10] therefore we

only give a sketch of the proof. We look for a process Y (n) such that the family of processes

{J (n)(π), π ∈ A[T ∧ τ, T ]} defined for any π ∈ A[T ∧ τ, T ] by

J
(n)
t (π) := exp

(

− γ(XT∧τ,π
t − Y

(n)
t )

)

, ∀t ∈ [T ∧ τ, T ] ,

satisfies the following conditions

(i) J
(n)
T∧τ (π) is a random variable GT∧τ -measurable and independent of π.

(ii) J
(n)
T (π) = exp(−γXT∧τ,π

T ).

(iii) J (n)(π) is a submartingale for any π ∈ A[T ∧ τ, T ] on the time interval [T ∧ τ , T ].

(iv) There exists a strategy π∗,n ∈ A[T ∧ τ, T ] such that J (n)(π∗,n) is a martingale on the

time interval [T ∧ τ , T ].

The process Y (n) is looked under the form

{

−dY
(n)
t = f(t, Y

(n)
t , Z

(n)
t )dt− Z

(n)
t dWt ,

Y
(n)
T = 0 ,

(A.1)

and we are bounded to choose the function f for which the family {J (n)(π),A[T ∧ τ, T ]}

satisfies the previous conditions. Classically we obtain that the function f is defined by

f(t, y, z) = −
|θt|

2

γ
− θtz ,
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and the candidate to be π∗,n is given by

π∗,n
t =

1

σ̂t

[θt
γ

+ Z
(n)
t

]

.

Since the generator f is Lipschitz, we know that there exists a unique solution (Y (n), Z(n))

to the BSDE (A.1). To finish the proof we must prove that the family {J (n)(π),A[T ∧τ, T ]}

satisfies the previous conditions, but it is identical to the proof given in [10].

Lemma A.2. Let (Xn)n∈N be a sequence of random variables valued in Ŵ. Then there

exists a subsequence (Xnk
)k∈N of (Xn)n∈N and a random variable X∞ such that

Xnk
−→ X∞ as k → +∞ P− a.s.

Proof. We first notice that since Ŵ is finite, the set ŴN is countable. For a sequence

w = (wn)n∈N ∈ ŴN, we define the subset Ωw of Ω by

Ωw =
{

ω ∈ Ω : (Xn(ω))n∈N = w
}

. (A.2)

Then Ωw ∈ G for all w ∈ ŴN, Ωw ∩ Ωw′ = ∅ for w,w′ ∈ ŴN such that w 6= w′ and

Ω =
⋃

w∈WN

Ωw . (A.3)

Since ŴN is countable, we can enumerate its elements as

ŴN =
{

w1, w2, w3, . . .
}

=
{

wk, k ∈ N

}

.

Since w1 is valued in Ŵ which is finite (and hence compact), there exists an increasing

function ϕ1 : N → N such that (w1
ϕ1(n)

)n∈N converges to some w1
∞ ∈ Ŵ.

Consider now the sequence (w2
ϕ1(n)

)n∈N. It is also valued in the compact set Ŵ. We can

therefore find an increasing function ϕ2 : N → N such that (w2
ϕ1◦ϕ2(n)

)n∈N converges to

some w2
∞ ∈ Ŵ.

We proceed in the same way for the following integers to get a sequence (ϕn)n∈N of non-

decreasing functions from N to N such that (wk
ϕ1◦···◦ϕk(n)

)n∈N converges to some wk
∞ for all

k ∈ N.

Next, we define the function ϕ : N → N by

ϕ(n) = ϕ1 ◦ · · · ◦ ϕn(n)

for all n ∈ N. From the construction of the functions (ϕn)n∈N and the definition of ϕ we

obtain that (wk
ϕ(n))n∈N converges to wk

∞ for all k ∈ N.

Using (A.2) and (A.3) we get that the sequence (Xϕ(n))n∈N converges P-a.s. to the random

variable X∞ defined by

X∞(ω) = wk
∞

for all ω ∈ Ωwk and all k ∈ N.
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A.2 Optimal strategies for the sub-period problems

In this part , we show that there exists optimal strategies for each sub-period problem. The

two following lemmas give the optimal strategies in π (resp. in ξ). These two results will

be used in the next subsection to prove Theorem 4.1.

Lemma A.3. Fix k ∈ {0, . . . , n−1}. Let Hk+1 be an application from Ŵk to L∞(Ω,Gtk+1∧τ ,P).

Then for any ξ ∈ E there exists a strategy π∗,k(ξ(k)) and a random variable y(k)(ξ(k)) ∈

L∞(Ω,Gtk∧τ ,P) such that

ess inf
π∈A[tk∧τ,tk+1∧τ ]

E

[

exp
(

− γ
(

Xtk∧τ,π
tk+1∧τ

−Hk+1(ξ̂
(k))

)
∣

∣

∣
Gtk∧τ

]

= E

[

exp
(

− γ
(

X
tk∧τ,π

∗,k(ξ(k))
tk+1∧τ

−Hk+1(ξ̂
(k))

)

)
∣

∣

∣
Gtk∧τ

]

= exp
(

γy(k)
(

ξ(k)
))

.

Proof. As for the proof of Lemma A.1 we look for a process Y (k) such that the family of

processes (R(k)(π))π∈A[tk∧τ,tk+1∧τ ], where R(k)(π) is defined by

R
(k)
t (π) = exp

(

− γ(Xtk∧τ,π
t − Y

(k)
t )

)

,

satisfies the following conditions

(i) R
(k)
tk∧τ

(π) is a random variable Gtk∧τ -measurable and independent of π.

(ii) R
(k)
tk+1∧τ

(π) = exp(−γ(Xtk∧τ,π
tk+1

−Hk+1(ξ̂
(k)))).

(iii) R(k)(π) is a submartingale for any π ∈ A[tk ∧ τ, tk+1 ∧ τ ] on the time interval [tk ∧

τ, tk+1 ∧ τ ].

(iv) There exists a strategy π∗,k(ξ(k)) ∈ A[tk ∧ τ, tk+1 ∧ τ ] such that R(k)(π∗,k(ξ(k))) is a

martingale on the time interval [tk ∧ τ, tk+1 ∧ τ ].

We look for the process Y (k) under the following form
{

−dY
(k)
t = f(t, Y

(k)
t , Z

(k)
t , U

(k)
t )dt− Z

(k)
t dBt − U

(k)
t dNt ,

Y
(k)
tk+1∧τ

= Hk+1(ξ̂
(k)) .

(A.4)

After some calculus we get that the candidate π∗,k(ξ(k)) is given by

π∗,k
t (ξ(k)) =

Z
(k)
t

σt
+

θt
γσt

,

and

f(t, y, z, u) = λt

(eγu − 1

γ

)

− θtz −
|θt|

2

2γ
.

To prove that the BSDE (A.4) admits a solution we use the result given in [7], and the end

of the proof is similar to the verification theorem given in this companion paper. Therefore

if we choose y(k)(ξ(k)) = Y
(k)
tk∧τ

we get the result.
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Remark A.1. The hypothesis that Hk+1 ∈ L∞(Ω,Gtk+1∧τ ,P) is crucial to obtain a solution

to the BSDE (A.4). It is for that we assume that the pay-off of the contract is bounded,

else Hn is not bounded.

Lemma A.4. Fix k ∈ {0, . . . , n−1}. Let Hk+1 be an application from Ŵk to L∞(Ω,Gtk+1∧τ ,P).

Then for any ξ ∈ E there exists ζ∗ ∈ E1
k−1 such that

ess sup
ζ∈E1

k−1

E

[

u(Xtk∧τ,π
tk+1∧τ

− ζ1tk<τ −Hk+1(ξ̂
(k−1), ζ̂))

∣

∣

∣
Gtk∧τ

]

= E

[

u(Xtk∧τ,π
tk+1∧τ

− ζ∗1tk<τ −Hk+1(ξ̂
(k−1), ζ̂∗))

∣

∣

∣
Gtk∧τ

]

,

for all π ∈ A[tk ∧ τ, tk+1 ∧ τ ].

Proof. From a classical result on essential supremum of a family of random variables (see

e.g. [14]) there exists a sequence (ζℓ)ℓ∈N valued in E1
k−1 such that

u
(

− ζℓ1tk<τ −Hk+1(ξ̂
(k−1), ζ̂ℓ)

)

→ ess sup
ζ∈E1

k−1

u
(

− ζ1tk<τ −Hk+1(ξ̂
(k−1), ζ̂)

)

(A.5)

P-a.s. as ℓ goes to infinity. We now apply Lemma A.2 to the sequence
(

ζℓe
∫ tk
0 rsds

)

ℓ∈N
and

we obtain that, up to a subsequence, (ζℓ)ℓ converges P-a.s. to some random variable ζ∗.

From (A.5) we get

u
(

− ζ∗1tk<τ −Hk+1(ξ̂
(k−1), ζ̂∗)

)

= ess sup
ζ∈E1

k−1

u
(

− ζ1tk<τ −Hk+1(ξ̂
(k−1), ζ̂)

)

. (A.6)

We then notice from the multiplicative structure of the function u that for any π ∈ A[tk ∧

τ, tk+1 ∧ τ ] and any ζ ∈ E1
k−1 we have

E

[

u(Xtk∧τ,π
tk+1∧τ

− ζ1tk<τ −Hk+1(ξ̂
(k−1), ζ̂))

∣

∣

∣
Gtk∧τ

]

= E

[

u(Xtk∧τ,π
tk+1∧τ

)u(−ζ1tk<τ −Hk+1(ξ̂
(k−1), ζ̂))

∣

∣

∣
Gtk∧τ

]

≤ E

[

u(Xtk∧τ,π
tk+1∧τ

) ess sup
ζ∈E1

k−1

u(−ζ1tk<τ −Hk+1(ξ̂
(k−1), ζ̂))

∣

∣

∣
Gtk∧τ

]

= E

[

u(Xtk∧τ,π
tk+1∧τ

− ζ∗1tk<τ −Hk+1(ξ̂
(k−1), ζ̂∗))

∣

∣

∣
Gtk∧τ

]

.

Therefore we get

E

[

u(Xtk∧τ,π
tk+1∧τ

− ζ∗1tk<τ −Hk+1(ξ̂
(k−1), ζ̂∗))

∣

∣

∣
Gtk∧τ

]

= ess sup
ζ∈E1

k−1

E

[

u(Xtk∧τ,π
tk+1∧τ

− ζ1tk<τ −Hk+1(ξ̂
(k−1), ζ̂))

∣

∣

∣
Gtk∧τ

]

,

for all π ∈ A[tk ∧ τ, tk+1 ∧ τ ].
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A.3 Proof of Theorem 4.1

We shall now prove the result in two steps. For each step, we use method of induction

(forward in the first, backward in the second).

First step. We first show that the following inequality holds

w(p) ≥ inf
π∈A[0,t1∧τ ]

E

[

u
(

Xπ
t1∧τ

)

v(1)
]

. (A.7)

We prove this inequality by induction on the number k of anniversary dates. More precisely,

we show that for any k ∈ {1, . . . , n} and any map Hk from Ŵk−1 to L∞(Ω,Gtk∧τ ,P), we

have

vHk
:= inf

π∈A[0,tk∧τ ]
sup

ξ∈Ek−1
0

E

[

u
(

Xπ
tk∧τ

−
k−1
∑

i=1

ξi1ti≤τ −Hk(ξ̂
(k−1))

)

]

≥ inf
π∈A[0,t1∧τ ]

E

[

u
(

Xπ
t1∧τ

)

v̂Hk
(1)

]

, (A.8)

where v̂Hk
(i, ξ(i−1)) is defined recursively for any i ∈ {1, . . . , k} and ξ ∈ Ek−1

0 by







v̂Hk
(k, ξ(k−1)) := eγHk(ξ̂

(k−1)),

v̂Hk
(i, ξ(i−1)) := ess sup

ζ∈E1
i−1

ess inf
π∈A[ti∧τ,ti+1∧τ ]

Ĵ(i, π, ξ(i−1), ζ) ,

with

Ĵ(i, π, ξ(i−1), ζ) := E

[

u
(

Xti∧τ,π
ti+1∧τ

− ζ1ti<τ

)

v̂Hk
(i+ 1, (ξ(i−1), ζ))

∣

∣

∣
Gti∧τ

]

,

for any i ∈ {1, . . . , k − 1}, π ∈ A[ti ∧ τ, ti+1 ∧ τ ] and ζ ∈ E1
i−1.

By abuse of notation, we denote v̂Hk
(1, ξ(0)) for v̂Hk

(1).

For k = 1, the inequality (A.8) is obvious.

We now assume the result holds for some k ∈ {1, . . . , n− 1}. Let Hk+1 be a map from Ŵk

to L∞(Ω,Gtk+1∧τ ,P). We define

K(k + 1, π, ξ) := E

[

u
(

Xπ
tk+1∧τ

−
k

∑

i=1

ξi1ti≤τ −Hk+1(ξ̂
(k))

)

]

= E

[

u
(

Xπ
tk∧τ

−
k−1
∑

i=1

ξi1ti≤τ

)

E

[

u
(

Xtk∧τ,π
tk+1∧τ

− ξk1tk<τ −Hk+1(ξ̂
(k))

)

∣

∣

∣
Gtk∧τ

]]

,

for any π ∈ A[0, tk+1 ∧ τ ] and ξ ∈ E0
k . From Lemma A.3 there exists π∗,k(ξ) ∈ A[tk ∧

τ, tk+1 ∧ τ ] such that

ess inf
π∈A[tk∧τ,tk+1∧τ ]

E

[

u
(

Xtk∧τ,π
tk+1∧τ

− ξk1tk<τ −Hk+1(ξ̂)
)
∣

∣

∣
Gtk∧τ

]

= E

[

u
(

X
tk∧τ,π

∗,k(ξ(k−1),ξk)
tk+1∧τ

− ξk1tk<τ −Hk+1(ξ̂)
)
∣

∣

∣
Gtk∧τ

]

.
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From Lemma A.4 and the previous equality, there exists ζ∗ ∈ E1
k−1 such that

v̂Hk+1
(k, ξ(k−1)) = ess sup

ζ∈E1
k−1

E

[

u
(

X
tk∧τ,π

∗,k(ξ(k−1),ζ)
tk+1∧τ

− ζ1tk<τ −Hk+1(ξ̂
(k−1), ζ̂)

)
∣

∣

∣
Gtk∧τ

]

= E

[

u
(

X
tk∧τ,π

∗,k(ξ(k−1),ζ∗)
tk+1∧τ

− ζ∗1tk<τ −Hk+1(ξ̂
(k−1), ζ̂∗)

)∣

∣

∣
Gtk∧τ

]

.

By definition of π∗,k we have

K(k + 1, π, ξ) ≥ K(k + 1, π1[0,tk∧τ ] + π∗,k(ξ(k))1[tk∧τ,tk+1∧τ ], ξ) ,

for any π ∈ A[0, tk+1 ∧ τ ] and ξ ∈ Ek
0 . This implies

sup
ξ∈Ek

0

K(k + 1, π, ξ) ≥ sup
ξ∈Ek

0

K
(

k + 1, π1[0,tk∧τ ] + π∗,k(ξ(k))1[tk∧τ,tk+1∧τ ], ξ
)

≥ sup
ξ∈Ek−1

0

K
(

k + 1, π1[0,tk∧τ ] + π∗,k(ξ(k−1), ζ∗)1[tk∧τ,tk+1∧τ ], (ξ
(k−1), ζ∗)

)

.

From the definition of K we have

K(k + 1, π1[0,tk∧τ ] + π∗,k(ξ(k−1), ζ∗)1[tk∧τ,tk+1∧τ ], (ξ
(k−1), ζ∗))

= E

[

u
(

Xπ
tk∧τ

−
k−1
∑

i=1

ξi1ti≤τ

)

E

[

u
(

X
tk∧τ,π

∗,k(ξ(k−1),ζ∗)
tk+1∧τ

− ζ∗1tk<τ −Hk+1(ξ
(k−1), ζ∗)

)

∣

∣

∣
Gtk∧τ

]]

= E

[

u
(

Xπ
tk∧τ

−
k−1
∑

i=1

ξi1ti≤τ

)

v̂Hk+1
(k, ξ(k−1))

]

.

Therefore we get

sup
ξ∈Ek

0

K(k + 1, π, ξ) ≥ sup
ξ∈Ek−1

0

E

[

u
(

Xπ
tk∧τ

−
k−1
∑

i=1

ξi1ti≤τ

)

v̂Hk+1
(k, ξ(k−1))

]

. (A.9)

We now define the application Hk by

Hk

(

x1, . . . , xk−1

)

:=
1

γ
log

(

v̂Hk+1
(k, (x1e

−
∫ t1
0 rsds, . . . , xk−1e

−
∫ tk−1
0 rsds)

)

,

for all (x1, . . . , xk−1) ∈ Ŵk−1. From Lemma A.3, we have

Hk

(

x1, . . . , xk−1

)

= y(k)
(

x1, . . . , xk−1, ζ
∗
)

∈ L∞(Ω,Gtk∧τ ,P) .

We can then use the induction hypothesis and we get

inf
π∈A[0,tk∧τ ]

sup
ξ∈Ek−1

0

E

[

u(Xπ
tk∧τ

−
k−1
∑

i=1

ξi1ti≤τ −Hk(ξ
(k−1))

]

≥ inf
π∈A[0,t1∧τ ]

E

[

u
(

Xπ
t1∧τ

)

v̂Hk
(1))

]

. (A.10)
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Taking the infimum in (A.9) we obtain

inf
π∈A[0,tk+1∧τ ]

sup
ξ∈Ek

0

K(k + 1, π, ξ) ≥ inf
π∈A[0,tk∧τ ]

sup
ξ∈Ek−1

0

E

[

u(Xπ
tk∧τ

−
k−1
∑

i=1

ξi1ti≤τ −Hk(ξ
(k−1))

]

.

Using (A.10) we get

inf
π∈A[0,tk+1∧τ ]

sup
ξ∈Ek

0

K(k + 1, π, ξ) ≥ inf
π∈A[0,t1∧τ ]

E

[

u
(

Xπ
t1∧τ

)

v̂Hk
(1))

]

.

We conclude the proof of the inequality (A.7) by noticing that

v̂Hk
(k, ξ(k−1)) = v̂Hk+1

(k, ξ(k−1)) .

Hence, we have v̂Hk
(1) = v̂Hk+1

(1) and then the inequality (A.8) holds for any k ∈

{1, . . . , n}.

Second step. We now prove the following inequality

w(p) ≤ inf
π∈A[0,t1∧τ ]

E

[

u
(

Xπ
t1∧τ

)

v(1)
]

. (A.11)

To this end, we show by a backward induction on k ∈ {1, . . . , n− 1} that for ξ(k) ∈ Ek
0 and

H a bounded GT∧τ -measurable random variable, we have

ess inf
π∈A[tk∧τ,T∧τ ]

ess sup
ζ∈En−k−1

k

E

[

u
(

Xtk∧τ,π
T∧τ − ξk1tk<τ −

n−k−1
∑

j=1

ζj1tk+j<τ −H
)
∣

∣

∣
Gtk∧τ

]

≤ ess inf
π∈A[tk∧τ,tk+1∧τ ]

E

[

u
(

Xtk∧τ,π
tk+1∧τ

− ξk1tk<τ

)

v(k + 1, ξ(k))
∣

∣

∣
Gtk∧τ

]

. (A.12)

For k = n− 1, the previous inequality obviously holds from the definition of v(n, .).

We now assume that the inequality (A.12) holds for some k ∈ {2, . . . , n− 1} and we prove

it for k − 1.

We first write π = (πℓ, . . . , πn−1) for π ∈ A[tℓ∧τ, . . . , T ∧τ ] with πk ∈ A[tk∧τ, tk+1∧τ ].

We then define the map L by

L(ℓ, πℓ, . . . , πn−1, ξ(ℓ)) := ess sup
ζ∈En−ℓ

ℓ

E

[

u
(

Xtℓ∧τ,π
T∧τ − ξℓ1tℓ<τ −

n−ℓ
∑

j=1

ζℓ+j1tℓ+j<τ −H
)∣

∣

∣
Gtℓ∧τ

]

,

for ℓ ∈ {1, . . . , n− 1}, ξ ∈ E and π ∈ A[0, T ∧ τ ].

Let H be a bounded GT∧τ -measurable random variable, π ∈ A[tk−1∧τ, T ∧τ ] and ξ ∈ E .

By definition of L we know that

L(k − 1, π, ξ(k−1)) ≤ E

[

u
(

X
tk−1∧τ,π
tk∧τ

− ξk−11tk−1<τ

)

ess sup
ζk∈E

1
k−1

L(k, πk, . . . , πn−1, (ξ(k−1), ζk))
∣

∣

∣
Gtk−1∧τ

]

.(A.13)

Using Lemma A.4, we can find ζ∗k ∈ E1
k−1 (depending only on πk+1, . . . , πn−1) such that

ess sup
ζk∈E

1
k−1

L
(

k, πk, πk+1, . . . , πn−1, (ξ(k−1), ζk)
)

= L
(

k, πk, πk+1, . . . , πn−1, (ξ(k−1), ζ∗k)
)

,(A.14)
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for all πk ∈ A[tk ∧ τ, tk+1 ∧ τ ]. We also know from Lemma A.3 that there exists πk∗ ∈

A[tk ∧ τ, tk+1 ∧ τ ] (also depending on πk+1, . . . , πn−1) such that

L
(

k, πk∗, πk+1, . . . , πn−1, (ξ(k−1), ζ∗k)
)

= ess inf
πk∈A[tk∧τ,tk+1∧τ ]

L
(

k, πk, πk+1, . . . , πn−1, (ξ(k−1), ζ∗k)
)

.(A.15)

For π ∈ A[0, T ∧ τ ], define π̄ by

π̄ := π1[0,tk∧τ ] + πk∗
1[tk∧τ,tk+1∧τ ] + πk+1

1[tk+1∧τ,tk+2∧τ ] + · · ·+ πn−1
1[tn−1∧τ,T∧τ ] .

From (A.13), (A.14) and (A.15) we deduce

L(k − 1, π̄, ξ(k−1))

≤ E

[

u(X
tk−1∧τ,π
tk∧τ

− ξk−11tk−1<τ ) ess inf
π∈A[tk∧τ,T∧τ ]

L(k, π, (ξ(k−1), ζ∗k), H)
∣

∣

∣
Gtk−1∧τ

]

. (A.16)

By taking the infimum we get

ess inf
π∈A[tk−1∧τ,T∧τ ]

L(k − 1, π, ξ(k−1), H) ≤ ess inf
π∈A[tk−1∧τ,tk∧τ ]

L(k − 1, π̄, ξ(k−1), H) .

From this last inequality, (A.16) and the induction assumption we get

ess inf
π∈A[tk−1∧τ,T∧τ ]

L(k − 1, π, ξ(k−1), H)

≤ ess inf
π∈A[tk−1∧τ,tk∧τ ]

E

[

u
(

X
tk−1∧τ,π
tk∧τ

− ξk−11tk−1<τ

)

v(k, ξ(k−1))
∣

∣

∣
Gtk−1∧τ

]

,

which gives the result for k − 1 from the definition of the map L.
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