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Indifference fee rate for variable annuities

Etienne CHEVALIER ∗ Thomas LIM† Ricardo ROMO ROMERO‡

Abstract

In this paper, we work on indifference valuation of variable annuities and give a

computation method for indifference fees. We focus on the guaranteed minimum death

benefits and the guaranteed minimum living benefits and allow the policyholder to

make withdrawals. We assume that the fees are continuously payed and that the fee

rate is fixed at the beginning of the contract. Following indifference pricing theory, we

define indifference fee rate for the insurer as a solution of an equation involving two

stochastic control problems. Relating these problems to backward stochastic differential

equations with jumps, we provide a verification theorem and give the optimal strategies

associated to our control problems. From these, we derive a computation method to get

indifference fee rates. We conclude our work with numerical illustrations of indifference

fees sensibilities with respect to parameters.

Keywords: Variable annuities, indifference pricing, stochastic control, utility maximization,

backward stochastic differential equation.

MSC2000 subject classification: 60H99, 91B30, 93E20.

∗Universiẗı¿ 1
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Introduction

Introduced in the 1970s in the United States (see [22]), variable annuities are equity-linked

contracts between a policyholder and an insurance company. The policyholder gives an

initial amount of money to the insurer. This amount is then invested in a reference portfo-

lio until a preset date, until the policyholder withdraws from the contract or until he dies.

At the end of the contract, the insurance pays to the policyholder or to his dependents a

pay-off depending on the performance of the reference portfolio. In the 1990s, insurers in-

cluded put-like derivatives which provided some guarantees to the policyholder. The most

usual are guaranteed minimum death benefits (GMDB) and guaranteed minimum living

benefits (GMLB). For a GMDB (resp. GMLB) contract, if the insured dies before the

contract maturity (resp. is still alive at the maturity) he or his dependents obtain a benefit

corresponding to the maximum of the current account value and of a guaranteed benefit.

There exist various ways to fix this guaranteed benefit and we refer to [2] for more details.

These products mainly present three risks for the insurer. First, as the insurer offers a put-

like derivative on a reference portfolio to the client, he is considerably exposed to market

risk. Moreover, variable annuity policies could have very long maturities so the pricing and

hedging errors due to the model choice for the dynamic of the reference portfolio and the

interest rates could be very important. The second risk faced by the insurer is the death

of his client, this leads to the formulation of a problem with random maturity. Finally,

the client may decide at any moment to withdraw, totally or partially, from the contract.

Throughout the paper we shall assume that there is a rate of partial withdrawal that could

be stochastic or not but we do not assume that it results from an optimal strategy of the

insured. In case of total withdrawal, the insured may pay some penalties and will receive

the maximum of the account facial value and of a guaranteed benefit minus the amount of

previous partial withdrawals.

With the commercial success of variable annuities, the pricing and hedging of these prod-

ucts have been studied in a growing literature. Following the pioneering work of Boyle

and Schwartz (see [8]), non-arbitrage models allow to extend the Black-Scholes framework

to insurance issues. Milvesky and Posner (see [18]) are, up to our knowledge, the first to

apply risk neutral option pricing theory to value GMDB in variable annuities. Withdrawal

options are studied in [10] and [21], and a general framework to define variable annuities is

presented in [2]. Milevsky and Salisbury (see [19]) focus on the links between American put

options and dynamic optimal withdrawal policies. This problem is studied in [11] where an

Hamilton-Jacobi-Bellman (HJB) equation is derived for a singular control problem where

the control is the continuous withdrawal rate. The GMDB pricing problem is described as

an impulse control problem in [3]. The authors model the GMDB problem as a stochas-

tic control problem, derive an HJB equation and solve it numerically. The assumptions

needed to get these formulations are the Markovianity of the stochastic processes involved

and the existence of a risk neutral probability. The variable annuity policies with GMDB

and GMLB are long term products therefore models for assets and interest rates have to be

as rich as possible. Moreover, as we obviously face an incomplete market model, the price

obtained strongly depends on the arbitrary choice of a risk neutral probability.
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This paper attempts to get an answer to these issues. We shall not make restrictive assump-

tions on the reference portfolio and the interest rate dynamics. As a result, our problem is

not Markovian and we will not be able to derive HJB equations to characterize our value

functions. We overcome this difficulty thanks to backward stochastic differential equations

(BSDEs) following ideas from [12], [15] and [20]. In our case, we have to solve BSDE with

random terminal time. For that we apply very recent results on BSDEs with jump (see

for example [1] and [17]). Moreover, we shall not use non-arbitrage arguments to price and

hedge variable annuity policies. We will assume that the fees, characterized by a preset

fee rate, are continuously taken by the insurer from the policyholder’s account and we will

define an indifference fee rate for the insurer. Indifference pricing is a standard approach in

mathematical finance to determine the price of a contingent claim in an incomplete market.

This is a utility-based approach that can be summarized as follows. On the one hand, the

investor may maximize his expected utility under optimal trading, investing only in the

financial market. On the other hand, he could sell the contingent claim, optimally invest

in the financial market and make a pay-off at the terminal time. The indifference price of

this contingent claim is then the price such that the insurer gets the same expected utility

in each case. For more details, we refer to the monograph of Carmona (see [9]).

The paper is organized as follows. In Section 1, we define the market model, the random

times of death and total withdraw, then variable annuities with GMDB and/or GMLB

are defined. We recall the main examples of guarantees associated to. Section 2 is de-

voted to indifference fee rates. They are defined as solutions of an equality between two

regular stochastic control problems. These consist in maximizing the expected utility of

the terminal wealth of the insurer portfolio in two cases: when the insurer has not sold

variable annuities and when he has. Value functions of these two problems are respectively

characterized as initial values of BSDEs. This characterization is well known for the first

problem (see [15] and [20]) but demands to solve some technical issues for the second one.

We conclude this section with a rigorous study of the existence of indifference fee rates in

the usual cases i.e. with roll-up or ratchet guarantee. Finally, in Section 3, we conclude our

paper with numerical illustrations of sensibilities of indifference fees with respect to model

and market parameters.

1 Model for variable annuities

This section is divided as follows, Subsection 1.1 introduces the model for the underlying

financial market in which the insurer invests. Subsection 1.2 describes the terminal date of

a variable annuity policy. This one may be due to a total withdraw or to the death of the

insured. The variable annuity products and the dynamics of the different processes that

deal with are introduced in Subsection 1.3.

1.1 The financial market model

Let (Ω,G,P) be a complete probability space. We assume that this space is equipped with

a one-dimensional standard Brownian motion B and we denote by F := (Ft)t≥0 the right
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continuous complete filtration generated by B.

We consider a financial market on the time interval [0, T ] where T > 0 corresponds to

the expiration date of the variable annuities studied. We suppose that the financial market

is composed by a riskless bond with an interest rate r and a reference portfolio of risky

assets underlying the variable annuity policy. The price processes Ŝ0 of the riskless bond

and Ŝ of a share of the underlying risky portfolio are assumed to be solution of the following

linear stochastic differential equations

dŜ0
t = rtŜ

0
t dt , ∀t ∈ [0, T ] , Ŝ0

0 = 1 ,

dŜt = Ŝt(µtdt+ σtdBt) , ∀t ∈ [0, T ] , Ŝ0 = s > 0 ,

where µ, σ and r are F-adapted processes satisfying the following assumptions.

Assumption A1.

(i) The processes µ, σ and r are P− a.s. bounded.

(ii) The process σ is P− a.s. lower bounded by a positive constant σ.

We shall denote by St the discounted value of Ŝt at time t ∈ [0, T ], i.e. St := e−
∫ t

0 rsdsŜt.

The insurer invests on this financial market. For t ∈ [0, T ], we denote by π0t (resp. πt)

the discounted amount of money invested in the riskless bond (resp. the risky portfolio). We

suppose that the process π is F-adapted and satisfies the following integrability condition

∫ T

0
|πsµs|ds+

∫ T

0
|πsσs|

2ds < +∞ , P− a.s.

Assuming that the strategy of the insurer is self-financed and denoting by Xx,π
t the dis-

counted value of the insurer portfolio at time t with initial capital x ∈ R
+ and following

the strategy π, we have

X
x,π
t = x+

∫ t

0
πs(µs − rs)ds+

∫ t

0
πsσsdBs , ∀t ∈ [0, T ] .

If the initial capital is null we denote Xπ
t the wealth instead of X0,π

t .

We consider that the insurer wants to maximize the expected value of the utility of

his terminal wealth U(Xx,π
T ) on an admissible strategies set, where U(x) := − exp(−γx)

with γ > 0. Both theory and pratice have shown that it is appropriate to use exponantial

utility functions. Since the decisions do not depend on the initial wealth of the insurer,

it is well adapted to our problem of pricing one set of policies. Moreover an appealing

feature of decision making using exponantial utility function is that decisions are based on

comparisons between moment generating functions. They capture all the characteristics of

the random outcomes being compared, so that comparisons are based on a wide range of

features. We refer to [5] for more details about this choice.

In the following definition, we define the set of admissible strategies for the insurer,
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making usual restrictions that ensure some integrability properties for the processes in-

volved.

Definition 1.1. (F-admissible strategy). For any 0 ≤ u ≤ v ≤ T , the set of admissible

trading strategies AF[u, v] consists of all F-adapted processes π = (πt)u≤t≤v which satisfy

E

[

∫ v

u

∣

∣πtσt
∣

∣

2
dt
]

<∞

and

{

exp(−γXx,π
θ ), θ is an F-stopping time with values in [u, v]

}

is uniformly integrable.

1.2 Exit time of a variable annuity policy

We consider two random times θd and θw which respectively represent the death time of

the insured and the time of early closure of the insured account. We denote by τ = θd∧θw.

The random time τ is not assumed to be an F-stopping time. We therefore use in the

sequel the standard approach of filtration enlargement by considering G the smallest right

continuous extension of F that turns τ into a G-stopping time (see e.g. [4, 17]). More

precisely G := (Gt)t≥0 is defined by

Gt :=
⋂

ε>0

G̃t+ε ,

for all t ≥ 0, where G̃s := Fs ∨ σ(1τ≤u , u ∈ [0, s]), for all s ≥ 0.

We impose the following assumptions, which are usual in filtration enlargement theory.

Assumption A2. (H-hypothesis) The process B remains a G-Brownian motion.

The interpretation of the H-hypothesis is an assymetric dependance structure between B

and τ . From a financial point of view, it means that the exit time τ may depend on the

financial market randomness represented by B. On the contrary, the financial market does

not depend on τ .

In the sequel, we introduce the process N defined by N =
(

1{τ≤t}

)

0≤t≤T
.

Assumption A3. The process N admits an F-compensator of the form
∫ .∧τ
0 λtdt, i.e.

N −
∫ .∧τ
0 λtdt is a G-martingale, where λ is a bounded F-adapted process.

M denotes the G-martingale defined by Mt := Nt −
∫ t∧τ
0 λsds , for all t ≥ 0.

If the investment strategy of the insurer depends on this exit time, we shall enlarge the set

of admissible strategies through the following definition.

Definition 1.2. (G-admissible strategy). For any 0 ≤ u ≤ v ≤ T , the set of admissible
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trading strategies AG[u, v] consists of all G-predictable processes π = (πt)u≤t≤v which satisfy

E

[

∫ v

u

∣

∣πtσt
∣

∣

2
dt
]

<∞

and

{

exp(−γXx,π
θ ), θ is a G-stopping time with values in [u, v]

}

is uniformly integrable.

1.3 Variable annuity policy

Let T := (ti)0≤i≤n be the set of policy anniversary dates, with t0 = 0 and tn = T . We also

denote tn+1 = +∞.

The first process to consider is the discounted account value Ap. The dynamic of the process

Ap is as follow

dA
p
t = A

p
t

[

(µt − rt − ξt − p)dt+ σtdBt

]

, ∀t ∈ [0, T ] ,

with initial value A0, p is the fee rate taken by the insurer from the account of the insured

and the process ξ is a G-predictable, non-negative and bounded process. ξt represents the

withdrawal rate chosen by the insured at time t ∈ [0, T ]. We emphasize that ξ is not

necessarily a process resulting from an optimal control of the insured as, for example, in

[3], [11] and [19].

For any π ∈ AG[0, T ], we extend the definition of the process Xx,π where Xx,π
t is the

discounted wealth of the portfolio invested in the financial market at time t ∈ [0, T ] and we

set

dX
x,π
t = πt(µt − rt)dt+ πtσtdBt , ∀t ∈ [0, T ] ,

with Xx,π
0 = x.

The second quantity to define is the pay-off of the variable annuities. Let p ≥ 0, the pay-off

is paid at time T ∧ τ to the insured or his dependents and is equal to the following random

variable

F̂ (p) := F̂L
T (p)1{T<τ} + F̂D

τ (p)1{τ=θd≤T} + F̂W
τ (p)1{τ=θw<θd; τ≤T} . (1.1)

F̂L
T (p) is the pay-off if the policyholder is alive at time T and has not totally withdrawn his

money from his account. F̂D
τ (p) is the pay-off if the policyholder is dead at time τ . F̂W

τ (p)

is the pay-off if the policyholder totally withdraws his money from his account at time

τ . We suppose that F̂L(p), F̂D(p) and F̂W (p) are bounded, non-negative and G-adapted

processes.
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Including partial withdrawals in the pay-off, we shall use the following notations

FD,W
τ (p) := e−

∫ τ

0 rudu
(

F̂D
τ (p)1{τ=θd≤T} + F̂W

τ (p)1{τ=θw<θd; τ≤T}

)

+

∫ τ

0
ξsA

p
s ds , (1.2)

FL
T (p) := e−

∫ T

0 ruduF̂L
T (p) +

∫ T

0
ξsA

p
s ds , (1.3)

F (p) := e−
∫ T∧τ

0 ruduF̂ (p) +

∫ T∧τ

0
ξsA

p
s ds . (1.4)

Notice that F (p) is GT∧τ -measurable.

Usual examples of variable annuities are GMDB and GMLB. In that case, there exist ĜD(p)

and ĜL(p) non-negative processes such that, for any Q ∈ {D,L}, we have

F̂
Q
t (p) = Â

p
t ∨ Ĝ

Q
t (p), where Âp

t = e
∫ t

0 rs dsA
p
t .

The usual guarantee functions used to define GMDB and GMLB are listed below (see [2]

for more details).

– Constant guarantee: we have ĜQ
t (p) = A0 −

∫ t
0 ξsÂ

p
s ds on [0, T ], and

F (p) = A
p
T∧τ ∨ e

−
∫ T∧τ

0 rsds
(

A0 −

∫ T∧τ

0
ξsÂ

p
s ds

)

+

∫ T∧τ

0
ξsA

p
s ds

= A
p
T∧τ (0) ∨

(

e−
∫ T∧τ

0 rsdsA0 +

∫ T∧τ

0
ξsA

p
sβs ds

)

, (1.5)

where Ap
T∧τ (0) = A

p
T∧τ +

∫ T∧τ
0 ξsA

p
s ds and βt = 1− e−

∫ T∧τ

t
rsds for t ∈ [0, T ∧ τ ].

– Roll-up guarantee: for η > 0, we have ĜQ
t (p) = (1+ η)t

(

A0 −
∫ t
0

ξsÂ
p
s

(1+η)s ds
)

on [0, T ],

and

F (p) = A
p
T∧τ ∨ e

−
∫ T∧τ

0 rsds(1 + η)T∧τ
(

A0 −

∫ T∧τ

0

ξsÂ
p
s

(1 + η)s
ds
)

+

∫ T∧τ

0
ξsA

p
s ds

= A
p
T∧τ (0) ∨

(

e−
∫ T∧τ

0 rηs dsA0 +

∫ T∧τ

0
ξsA

p
sβ

η
s ds

)

, (1.6)

where rηt = rt − ln(1 + η) for all t ∈ [0, T ] and βηt = 1− e−
∫ T∧τ

t
rηs ds for t ∈ [0, T ∧ τ ].

– Ratchet guarantee: the guarantee depends on the path of A in the following way:

Ĝ
Q
t (p) = max(âp0(t), . . . , â

p
k(t)) on [tk, tk+1), for all 0 ≤ k ≤ n, where we have set
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â
p
k(t) = Â

p
tk
−
∫ t
tk
ξsÂ

p
s ds. We get

F (p) = A
p
T∧τ ∨ e

−
∫ T∧τ

0 rsds max
0≤i≤n

(

â
p
i (T ∧ τ)1{ti≤T∧τ}

)

+

∫ T∧τ

0
ξsA

p
s ds

= A
p
T∧τ (0) ∨

(

max
0≤i≤n

[

e−
∫ T∧τ

0 rsdsÂ
p
ti
(0)1{ti≤T∧τ}

]

+

∫ T∧τ

0
ξsA

p
sβs ds

)

(1.7)

where Âp
ti
(0) = Â

p
ti
+
∫ ti
0 ξsÂ

p
s ds for all i ∈ {0, .., n}.

Remark 1.1. In the usual cases, the terminal pay-off F (p) is non-increasing w.r.t. p.

At this point we also notice that, in usual cases, the pay-off F (p) may not be bounded. This

assumption is crucial from a mathematical point of view, since it leads to existence and

uniqueness of a solution of the BSDEs that we will consider (see Remark 2.2). However,

our methodology can be applied to such unbounded pay-offs. Indeed, from a numerical point

of view, one just has to introduce a positive constant m and replace the pay-off F (p) by

F (p)∧m. For m large enough, we will get a good approximation of the indifference fee rate

as limm→+∞ P(supt∈[0,T ]At > m) = 0.
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Figure 1 represents the evolution of roll-up and ratchet guarantees on a path.
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Figure 1: Guarantees and Account Value.

2 Indifference pricing

The objective of this section is to find, if it exists, a level p∗ such that if the fee rate is

greater than p∗, the insurer prefers to sell the policy and he has better not to do so if the

fee rate is below this level. To determine p∗ we have to study the solution of the following

equation

sup
π∈AF[0,T ]

E
[

U
(

X
x,π
T

)]

= sup
π∈AG[0,T ]

E
[

U
(

X
x+A0,π
T − F (p∗)

)]

. (2.8)

A solution of the equation (2.8) will be called an indifference fee rate. Notice that if

there exist solutions to the previous equation, they will not depend on the initial wealth

invested by the insurer but only on the initial deposit A0 made by the insured since U(y) =

− exp(−γy). Therefore, solve the equation (2.8) is equivalent to solve

sup
π∈AF[0,T ]

E
[

U
(

Xπ
T

)]

= sup
π∈AG[0,T ]

E
[

U
(

A0 +Xπ
T − F (p∗)

)]

.

To solve this equation, we shall compute the following quantities

VF := sup
π∈AF[0,T ]

E
[

U
(

Xπ
T

)]

and VG(p) := sup
π∈AG[0,T ]

E
[

U
(

A0 +Xπ
T − F (p)

)]

.

VF is a classical optimization problem, that may be solved thanks to BSDEs like in [15]

or [20]. We recall the results on this problem in Subsection 2.1, then in Subsection 2.2 we

solve the optimal control problem VG(p). We will use the tools of BSDEs with respect to
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the Brownian motion B and to the jump process N to solve it. Finally, in Subsection 2.3,

we will use the results of Subsections 2.1 and 2.2 to find indifference fee rates if they exist.

An additional difficulty with respect to the classical indifference pricing theory is that fees

are continuously paid by the insured. Therefore, one can not use algebraic properties of the

utility function to get a semi-explicit formula for the indifference fee rate. We will prove

that the function p→ VG(p) is continuous and monotonic on R, then use the intermediate

value theorem to prove that there exists or not a solution of the equation (2.8).

2.1 Utility maximization without variable annuities

The objective of this part is to compute the value of the maximum expected utility of the

terminal wealth at time T when the insurance company has not sold the variable annuity

policy. We recall that the maximum expected utility problem is defined by

VF := sup
π∈AF[0,T ]

E
[

U(Xπ
T )
]

.

Thanks to Theorem 7 in Hu et al. [15], we are able to characterize the value function VF
and the optimal strategy π∗ by mean of BSDEs. For that we introduce the following sets.

– S∞
G

is the subset of R-valued, càd-làg, G-adapted processes (Yt)t∈[0,T ] essentially

bounded i.e.

‖Y ‖S∞
G

:=
∥

∥

∥
sup

t∈[0,T ]
|Yt|

∥

∥

∥

∞
< ∞ .

– L2
G
is the subset of R-valued, G-predictable processes (Zt)t∈[0,T ] such that

‖Z‖L2
G

:=
(

E

[

∫ T

0
|Zt|

2dt
])1/ 2

< ∞ .

– L2
G
(λ) is the subset of R-valued, G-predictable processes (Ut)t∈[0,T ] such that

‖U‖L2
G
(λ) :=

(

E

[

∫ T∧τ

0
λt|Ut|

2dt
])1/ 2

< ∞ .

Proposition 2.1. The value function VF is given by VF = − exp(γy0), where (y, z) is the

unique solution in S∞
G

× L2
G
of the following BSDE

{

dyt =
(

ν2t
2γ + νtzt

)

dt+ ztdBt , ∀t ∈ [0, T ] ,

yT = 0 ,
(2.9)

with νt =
µt−rt
σt

. Moreover, the optimal strategy associated to this problem is defined by

π∗t :=
νt

γσt
+
zt

σt
, ∀t ∈ [0, T ] .

For the proof of this proposition we refer to [15] or [20].
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2.2 Utility maximization with variable annuities

We now study the case in which the insurance company proposes the variable annuity

policy. We recall that in this case the value function associated to the maximum expected

utility problem is given by

VG(p) := sup
π∈AG[0,T ]

E
[

− exp
(

− γ
(

A0 +Xπ
T − F (p)

))]

, (2.10)

where F (p) is defined by (1.4).

Since we aim at characterizing VG(p) as a function of the initial value of a BSDE, the

first step consists in carefully setting the terminal value of the BSDE. Therefore, we need to

deal with the following difficulty: we notice that the random variable Xπ
T is GT−measurable

and F (p) is GT∧τ−measurable. The following result allows us to rewrite the problem with

a terminal date equal to T ∧ τ .

Lemma 2.1. For any p ∈ R, we have

VG(p) = sup
π∈AG[0,T∧τ ]

E
[

− exp
(

− γ
(

X
A0,π
T∧τ −H(p)

))]

, (2.11)

with H(p) := F (p) + 1
γ log

{

ess infπ∈AG[T∧τ,T ] E
[

exp
(

− γ∆Xπ
τ,T

)∣

∣GT∧τ

]

}

,

where we have set

∆Xπ
τ,T :=

∫ T

T∧τ
πs(µs − rs)ds+

∫ T

T∧τ
πsσsdBs .

Proof. First we prove that

VG(p) ≤ sup
π∈AG[0,T∧τ ]

E
[

− exp
(

− γ
(

X
A0,π
T −H(p)

))]

.

Let π′ ∈ AG[0, T ]. By the tower property and since F (p) is GT∧τ -measurable, we get

E
[

exp
(

− γ
(

X
A0,π′

T − F (p)
))]

= E

[

exp
(

− γ
(

X
A0,π′

T∧τ − F (p)
))

E
[

exp(−γ∆Xπ′

τ,T )
∣

∣GT∧τ

]

]

≥ E

[

exp
(

− γ
(

X
A0,π′

T∧τ − F (p)
))

V
∣

∣GT∧τ

]

]

,

where we have set

V := ess inf
π∈AG[T∧τ,T ]

E
[

exp
(

− γ∆Xπ
τ,T

)
∣

∣GT∧τ

]

.

Therefore, it follows from the definition of H(p) that for any π′ ∈ AG[0, T ], we have

E
[

exp
(

− γ
(

X
A0,π′

T − F (p)
))]

≥ inf
π∈AG[0,T∧τ ]

E
[

exp
(

− γ
(

X
A0,π
T∧τ −H(p)

))]

.
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This obviously implies that

VG(p) ≤ sup
π∈AG[0,T∧τ ]

E
[

− exp
(

− γ
(

X
A0,π
T∧τ −H(p)

))]

.

Now, we shall prove that

VG(p) ≥ sup
π∈AG[0,T∧τ ]

E
[

− exp
(

− γ
(

X
A0,π
T −H(p)

))]

.

From Lemma A.1, we deduce that there exists π∗,τ ∈ AG[T ∧ τ, T ] such that

E
[

exp
(

− γ∆Xπ∗,τ

τ,T

)∣

∣GT∧τ

]

= ess inf
π∈AG[T∧τ,T ]

E
[

exp
(

− γ∆Xπ
τ,T

)∣

∣GT∧τ

]

.

For any π ∈ AG[0, T ∧ τ ] we define the strategy π ∈ AG[0, T ] by

πt :=

{

πt if t ≤ T ∧ τ ,

π
∗,τ
t if t > T ∧ τ .

We obtain

VG(p) ≥ sup
π∈AG[0,T∧τ ]

E
[

− exp
(

− γ
(

X
A0,π
T − F (p)

))]

= sup
π∈AG[0,T∧τ ]

E
[

− exp
(

− γ
(

X
A0,π
T∧τ +∆Xπ∗,τ

τ,T − F (p)
))]

= sup
π∈AG[0,T∧τ ]

E
[

− exp
(

− γ
(

X
A0,π
T∧τ −H(p)

))]

.

Now, we have to solve the optimization problem (2.11) and for that we look for a family of

processes {R(π), π ∈ AG[0, T ∧ τ ]} satisfying the following conditions

(i) R
(π)
T∧τ = − exp(−γ(XA0,π

T∧τ −H(p))), for any π ∈ AG[0, T ∧ τ ].

(ii) R
(π)
0 = R0 is constant for any π ∈ AG[0, T ∧ τ ].

(iii) R(π) is a G-supermartingale for any π ∈ AG[0, T ∧ τ ].

(iv) There exists a π∗ ∈ AG[0, T ∧ τ ] such that R(π∗) is a G-martingale.

If such a family exist, we would have

R
(π∗)
0 = sup

π∈AG[0,T∧τ ]

E
[

− exp
(

− γ
(

X
A0,π
T∧τ −H(p)

))]

.

Indeed, from (i), (ii) and (iii), we might have for any π ∈ AG[0, T ∧ τ ],

R
(π∗)
0 = R

(π)
0 ≥ E

[

R
(π)
T∧τ

]

= E
[

− exp
(

− γ
(

X
A0,π
T∧τ −H(p)

))]

. (2.12)
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Moreover, it would follow from (i) and (iv) that

R
(π∗)
0 = E

[

− exp
(

− γ
(

X
A0,π∗

T∧τ −H(p)
))]

. (2.13)

Therefore, from (2.12) and (2.13), we would get for any π ∈ AG[0, T ∧ τ ]

E
[

− exp
(

− γ
(

X
A0,π
T∧τ −H(p)

))]

≤ R
(π∗)
0 = E

[

− exp
(

− γ
(

X
A0,π∗

T∧τ −H(p)
))]

.

We can see that it would lead to

R
(π∗)
0 = sup

π∈AG[0,T∧τ ]

E
[

− exp
(

− γ
(

X
A0,π
T∧τ −H(p)

))]

.

Thanks to solutions of BSDEs with jumps, we shall construct a family {R(π) , π ∈ AG[0, T ∧

τ ]} satisfying the previous conditions. Let f be a function defined on [0, T ] × Ω × S∞
G

×

L2
G
× L2

G
(λ) and assume that there exists (Y (p), Z(p), U(p)) in S∞

G
× L2

G
× L2

G
(λ) solution

of the following BSDE: for any t ∈ [0, T ],

Yt(p) = H(p) +

∫ T∧τ

t∧τ
f(s, Ys(p), Zs(p), Us(p))ds−

∫ T∧τ

t∧τ
Zs(p)dBs −

∫ T∧τ

t∧τ
Us(p)dNs .

In this case, for any π ∈ AG[0, T ∧ τ ], we set

R(π) = − exp
(

− γ
(

XA0,π − Y (p)
))

, (2.14)

and look for a function f for which the family {R(π), π ∈ AG[0, T ∧ τ ]} satisfies the

conditions (i), (ii), (iii) and (iv). In order to calculate f , we apply Itô’s formula and get

dR
(π)
t = dMπ

t + dKπ
t ,

where Mπ and Kπ are defined by

dMπ
t := −γR

(π)
t

(

σtπt − Zt(p)
)

dBt +R
(π)
t−

(

eγUt(p) − 1
)

dMt ,

dKπ
t := −γR

(π)
t

[

πt(µt − rt) + f(t, Yt(p), Zt(p), Ut(p))−
γ

2
(σtπt − Zt(p))

2 − λt
eγUt(p) − 1

γ

]

dt .

As we hope that R(π) is a supermartingale the process Kπ must be non-increasing, hence

f should satisfy

−γR
(π)
t

[

πt(µt − rt) + f(t, Yt(p), Zt(p), Ut(p))−
γ

2
(σtπt − Zt(p))

2 − λt
eγUt(p) − 1

γ

]

≤ 0 ,

and since −γR
(π)
t ≥ 0, it would lead to

f(t, Yt(p), Zt(p), Ut(p)) ≤
γ

2
(σtπt − Zt(p))

2 + λt
eγUt(p) − 1

γ
− πt(µt − rt) .
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Moreover, for some particular π∗ ∈ AG[0, T ∧ τ ], we hope that R(π∗) is a martingale so the

process Kπ∗
must be constant, hence f should satisfy

f(t, Yt(p), Zt(p), Ut(p)) = ess inf
π∈AG[0,T∧τ ]

{γ

2
(σtπt − Zt(p))

2 + λt
eγUt(p) − 1

γ
− πt(µt − rt)

}

,

and π∗t , such that dKπ∗

t = 0, would be defined by

π∗t :=
νt

γσt
+
Zt(p)

σt
.

Hence f would be the following function

f(t, y, z, u) = λt
eγu − 1

γ
−
ν2t
2γ

− νtz ,

defined on [0, T ]× Ω× S∞
G

× L2
G
× L2

G
(λ).

The following proposition asserts that the following BSDE with jump

Yt(p) = H(p) +

∫ T∧τ

t∧τ

(

λs
eγUs(p) − 1

γ
−
ν2s
2γ

− νsZs(p)
)

ds−

∫ T∧τ

t∧τ
Zs(p)dBs

−

∫ T∧τ

t∧τ
Us(p)dNs , ∀t ∈ [0, T ] , (2.15)

admits a solution in S∞
G

× L2
G
× L2

G
(λ).

Proposition 2.2. Recalling notations (1.2), (1.3) and (1.4), the BSDE (2.15) admits a

solution (Y (p), Z(p), U(p)) ∈ S∞
G

× L2
G
× L2

G
(λ) given for any t ∈ [0, T ] by











Yt(p) = Y 0
t (p)1t<τ + F

D,W
τ (p)1τ≤t ,

Zt(p) = Z0
t (p)1t≤τ ,

Ut(p) =
(

F
D,W
t (p)− Y 0

t (p)
)

1t≤τ ,

(2.16)

where (Y 0(p), Z0(p)) is the unique solution in S∞
G

× L2
G
of the following BSDE







−dY 0
t (p) =

{

λt
eγ(F

D,W
t

(p)−Y 0
t (p))−1

γ −
ν2t
2γ − νtZ

0
t (p)

}

dt− Z0
t (p)dBt ,

Y 0
T (p) = FL

T (p) .
(2.17)

Proof. From Theorem 2.1 in [6] and Theorem 1 in [14], we know that there is a unique

solution (Y 0(p), Z0(p)) ∈ S∞
G

× L2
G
to the BSDE (2.17).

From Theorem 4.3 in [17], we know that (Y (p), Z(p), U(p)) defined by (2.16) is a solution

of the BSDE (2.15).

Remark 2.2. To apply Theorem 2.1 in [6] or Theorem 1 in [14] and get existence result

for a solution of the BSDE (2.17), the terminal condition FL
T (p) must be bounded and the

process FD,W (p) must be also bounded.
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We conclude this section with its main result which is the following verification theorem.

Theorem 2.1. The value function of the optimization problem (2.10) is given by

VG(p) = − exp(γ(Y0(p)−A0)) ,

where Y0(p) is defined by the initial value of the first component of the solution of the BSDE

(2.15) defined in Proposition 2.2.

Moreover there exists an optimal strategy π∗ ∈ AG[0, T ] and this one is defined by

π∗t :=
νt

γσt
+
Zt(p)

σt
1t≤T∧τ +

Z
(τ)
t

σt
1t>T∧τ , ∀t ∈ [0, T ] , (2.18)

with Z(p) (resp. Z(τ)) defined by the solution of the BSDE (2.15) described in Proposition

2.2 (resp. Lemma A.1).

Notice that Y0(p) = Y 0
0 (p) since the insurer can not withdraw his money at time 0.

In the proof of Theorem 2.1, the additional space of BMO-martingales intervenes: BMO(P)

is the subset of (P,G)-martingales m such that

‖m‖BMO(P) := sup
θ∈TG[0,T ]

∣

∣

∣

∣

∣

∣
E
[

〈m〉T − 〈m〉θ|Gθ

]1/ 2
∣

∣

∣

∣

∣

∣

∞
< ∞ ,

where TG[0, T ] is the set of G-stopping times on [0, T ].

Before proving Theorem 2.1, we need the following lemma.

Lemma 2.2. Let (Y 0(p), Z0(p)) ∈ S∞
G

×L2
G
be the solution of the BSDE (2.17), and let π∗

be the strategy given by (2.18). The processes
∫ ·
0 Z

0
s (p)dBs and

∫ ·
0 σsπ

∗
sdBs are BMO(P)-

martingales.

The proof of this technical lemma is given in Appendix A.2.

Corollary 2.1. The strategy π∗ defined in (2.18) belongs to AG[0, T ] .

Proof. π∗ is G-measurable by definition, now using Assumption A1 and (2.2) we have that

E

[

∫ T

0

∣

∣π∗sσs
∣

∣

2
ds
]

= E

[

∫ T∧τ

0

(νt

γ
− Zt(p)

)2
dt
]

+ E

[

∫ T

T∧τ

(νt

γ
− Z

(τ)
t

)2
dt
]

≤ c+ cE
[

∫ T∧τ

0

∣

∣Zt(p)
∣

∣

2
dt
]

+ cE
[

∫ T

T∧τ

∣

∣Z
(τ)
t

∣

∣

2
dt
]

< ∞ ,

where c is a positive constant.

It follows from Lemma 2.2 and properties of BMO-martingales (see for example [16]) that

the family

{

− exp
(

− γXπ∗

θ

)

, θ is a G-stopping time with values in [0, T ]
}
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is uniformly integrable.

Now, we are able to prove Theorem 2.1.

Proof. First we check that the family
{

R(π), π ∈ AG[0, T ]} defined in (2.14) satisfies

properties (i), (ii), (iii) and (iv).

Properties (i) and (ii) directly follow from the definition of R(π). To prove that condition

(iii) is satisfied, we apply Itô’s formula and get

dR
(π)
t = −γR

(π)
t

[

πt(µt − rt)−
ν2t
2γ

− νtZt(p)−
γ

2
(σtπt − Zt(p))

2
]

dt

−γR
(π)
t (σtπt − Zt(p))dBt +R

(π)
t−

(

eγUt(p) − 1
)

dMt .

This last equation has an explicit solution given by

R
(π)
t = R0E

(

∫ t

0
γ
(

Zs(p)− πsσs
)

dBs +

∫ t

0

(

eγUs(p) − 1
)

dMs

)

× exp
(

− γ

∫ t

0

(

πs(µs − rs)−
ν2s
2γ

− νsZs(p)−
γ

2
(σsπs − Zs(p))

2
)

ds
)

,

where E denotes the Dolean-Dade exponential. Since π ∈ AG[0, T ], the process Mπ :=

E(
∫ .
0 γ(Zt(p) − σtπt)dBt +

(

eγUt(p) − 1
)

dMt) is a local martingale. Hence, there exists a

sequence of G-stopping times (θn)n∈N satisfying limn→∞ θn = T ∧ τ P− a.s. and such that

Mπ
.∧θn

is a positive martingale for each n ∈ N. Moreover, since

f(t, Yt(p), Zt(p), Ut(p)) ≤
γ

2
(σtπt − Zt(p))

2 + λt
eγUt(p) − 1

γ
− πt(µt − rt) ,

the process exp
(

−γ
∫ .
0

(

πs(µs−rs)−
ν2s
2γ −Zs(p)νs−

γ
2 (σsπs−Zs(p))

2
)

ds
)

is non-decreasing.

As R0 < 0, we get that R
(π)
.∧θn

is a supermartingale and, for any 0 ≤ s ≤ t ≤ T , we have

E[R
(π)
t∧θn

|Gs] ≤ R
(π)
s∧θn

.

This implies that, for any set A ∈ Gs, we have the following inequality

E[R
(π)
t∧θn

1A] ≤ E[R
(π)
s∧θn

1A] .

Since π is admissible and Y is bounded, we remark that (R
(π)
t∧θn

)n∈N and (R
(π)
s∧θn

)n∈N are

uniformly integrable, hence we may let n goes to +∞ and get

E[R
(π)
t 1A] ≤ E[R(π)

s 1A] , ∀A ∈ Gs .

This implies the claimed supermartingale property of R(π).

Finally, we know from Corollary 2.1 that π∗ is admissible and from construction of π∗,

we have R(π∗) = Mπ∗
, therefore R(π∗) is a martingale. This proves that condition (iv) is

satisfied.
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Hence, for any π ∈ AG[0, T ∧ τ ], we obtain that

E
[

− exp
(

− γ
(

X
A0,π
T∧τ −H(p)

))]

≤ R
(π)
0 = R

(π∗)
0 = E

[

− exp
(

− γ
(

X
A0,π∗

T∧τ −H(p)
))]

.

Therefore, VG(p) = − exp(γ(Y0(p)−A0)) and π
∗ is an optimal admissible strategy.

2.3 Indifference fee rate

In this section, our goal is to determine indifference fee rates i.e. positive numbers p∗ such

that

sup
π∈AG[0,T ]

E
[

− exp
(

− γ
(

X
A0,π
T − F (p∗)

))]

= sup
π∈AF[0,T ]

E
[

− exp
(

− γXπ
T

)]

.

It follows from results of Subsections 2.1 and 2.2 that the previous equation can be rewritten

in the following way

Y0(p
∗)−A0 = y0 .

To study this equation we introduce the function ψ : R → R defined as follows

ψ(p) := Y0(p)− y0 −A0 , ∀p ∈ R .

There may exist three cases depending on the coefficients values.

(i) For any p ∈ R, we have ψ(p) > 0. That means that, for any fee rate p, we have

VG(p) < VF .

Therefore, the insurer’s expected utility is always lower if he sells the variable annu-

ities. Thus, he should not sell it.

(ii) For any p ∈ R, we have ψ(p) < 0. That means that, for any fee rate p, we have

VG(p) > VF .

Therefore, the insurer’s expected utility is always higher if he sells the variable annu-

ities. Thus, he should sell it whatever the fees are.

(iii) There exist p1 and p2 such that ψ(p1)ψ(p2) < 0. In this case, we prove in the remainder

of this section that there exist indifference fee rates thanks to the intermediate value

theorem applied to the function ψ.

We now give useful analytical properties of the function ψ.

Proposition 2.3. The function ψ is continuous and non-increasing on R.

Proof. We first show that ψ is non-increasing. Let p1, p2 ∈ R with p1 ≤ p2. By definition

of the process Ap, for any t ∈ [0, T ], we have

A
p1
t ≥ A

p2
t P− a.s.
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It follows from the monotonicity of F̂L, F̂D and F̂W that F (p1) ≥ F (p2) P-a.s. Hence, for

any π ∈ AG[0, T ], we have

E
[

− exp
(

− γ
(

X
A0,π
T − F (p1)

))]

≤ E
[

− exp
(

− γ
(

X
A0,π
T − F (p2)

))]

.

Since this inequality holds for any π ∈ AG[0, T ], we get

VG(p1) ≤ VG(p2) .

As VG(p) = − exp(γ(Y0(p)−A0)) and γ > 0, it follows that ψ is non-increasing.

We now prove that ψ is continuous on R. For that we prove that the solution of the

BSDE (2.17) is continuous w.r.t. the terminal condition by adapting a usual approach

presented for example in [13]. Let p1 < p2 and consider the solutions (Y 0(p1), Z
0(p1)) and

(Y 0(p2), Z
0(p2)) associated to the BSDE (2.17) with respectively parameters p1 and p2. We

define the processes δY (p1, p2) := Y 0(p2)− Y 0(p1) and δZ(p1, p2) := Z0(p2)− Z0(p1). By

applying Iẗı¿12 ’s formula to the process
(

eαt|δYt(p1, p2)|
2
)

0≤t≤T
, we get that, for any α > 0,

d
(

eαt|δYt(p1, p2)|
2
)

= αeαt|δYt(p1, p2)|
2dt+ 2eαtδYt(p1, p2)d

(

δYt(p1, p2)
)

+eαt|δZt(p1, p2)|
2dt .

By usual arguments, we get

eαt|δYt(p1, p2)|
2 + E

[

∫ T

t
eαs|δZs(p1, p2)|

2ds
∣

∣

∣
Ft

]

≤

E
[

eαT |δYT (p1, p2)|
2 − α

∫ T

t
eαs|δYs(p1, p2)|

2ds− 2

∫ T

t
eαsδYs(p1, p2)δZs(p1, p2)ds

∣

∣

∣
Ft

]

+
2

γ
E

[

∫ T

t
λse

αsδYs(p1, p2)
(

eγ(F
D,W
s (p2)−Ys(p2) − eγ(F

D,W
s (p1)−Ys(p1))

)∣

∣

∣
Ft

]

.

By using Young’s inequality, we get

eαt|δYt(p1, p2)|
2 ≤ E

[

eαT |δYT (p1, p2)|
2
∣

∣Ft

]

+ (1− α)E
[

∫ T

t
eαs|δYs(p1, p2)|

2ds
∣

∣

∣
Ft

]

+
2

γ
E

[

∫ T

t
λse

αsδYs(p1, p2)
(

eγ(F
D,W
s (p2)−Ys(p2) − eγ(F

D,W
s (p1)−Ys(p1))

)∣

∣

∣
Ft

]

.

Moreover, we know that Y (p1) and Y (p2) are lower bounded, hence there exists a constant

k such that Yt(p1) ≥ k and Yt(p2) ≥ k for any t ∈ [0, T ]. Since the function exp(−γ(y∨k)) is

Lipschitz continuous, the process λ is bounded and the processes FD,W (p1) and F
D,W (p2)

are bounded, we can assert that there exists a positive constant C such that

eαt|δYt(p1, p2)|
2 ≤ E

[

eαT |δYT (p1, p2)|
2
∣

∣Ft

]

+ (C − α)E
[

∫ T

t
eαs|δYs(p1, p2)|

2ds
∣

∣

∣
Ft

]

.
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Hence, for α = C, we get

|δY0(p1, p2)|
2 ≤ E

[

eCT |δYT (p1, p2)|
2
]

.

We conclude the proof by recalling that Y 0
T (p), the terminal condition to the BSDE (2.17),

is continuous on R w.r.t. p as we have assumed that the function F̂L is continuous on

R.

We now consider the cases of usual guarantees.

Corollary 2.2. Ratchet guarantee

Let m > A0. Recalling notations of the equation (1.7), we assume that

F (p) = m ∧
[

A
p
T∧τ (0) ∨

(

max
0≤i≤n

[

e−
∫ T∧τ

0 rsdsÂ
p
ti
(0)1{ti≤T∧τ}

]

+

∫ T∧τ

0
ξsA

p
sβs ds

)

]

.

There exists p∗ ∈ R ∪ {−∞} such that for p ≥ p∗ we have VG(p) ≥ VF and for p < p∗ we

have VG(p) < VF.

Proof. From Proposition 2.3, we just have to show that limp→+∞ ψ(p) ≤ 0 .

It would follow from the intermediate value theorem and the monotonicity of ψ that there

exists p∗ ∈ R ∪ {−∞} such that ψ(p) ≤ 0 for p ≥ p∗ and ψ(p) > 0 for p < p∗. First, notice

that we may deduce from Assumption A1 that there exists a positive constant C such that,

for any t ∈ [0, T ], E[Ap
t ] ≤ Ce−pt. Therefore, as Ap

t ≥ 0, we get

lim
p→+∞

A
p
t = 0 a.s. for any t ∈ (0, T ] .

We now study the limit of ψ at +∞. We have

ψ(p) + y0 =
1

γ
ln(−VG(p)) .

On the other hand, for any π ∈ AG[0, T ], we have

VG(p) ≥ E
[

− exp(−γ(Xπ
T +A0 − F (p))

]

.

Hence, it follows from the monotone convergence theorem that

lim
p→+∞

ψ(p) + y0 =
1

γ
ln
(

− lim
p→+∞

VG(p)
)

≤
1

γ
ln
(

E
[

exp(−γ(Xπ
T +A0 − lim

p→+∞
F (p))

]

)

=
1

γ
ln
(

E
[

exp(−γ(Xπ
T +A0(1− e−

∫ T∧τ

0 rsds))
]

)

≤
1

γ
ln
(

E
[

exp(−γXπ
T )
]

)

. (2.19)

We recall that y0 =
1
γ ln(−VF) and that, from Proposition 2.1, there exists π∗ ∈ AF[0, T ] ⊂

AG[0, T ], such that y0 =
1
γ ln(E[exp(−γXπ∗

T )]). Therefore, we obtain that limp→+∞ ψ(p) ≤
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0 if we choose π∗ in (2.19).

Corollary 2.3. Roll-up guarantee

Let m > A0. Recalling notations of the equation (1.6), we assume that

F (p) = m ∧
[

A
p
T∧τ (0) ∨

(

e−
∫ T∧τ

0 rηs dsA0 +

∫ T∧τ

0
ξsA

p
sβ

η
s ds

)

]

.

There exists η∗ ≥ 0 such that for any η ∈ [0, η∗], there exists p∗ ∈ R ∪ {−∞} such that for

p ≥ p∗ we have VG(p) ≥ VF and for p < p∗ we have VG(p) < VF.

Proof. Let η ≥ 0. From Proposition 2.1, there exists π∗ ∈ AF[0, T ] ⊂ AG[0, T ], such

that y0 = 1
γ ln(E[exp(−γXπ∗

T )]). Following the proof of Corollary 2.2, we deduce from the

monotone convergence theorem that

lim
p→+∞

ψ(p) + y0 =
1

γ
ln

(

− lim
p→+∞

VG(p)
)

≤
1

γ
ln

(

E
[

exp(−γ(Xπ∗

T +A0 − lim
p→+∞

F (p)))
]

)

=
1

γ
ln

(

Φ(η)
)

,

where we have set

Φ(η) := E

[

exp
(

− γ(Xπ∗

T +A0(1− e−
∫ T∧τ

0 rηs ds))
)

]

.

Obviously, Φ is continuous and non-decreasing on R
+. Moreover, we have

Φ(0) ≤ E
[

exp(−γXπ∗

T )
]

= eγy0 and lim
η→+∞

Φ(η) = +∞ .

From the intermediate value theorem, we may define η∗ ≥ 0 as

η∗ := sup{η ≥ 0, Φ(η) = eγy0} .

We conclude the proof by noticing that for 0 ≤ η ≤ η∗, we have

lim
p→+∞

ψ(p) ≤
1

γ
ln
(

Φ(η)
)

− y0 ≤ 0 .

3 Simulations

In this section we present numerical illustrations of parameters sensibility for indifference

fee rates. We compute solutions for both optimization problems: VF, the utility maxi-

mization problem without variable annuities, and VG(p), the utility maximization problem

with variable annuities. We simulate the BSDEs involved, using the discretization scheme
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studied in [7]. For the computation of the conditional expectations, we use non-parametric

regression method with the Gaussian function as kernel. Following a dichotomy method,

we find p such that the equality VF = VG(p) is satisfied.

We assume that r and µ are Markov chains taking values in the states spaces Sr =

{0, 0.01, . . . , 0.25} and Sµ = {0, 0.01, 0.02, . . . , 0.3}. Their respective transitional ma-

trix are Qr = {qri,j}1≤i,j≤26 and Qµ = {qµi,j}1≤i,j≤31 are given by

qri,j =



































1
2 if i = j,
1
2 if i = 1 and j = 2,
1
2 if i = 27 and j = 26,
1
4 if i = j + 1 and i ≤ 26,
1
4 if i = j − 1 and i ≥ 2,

0 else,

and q
µ
i,j =



































1
2 if i = j,
1
2 if i = 1 and j = 2,
1
2 if i = 32 and j = 31,
1
4 if i = j + 1 and i ≤ 31,
1
4 if i = j − 1 and i ≥ 2,

0 else,

Initial values µ0 and r0 will be precised later. For simplicity, we assume that there are no

early withdrawals i.e. we set (ξt)t≥0 ≡ 0, except for Figure 9. We shall give the following

numerical values to parameters

γ = 1.3, λ = 0.05, T = 20, A0 = 1,

and, for the financial market parameters

r0 = 0.02, µ0 = 0.15, σ = 0.3.

We divide our numerical study in three parts. First, we consider a product with a ratchet

guarantee and describe the dependence with respect to the market parameters: the initial

interest rate (see Figure 2), the initial drift (see Figure 3) and the volatility (see Figure 4).

In a second part, still with ratchet guarantee, we give illustrations of the dependence with

respect to the longevity parameters: the contract maturity and the exit time intensity. In

the last part, we consider the case with a roll-up guarantee and compute the sensibilities

of indifference fees to variations of the initial value A0, the roll-up rate η and finally to

variations of the withdrawal rate ξ.

3.1 Market risk

In this first part, we want to understand the impact of market risks on the indifference fee.

For that we consider the case of ratchet guarantees.

Figure 2 plots the indifference fee rates when the initial interest rate r0 ranged from 0.01

to 0.055.

21



0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

r

p

 

 

Figure 2: Indifference fee rate w.r.t. r0

We notice that indifference fee rates increase with interest rate. This is due to the guarantee

structure of the product: a growth of interest rate will lead to a growth of the quantity

VG(p) with respect to VF and to compensate this growth we will have to increase p, as

p→ VG(p) is non-increasing.

Figure 3 plots the indifference fee rates when the initial drift µ0 ranged from 0.02 to 0.3.
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0
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0.35

µ

p

 

 

Figure 3: Indifference fee rate w.r.t. µ0

Notice that indifference fee rates decrease with respect to the initial drift. The bigger is the

drift the less usefull are the guarantees, then the fees payed to get these guarantees have

to decrease.

Figure 4 plots the indifference fee rates when the volatility σ ranged from 0.1 to 0.4.
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Figure 4: Indifference fee rate with respect to σ

Once again, we can get a financial interpretation of the monotonicity of the fees w.r.t.

market volatility. The bigger is the volatility the more usefull are the guarantees, then the

fees payed to get these guarantees have to increase.

3.2 Longevity risk

In this second part, we emphasize the impact of longevity risks on indifference fees for

ratchet guarantees. Figure 5 plots the indifference fee rates when the intensity λ ranged

from 0 to 0.25.
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0

0.05
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p

 

 

Figure 5: Indifference fee rate with respect to λ
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Figure 6 plots the indifference fee rates when the terminal time of the contract T ranged

from 7 to 28.

6 8 10 12 14 16 18 20 22 24 26 28
0
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Figure 6: Indifference fee rate with respect to the maturity

Notice that the more it remains time or expected time to maturity, the more the insurer

will receive fees. Hence, fee rate should decrease when time or expected time to maturity

increases.

3.3 Roll up guarantee risk

To end this numerical section, we consider the roll-up guarantee case. We presents some

sensibilities of indefference fee rates to the roll-up rate η, to the initial investment A0 and

to the withdrawal rate ξ.

Figure 7 plots the indifference fee rates when the roll-up rate η ranged from 0 to 0.05.
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Figure 7: Indifference fee rate with respect to η

We remark that the indifference fee rates are increasing with respect to the roll-up rate
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η with an exponential growth. The insurer has to be carefull when he offers a roll up

guarantee: if he proposes a rate η too high (for example η > 0.05), the guarantee could be

not rentable to sell, at any price.

Figure 8 plots the indifference fee rates when the initial value A0 ranged from 0.5 to 2.
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Figure 8: Indifference fee rate with respect to A0

As expected, indifference fee rates are decreasing with respect to the initial investment A0.

If A0 is too small it could be not interesting for the insurer to sell the product, whatever

the fees are.

Figure 9 plots the indifference fee rates when the withdrawal rate ξ is constant and ranged

from 0 to 0.3. It shows that indifference fee rates are lineary increasing w.r.t. the withdrawal

rate ξ.
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Figure 9: Indifference fee rate with respect to ξ
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A Appendix

A.1 Utility maximization between T ∧ τ and T

Lemma A.1. There exists a strategy π∗,τ ∈ AG[T ∧ τ, T ] such that

ess inf
π∈AG[T∧τ,T ]

E
[

exp(−γ∆Xπ
τ,T )|GT∧τ

]

= E
[

exp(−γ∆Xπ∗,τ

τ,T )|GT∧τ

]

.

Moreover, there exists a process Y (τ) such that

ess inf
π∈AG[T∧τ ,T ]

E
[

exp(−γ∆Xπ
T∧τ ,T )|GT∧τ

]

= exp(γY
(τ)
T∧τ ) ,

where (Y (τ), Z(τ)) is solution of the BSDE

{

dY
(τ)
t =

[

ν2t
γ + νtZ

(τ)
t

]

dt+ Z
(τ)
t dBt ,

Y
(τ)
T = 0 .

Proof. We look for a process Y (τ) such that the family of processes {J (τ)(π), π ∈ AG[T ∧ τ , T ]}

defined for any π ∈ AG[T ∧ τ , T ] by

J
(τ)
t (π) := exp

(

− γ(∆Xπ
τ,t − Y

(τ)
t )

)

satisfied the following conditions

(i) J
(τ)
T (π) = exp(−γ∆Xπ

τ,T ).

(ii) J
(τ)
T∧τ (π) is a random variable GT∧τ -measurable and independent of π.

(iii) J (τ)(π) is a submartingale for any π ∈ AG[T ∧ τ , T ] on the time interval [T ∧ τ , T ].

(iv) There exists a strategy π∗,τ such that J (τ)(π∗,τ ) is a martingale on the time interval

[T ∧ τ , T ].

The process Y (τ) is looked under the form

{

−dY
(τ)
t = f(t, Y

(τ)
t , Z

(τ)
t )dt− Z

(τ)
t dBt ,

Y
(τ)
T = 0 ,

and we are bounded to choose the function f for which J (τ)(π) satisfies the previous con-

ditions. Classically we obtain

f(t, y, z) = −
ν2t
γ

− νtz

and the candidate to be π∗,τ is given by

π
∗,τ
t =

1

σ̂t

[νt

γ
+ Z

(τ)
t

]

, ∀t ∈ [T ∧ τ , T ] .
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The end of the proof is identical to the one in [15].

A.2 Proof of Lemma 2.2

We denote the upper bound of the uniformly bounded process Y 0(p) by k. Applying Iẗı¿12 ’s

formula to (Y 0(p)− k)2, we obtain, for any G-stopping times θ ≤ T ,

∣

∣Y 0
T (p)− k

∣

∣

2
−
∣

∣Y 0
θ (p)− k

∣

∣

2 = 2

∫ T

θ
(Y 0

s (p)− k)dY 0
s (p) +

∫ T

θ

∣

∣Z0
s (p)

∣

∣

2
ds .

Taking the conditional expected value, we get

E

[

∫ T

θ

∣

∣Z0
s (p)

∣

∣

2
ds
∣

∣

∣
Gθ

]

= 2E
[

∫ T

θ
(k − Y 0

s (p))
[ ν2s
2γ

+ νsZ
0
s (p)− λs

eγ(F
D,W
s (p)−Y 0

s (p)) − 1

γ

]∣

∣

∣
Gθ

]

+E

[

∣

∣FL
T (p)− k

∣

∣

2
∣

∣

∣
Gθ

]

−
∣

∣Y 0
θ (p)− k

∣

∣

2
.

Due to Assumption A1 and the fact that Y 0(p) ∈ S∞
G
, there exist two positive constants

c1 and c2 such that

E

[

∫ T

θ

∣

∣Z0
s (p)

∣

∣

2
ds
∣

∣

∣
Gθ

]

≤ c1 + c1E
[

∫ T

θ
Z0
s (p)ds

∣

∣

∣
Gθ

]

≤ c1 + c1E
[

∫ T

θ

( 1

2c2

∣

∣Z0
s (p)

∣

∣

2
+
c2

2

)

ds
∣

∣

∣
Gθ

]

.

Therefore, there exists a positive constant c such that

E

[

∫ T

θ

∣

∣Z0
s (p)

∣

∣

2
ds
∣

∣Gθ

]

≤ c .

Hence
∫ ·
0 Z

0
s (p)dBs is a BMO(P)-martingale. By definition of π∗, Assumption A1 and using

the results of [15] for Z(τ), it follows that
∫ ·
0 σsπ

∗
sdBs is a BMO(P)-martingale, since the

processes µ, σ, γ and r are bounded.
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