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Abstract

The stationary Boltzmann equation for hard and soft forces in the
context of a two component gas is considered in the slab when the
molecular masses of the 2 component are different. An L1 existence
theorem is proved when one component satisfies a given indata profile
and the other component satisfies diffuse reflection at the boundaries.
Weak L1 compactness is extracted from the control of the entropy
production term of the mixture.
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1 Introduction and setting of the problem.

This article is devoted to the proof of an existence theorem for the stationary
Boltzmann equation in the situation of a two component gas having different
molecular masses for the geometry of the slab. The slab being represented
by the interval [−1, 1], the Boltzmann equation reads

ξ
∂

∂x
fA(x, v) = QAA(fA, fA)(x, v) + QAB(fA, fB)(x, v), (1.1)

ξ
∂

∂x
fB(x, v) = QBB(fB, fB)(x, v) + QBA(fB, fA)(x, v), (1.2)

x ∈ [−1, 1], v ∈ R
3.
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The non-negative functions fA and fB represent the distribution functions
of the A and the B component with x the position and v the velocity. ξ

is the velocity component in the x direction. For for any α, β ∈ {A, B},
Qα,β corresponds to the non linear Boltzmann collision operator between
the species α and β. More precisely, it is defined for any {α, β} ∈ {A, B} by

Qα,β(v) =

∫

R3×S2

Bα,β
(

fα(x, v′∗)fβ(x, v′) − fβ(x, v∗)fα(x, v)
)

dωdv∗ (1.3)

where

v′(βα) = v +
2mβ

mα + mβ
〈v∗ − v, ω〉ω, v

′(βα)
∗ = v∗ −

2mβ

mα + mβ
〈v∗ − v, ω〉ω.

(1.4)

In the formula (1.4), v′(βα) and v
′(βα)
∗ represent the post-colisional velocities

between the species α and β and mα is the mass of the specy α. For more
precisions on the model we refer to ([15], [2]).

〈· , · 〉 denotes the Euclidean inner product in R
3. Let ω be represented

by the polar angle (with polar axis along v − v∗) and the azimutal angle φ.
For the sake of clarity, recall the invariant properties of the collision

operator Qα,β , for any {α, β} ∈ {A, B}. For more details we refer to ([17]).

Property 1.1. For α, β ∈ {A, B}, with α 6= β, it holds that

∫

R3

(1, mαv, mα|v|2)Qα,α(fα, fα)dv = 0,

∫

R3

Qα,β(fα, fβ)dv = 0,

∫

R3

mαv Qα,β(fα, fβ)dv +

∫

R3

mαv Qβ,α(fβ, fα)dv = 0,

∫

R3

mαv2 Qα,β(fα, fβ)dv +

∫

R3

mαv2 Qβ,α(fβ, fα)dv = 0.

The function Bα,β(v−v∗, ω) is the collision kernel of Qα,β . It is a noneg-
ative function whose form is determined by the molecular interaction. Be-
cause of the action and reaction principle, it has the symmetry property
BA,B = BB,A. More precisely, we consider in this paper the following type
of kernels

1

4
√

2π

(

dα + dβ

2

)2

|v − v∗|βb(θ),
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with

0 ≤ β < 2, b ∈ L1
+([0, 2π]), b(θ) ≥ c > 0 a.e.

for hard forces and

−3 ≤ β < 0, b ∈ L1
+([0, 2π]), b(θ) ≥ c > 0 a.e.

for soft forces.
As ([2]) define the collision frequency as the vector (νA, νB), with for any

α ∈ {A, B},

να =
∑

β∈{A,B}

∫

Bα,βfβdωdv∗.

On the boundary of the domain, the two components satisfy different phys-
ical properties. Indeed, the A component is supposed to be a condensable
gas whereas the B component is supposed to be non condensable.

Hence the boundary conditions for the A component are the given indata
profile

fA(−1, v) = kM−(v), ξ > 0, fA(1, v) = kM+(v), ξ < 0, (1.5)

for some positive k. The boundary conditions for the B component are of
diffuse reflection type

fB(−1, v) = (

∫

ξ′<0
|ξ′|fB(−1, v′)dv′)M−(v), ξ > 0, (1.6)

fB(1, v) = (

∫

ξ′>0
ξ′fB(1, v′)dv′)M+(v), ξ < 0.

M+ and M− are given normalized Maxwellians

M−(v) =
1

2πT 2
−

e
−

|v|2

2T− and M+(v) =
1

2πT 2
+

e
−

|v|2

2T+ .

As a theoritical point of view, existence theorem for single component gases
has been firstly considered. These papers are of interest because the case
of the stationary Boltzmann equation is not covered by the DiPerna Lions
theory established for the time dependant non linear Boltzmann equation
([16], [14]). In ([6]), an L1 existence theorem is shown for hard and soft
forces when the distribution function has a given indatta profile. In the case
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of boundary conditions of Maxwell diffuse reflection type, an analogous the-
orem is also shown in ([7]). In these two papers the solutions are constructed
in such a way that they have a given weighted mass. Existence results for
the stationary Povzner equation for a bounded domain of R

3 are shown in
([21], [8]). The situation of a two component gas has been considered in
([11], [12]) when the molecular masses of the two gases are the same. The
existence theorems are proved for (1.5, 1.6). In these papers, the strategy
of the resolution is to use that the sum of the distribution of the two com-
ponents satisfies the Boltzmann equation for a one component gas. Hence
the weak L1 compactness is firstly obtained for the sum and transmitted to
the two distribution functions. But in the present, case due to the different
molecular masses, the sum of the distribution functions is not solution to
the Boltzmann equation for a single component gas. Therefore the weak L1

compactenss has to be extracted directy on each component. In ([13]) the
situation of a binary mixture close to a local equilibrium is investigated. In
that case the solution of the system is constructed as a Hilbert expansion
and a rest term rigorously controled. In [17] a moment method is applied
in the situation of small Knudsen number to derive a fluid system.

As a physical point of view and as a numerical point of view, a problem
of evaporation condensation for a binary mixture far from equilibrium has
been considered in ([22]). The binary mixture composed of vapor and non
condensable gas in contact with an infinite plane of condensed vapor. More-
over the non condensable gas is supposed to be closed to the condensed
vapor. For the numerical simulations the authors used a time-dependant
BGK model for a two component gas until a stationary state is reached.
The situation of a small Knudsen number has also been investigated in ([1],
[4], [3], [25]) where two types of behaviour are pointed out. In a first sit-
uation the macroscopic velocity of the two gases tends to zero when the
Knudsen number tends to zero. But the zero order term of the tempera-
ture is obtained from the first order term of the macroscopic velocity. This
means that the macroscopic velocity disappears at the limit but keeps an
influence on the limit. This is the ghost effect pointed in ([23]) for a one
component gas and in ([1],[4], [3]) for a two component gas. In a second case
the B component becomes negligeable and the macroscopic velocity of the
A component becomes constent. Moreover the B component accumulates in
a thin layer called Knudsen layer at a boundary.

In this paper, weak solutions (fA, fB) to the stationary problem in the
sense of Definition 1.1 will be considered.

Definition 1.1. Let MA and MB be given nonnegative real numbers. (fA, fB)
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is a weak solution to the stationary Boltzmann problem with the β-norms MA

and MB, if fA, fB, νA and νB ∈ L1
loc((−1, 1) × R

3),
∫

(1 + |v|)βfA(x, v)dxdv = MA,
∫

(1 + |v|)βfB(x, v)dxdv = MB, and there is
a constant k > 0 such that for every test function ϕ ∈ C1

c ([−1, 1]×R
3) such

that ϕ vanishes in a neiborhood of ξ = 0, and on {(−1, v); ξ < 0}∪{(1, v); ξ >

0},
∫ 1

−1

∫

R3

(ξfA
∂ϕ

∂x
+ QAA(fA, fA) + QAB(fA, fB)ϕ)(x, v)dxdv

= k

∫

R3,ξ<0
ξM+(v)ϕ(1, v)dv − k

∫

R3,ξ>0
ξM−(v)ϕ(−1, v)dv,

∫ 1

−1

∫

R3

(ξfB
∂ϕ

∂x
+ QBB(fB, fB) + QBA(fB, fA)ϕ)(x, v)dxdv,

=

∫

ξ′<0
|ξ|M+(v)ϕ(1, v)dv(

∫

ξ′>0
ξ′fB(1, v′)dv′)

−
∫

ξ′>0
ξM−(v)ϕ(−1, v)dv(

∫

ξ′<0
ξ′fB(−1, v′)dv′).

Renormalized solutions will also been considered. We recall their definition.
Let g be defined for x > 0 by

g(x) = ln(1 + x).

Definition 1.2. Let MA and MB be given nonnegative real numbers. (fA, fB)
is a renormalized solution to the stationary Boltzmann problem with the β-
norms MA and MB, if fA, fB, νA, νB ∈ L1

loc((−1, 1) × R
3),

∫

(1 + |v|)βfA(x, v)dxdv = MA,
∫

(1 + |v|)βfB(x, v)dxdv = MB, and there is
a constant k > 0 such that for every test function ϕ ∈ C1

c ([−1, 1]×R
3) such

that ϕ vanishes in a neiborhood of ξ = 0 and on
{(−1, v); ξ < 0} ∪ {(1, v); ξ > 0},

∫ 1

−1

∫

R3

(ξg(fA)
∂ϕ

∂x
+

QAA(fA, fA)

1 + fA
ϕ +

QAB(fA, fB)

1 + fA
ϕ)(x, v)dxdv

=

∫

R3,ξ<0
ξg(kM+(v))ϕ(1, v)dv −

∫

R3,ξ>0
g(ξkM−(v))ϕ(−1, v)dv,

∫ 1

−1

∫

R3

(ξg(fB)
∂ϕ

∂x
+

QBB(fB, fA + fB)

1 + fB
ϕ +

QBA(fB, fA)

1 + fB
ϕ)(x, v)dxdv,

=

∫

ξ<0
ξg
(

(

∫

ξ′>0
ξ′fB(1, v′)dv′)M+(v)

)

ϕ(1, v)dv

−
∫

ξ>0
ξg
(

∫

ξ′<0
ξ′fB(−1, v′)dv′)M−(v)

)

ϕ(−1, v)dv.
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The main results of this paper are the following theorems

Theorem 1.1. Given β with 0 ≤ β < 2, MA > 0 and MB > 0 there is a
weak solution to the stationary problem with β-norms equal to MA and MB.

Theorem 1.2. Given β with −3 < β < 0 MA > 0 and MB > 0, there is a
renormalized solution to the stationary problem with β-norms equal to MA

and MB.

The present paper is organized as follows. The second and the third
section are devoted to the proof of the theorems 1.1 and 1.2. In section 2,
we perform a fix point step on an approched problem as in ([6], [7], [11],
[12]). In the last part we perform a passage to the limit in the sequences of
approximation.

2 Approximations with fixed total masses

Let r > 0, m ∈ N
∗, µ > 0, δ > 0, j ∈ N

∗.
By arguing as in ([5]), we can construct a function, χr,m ∈ C∞

0 with range
[0, 1] invariant under the collision transformations Jα,β , defined for any
{α, β} ∈ {A, B} by

Jα,β(v, v∗, ω) = (v(α,β)′, v
(α,β)′
∗ ,−ω),

and under the exchange of v and v∗. Moreover χr,m satisfies also

χr,m(v, v∗, ω) = 1, ∀(α, β) ∈ {A, B} min(|ξ|, |ξ∗|, |ξ(α,β)′|, |ξ(α,β)′
∗ | ≥ r),

and

χr,m(v, v∗, ω) = 0, ∀(α, β) ∈ {A, B} max(|ξ|, |ξ∗|, |ξα,β,′|, |ξα,β,′
∗ |) ≤ r − 1

m
.

The modified collision kernel Bα,β
m,n,µ is a positive C∞ function approximating

min(Bα,β , µ), when

v2 + v2
∗ <

√
n

2
, and | v − v∗

|v − v∗|
· ω| >

1

m
, and | v − v∗

|v − v∗|
· ω| < 1 − 1

m

and such that Bα,β
m,n,µ(v, v∗, ω) = 0, if

v2 + v2
∗ >

√
n or | v − v∗

|v − v∗|
· ω| <

1

2m
, or | v − v∗

|v − v∗|
· ω| > 1 − 1

2m
.
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The functions ϕl are mollifiers in the x-variable defined by ϕl(x) := lϕ(lx),
where

ϕ ∈ C∞
0 (R3

v), support(ϕ) ⊂ (−1, 1), ϕ ≥ 0,

∫ 1

−1
ϕ(x)dx = 1.

For the sake of clarity Theorems 1.1 and 1.2 are shown for MA = MB = 1.
The passage to general weighted masses MA and MB is immediate and we
refer to ([6], [7], [11], [12]).

Non negative functions gA, gB ∈ K and θ ∈ [0, 1] are given. By arguing
as in ([11]), we can construct FA and FB solutions of the following boundary
value problem

δFA + ξ
∂

∂x
FA =

∫

R3
v∗

×S2

χr,mBAA
m,n,µ

FA

1 + FA

j

(x, v′)
gA ∗ ϕ

1 + gA∗ϕ
j

(x, v
′

∗)dv∗dω

+

∫

R3
v∗

×S2

χr,mBAB
m,n,µ

FA

1 + FA

j

(x, v′)
gB ∗ ϕ

1 + gB∗ϕ
j

(x, v
′

∗)dv∗dω

−FA

∫

R3
v∗×S2

χr,mBAA
m,n,µ

gA ∗ ϕ

1 + gA∗ϕ
j

(x, v∗)dv∗dω

−FA

∫

R3
v∗×S2

χr,mBm,n,µ
gB ∗ ϕ

1 + gB∗ϕ
j

(x, v∗)dv∗dω, (x, v) ∈ (−1, 1) × R
3
v,

FA(−1, v) = λM−(v), ξ > 0, FA(1, v) = λM+(v), ξ < 0, (2.1)

and

δFB + ξ
∂

∂x
FB =

∫

R3
v∗×S2

χr,mBBB
m,n,µ

FB

1 + FB

j

(x, v′)
gB ∗ ϕ

1 + gB∗ϕ
j

(x, v
′

∗)dv∗dω

+

∫

R3
v∗

×S2

χr,mBAB
m,n,µ

FB

1 + FB

j

(x, v′)
gA ∗ ϕ

1 + gA∗ϕ
j

(x, v
′

∗)dv∗dω

−FB

∫

R3
v∗

×S2

χr,mBBB
m,n,µ

gB ∗ ϕ

1 + gB∗ϕ
j

(x, v∗)dv∗dω

−FB

∫

R3
v∗

×S2

χr,mBBA
m,n,µ

gA ∗ ϕ

1 + gA∗ϕ
j

(x, v∗)dv∗dω, (x, v) ∈ (−1, 1) × R
3
v,

FB(−1, v) = θλM−(v), ξ > 0, FB(1, v) = (1 − θ)λM+(v), ξ < 0, (2.2)

as the L1 limit of sequences. It can also been proven that the equations
(2.1) and (2.2) each has a unique solution which is strictly positive. Hence
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the functions fA and fB,

fA =
FA

∫

min(µ, (1 + |v|)β)FA(x, v)dxdv
,

fB =
FB

∫

min(µ, (1 + |v|)β)FB(x, v)dxdv
.

are well defined since FA and FB strictly positive.
Indeed using that

∫ 1
−1(α + ν(x, v))dx ≤ 2 + 2µ, it holds that

FA(x, v) ≥ λM−(v)e
− 2+2µ

ξ , ξ > 0, FA(x, v) ≥ λM+(v)e
− 2+2µ

|ξ| , ξ < 0.

Analogously, we obtain

FB(x, v) ≥ θλM−(v)e
− 2+2µ

ξ , ξ > 0,

FB(x, v) ≥ (1 − θ)λM+(v)e
− 2+2µ

|ξ| , ξ < 0.

By taking λ as

λ = min(
1

∫

ξ>0 M−(v)min(µ, (1 + |v|)β)e
− 2+2µ

ξ dv
;

1
∫

ξ<0 M+(v)min(µ, (1 + |v|)β)e
− 2+2µ

|ξ| dv
),

we get

∫

min(µ, (1 + |v|)β)FA(x, v)dxdv ≥ 1

and
∫

min(µ, (1 + |v|)β)FB(x, v)dxdv ≥ 1.

Hence the functions fA and fB are solutions to
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δfA + ξ
∂

∂x
fA =

∫

R3
v∗

×S2

χr,mBAA
m,n,µ

fA

1 + FA

j

(x, v′)
gA ∗ ϕ

1 + gA∗ϕ
j

(x, v
′

∗)dv∗dω

+

∫

R3
v∗

×S2

χr,mBAB
m,n,µ

fA

1 + F A

j

(x, v′)
gB ∗ ϕ

1 + gB∗ϕ
j

(x, v
′

∗)dv∗dω

−fA

∫

R3
v∗

×S2

χr,mBAA
m,n,µ

gA ∗ ϕ

1 + gA∗ϕ
j

(x, v∗)dv∗dω

−fA

∫

R3
v∗×S2

χr,mBAB
m,n,µ

gB ∗ ϕ

1 + gB∗ϕ
j

(x, v∗)dv∗dω, (x, v) ∈ (−1, 1) × R
3
v,

fA(−1, v) =
λ

∫

min(µ, (1 + |v|)β)FA(x, v)dxdv
M−(v), ξ > 0,

fA(1, v) =
λ

∫

min(µ, (1 + |v|)β)FA(x, v)dxdv
M+(v), ξ < 0,

(2.3)

and

δfB + ξ
∂

∂x
fB =

∫

R3
v∗

×S2

χr,mBBB
m,n,µ(v, v∗, ω)

fB

1 + FB

j

(x, v′)
gB ∗ ϕ

1 + gB∗ϕ
j

(x, v
′

∗)dv∗dω

+

∫

R3
v∗×S2

χr,mBBA
m,n,µ(v, v∗, ω)

fB

1 + FB

j

(x, v′)
gB ∗ ϕ

1 + gB∗ϕ
j

(x, v
′

∗)dv∗dω

−fB(x, v)

∫

R3
v∗

×S2

χr,mBBB
m,n,µ

gB ∗ ϕ

1 + gB∗ϕ
j

(x, v∗)dv∗dω

−fB(x, v)

∫

R3
v∗×S2

χr,mBBA
m,n,µ

gA ∗ ϕ

1 + gA∗ϕ
j

(x, v∗)dv∗dω, (x, v) ∈ (−1, 1) × R
3
v,

fB(−1, v) =
λ

∫

min(µ, (1 + |v|)β)FB(x, v)dxdv
θM−(v), ξ > 0,

fB(1, v) =
λ

∫

min(µ, (1 + |v|)β)FB(x, v)dxdv
(1 − θ)M+(v), ξ < 0.

(2.4)

In order to use a fixed-point theorem, consider the closed and convex subset
of L1

+([−1, 1] × R
3
v),

K = {f ∈ L1
+([−1, 1] × R

3
v),

∫

[−1,1]×R3
v

min(µ, (1 + |v|)β)f(x, v)dxdv = 1}.
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The fixed-point argument will now be used in order to solve (2.3, 2.4) with
gA = fA and gB = fB.

Define T on K × K × [0, 1] by T (gA, gB, θ) = (fA, fB, θ̃) with

θ̃ =

∫

ξ<0 |ξ|fB(−1, v)dv
∫

ξ<0 |ξ|fB(−1, v)dv +
∫

ξ>0 ξfB(1, v)dv
(2.5)

and (fA, fB) solution to (2.3, 2.4).
The mapping T takes K × K × [0, 1] into itself. Next by using the

exponetial forms of the equations (2.1, 2.2, 2.3, 2.4) together with averaging
lemmas, it can be shown that the map T is continous and compact for
the strong L1 topology. So from the Schauder fixed point theorem there is
(fA, fB, θ) such that

fA = gA, fB = gB, θ =

∫

ξ<0 |ξ|fB(−1, v)dv
∫

ξ>0 ξfB(1, v)dv +
∫

ξ<0 |ξ|fB(−1, v)dv

that satisfy

δfA + ξ
∂

∂x
fA =

∫

R3
v∗

×S2

χr,mBAA
m,n,µ

fA

1 + FA

j

(x, v′)
fA ∗ ϕl

1 + fA∗ϕl

j

(x, v
′

∗)dv∗dω

+

∫

R3
v∗

×S2

χr,mBAB
m,n,µ

fA

1 + FA

j

(x, v′)
fB ∗ ϕl

1 + fB∗ϕl

j

(x, v
′

∗)dv∗dω

−fA

∫

R3
v∗

×S2

χr,mBAA
m,n,µ

fA ∗ ϕl

1 + fA∗ϕl

j

(x, v∗)dv∗dω

−fA

∫

R3
v∗

×S2

χr,mBAB
m,n,µ

fB ∗ ϕl

1 + fB∗ϕl

j

(x, v∗)dv∗dω, (x, v) ∈ (−1, 1) × R
3
v,

fA(−1, v) = kAM−(v), ξ > 0, fA(1, v) = kAM+(v), ξ < 0

(2.6)

with

kA =
λ

∫

min(µ, (1 + |v|)β)FA(x, v)dxdv
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and

δfB + ξ
∂

∂x
fB =

∫

R3
v∗×S2

χr,mBBB
m,n,µ

fB

1 + F B

j

(x, v′)
fB ∗ ϕl

1 + fB∗ϕl

j

(x, v
′

∗)dv∗dω

+

∫

R3
v∗×S2

χr,mBBA
m,n,µ

fB

1 + FB

j

(x, v′)
fA ∗ ϕl

1 + fA∗ϕl

j

(x, v
′

∗)dv∗dω

−fB

∫

R3
v∗

×S2

χr,mBBB
m,n,µ

fB ∗ ϕl

1 + fB∗ϕl

j

(x, v∗)dv∗dω

−fB

∫

R3
v∗

×S2

χr,mBBA
m,n,µ

fA ∗ ϕl

1 + fA∗ϕl

j

(x, v∗)dv∗dω, (x, v) ∈ (−1, 1) × R
3
v,

fB(−1, v) = λ′(

∫

ξ<0 |ξ|fB(−1, v)dv
∫

ξ>0 ξfB(1, v)dv +
∫

ξ<0 |ξ|fB(−1, v)dv
)M−(v), ξ > 0,

fB(1, v) = λ′(

∫

ξ>0 |ξ|fB(1, v)dv
∫

ξ>0 ξfB(1, v)dv +
∫

ξ<0 |ξ|fB(−1, v)dv
)M+(v), ξ < 0,

(2.7)

with

λ′ =
λ

∫

min(µ, (1 + |v|)β)FB(x, v)dxdv
.

3 The slab solution for −3 < β ≤ 0 and 0 ≤ β < 2.

This section is devoted to the passage to the limit in (2.6, 2.7). It is per-
formed in two steps. In the first one the solutions of the approached problem
are written in their exponential form and averaging lemmas are used. The
second passage to the limit corresponds to the passage to the limit in (3.8,
3.9). One crucial point is to get an entropy estimate on the sequence of
approximations (f j

A, f
j
B)j∈N in order to extract compactness. In ([11]), this

control is obtained from a bound on the entropy of f j = f
j
A + f

j
B by using

that f j satisfy the Boltzmann equation for a single component gas. But
in the present paper, due to the difference of the molecular masses, this
property is not satisfied.

Keeping, l, j, r, m, µ fixed, denote f
j,δ,l,r,m,µ
A by f δ

A and f
j,δ,l,r,m,µ
B by

f δ
B. Writing the equations (2.6, 2.7) in the exponential form and using the

averaging lemmas together with a convolution with a mollifier ([7],[19]) give
that f δ

A and F δ
A are strongly compact in L1([−1, 1]×R

3
v). Denote by fA and

FA the respective limits of f δ
A and F δ

A. Following the proofs of ([6], [7], [11])

11



a strong compactness argument is used to pass to the limit in (2.6) when δ

tends to 0. Hence fA is solution to

ξ
∂

∂x
fA =

∫

R3
v∗

×S2

χr,mBAA
m,n,µ

fA

1 + F A

j

(x, v′)
fA ∗ ϕl

1 + fA∗ϕl

j

(x, v
′

∗)dv∗dω

∫

R3
v∗×S2

χr,mBAB
m,n,µ

fA

1 + F A

j

(x, v′)
fB ∗ ϕl

1 + fB∗ϕl

j

(x, v
′

∗)dv∗dω

−fA

∫

R3
v∗

×S2

χr,mBAA
m,n,µ

fA ∗ ϕl

1 + fA∗ϕl

j

(x, v∗)dv∗dω,

−fA

∫

R3
v∗

×S2

χr,mBAB
m,n,µ

fB ∗ ϕl

1 + fB∗ϕl

j

(x, v∗)dv∗dω, (x, v) ∈ (−1, 1) × R
3
v,

fA(−1, v) =
λ

∫

min(µ, (1 + |v|)β)FA(x, v)dxdv
M−(v), ξ > 0,

fA(1, v) =
λ

∫

min(µ, (1 + |v|)β)FA(x, v)dxdv
M+(v), ξ < 0,

(3.8)

with
∫

min(µ, (1 + |v|)β)f j
A(x, v)dxdv = 1.

For the same reasons, the limit fB of f δ
B satisfies

ξ
∂

∂x
fB =

∫

R3
v∗

×S2

χr,mBBB
m,n,µ

fB

1 + F B

j

(x, v′)
fB ∗ ϕl

1 + fB∗ϕl

j

(x, v
′

∗)dv∗dω

+

∫

R3
v∗

×S2

χr,mBBB
m,n,µ

fB

1 + F B

j

(x, v′)
fA ∗ ϕl

1 + fA∗ϕl

j

(x, v
′

∗)dv∗dω

−fB

∫

R3
v∗×S2

χr,mBBB
m,n,µ

fB ∗ ϕl

1 + fB∗ϕl

j

(x, v∗)dv∗dω

−fB

∫

R3
v∗×S2

χr,mBBA
m,n,µ

fA ∗ ϕl

1 + fA∗ϕl

j

(x, v∗)dv∗dω, (x, v) ∈ (−1, 1) × R
3
v,

fB(−1, v) = σ(−1)λ′M−(v), ξ > 0, fB(1, v) = σ(1)λ′M+(v), ξ < 0,

(3.9)

with
∫

min(µ, (1 + |v|)β)fB(x, v)dxdv = 1,

12



where

σ(−1) =

∫

ξ<0 |ξ|fB(−1, v)dv
∫

ξ>0 ξfB(1, v)dv +
∫

ξ<0 |ξ|fB(−1, v)dv
,

σj(1) =

∫

ξ>0 ξfB(1, v)dv
∫

ξ>0 ξfB(1, v)dv +
∫

ξ<0 |ξ|fB(−1, v)dv

and

λ′ =
λ

∫

min(µ, (1 + |v|)β)F j
B(x, v)dxdv

.

Mutltiply (3.8) by log(
f

j
A

1+
f

j
A
j

) and (3.9) by log(
f

j
B

1+
f

j
B
j

) and add the two re-

13



sulting equations leads to according to ([6], [2], [17]),

∫

R3

ξ

(

f
j
A log(f j

A)(1, v) − j(1 +
f

j
A

j
) log(1 +

f
j
A

j
)(1, v)

)

−
∫

R3

ξ

(

f
j
A log(f j

A)(−1, v) − j(1 +
f

j
A

j
) log(1 +

f
j
A

j
)(−1, v)

)

+

∫

R3

ξ

(

f
j
B log(f j

B)(1, v) − j(1 +
f

j
B

j
) log(1 +

f
j
B

j
)(1, v)

)

−
∫

R3

ξ

(

f
j
B log(f j

B)(1, v) − j(1 +
f

j
B

j
) log(1 +

f
j
B

j
)(1, v)

)

= −1

4
I

j
AA(f j

A, f
j
A) − 1

2
I

j
AB(f j

A, f
j
B) − 1

4
I

j
BB(f j

B, f
j
B)

+

∫

χr,mBAA
m,n,µ

f
j′
A (f j′

A − F
j′
A )

j(1 + F
j′
A )(1 + f

j′
A )

f ′
A∗

1 +
f

j′
A∗
j

log
f

j
A

1 +
f

j
A

j

+

∫

χr,mBAB
m,n,µ

f
j′
A (f j′

A − F
j′
A )

j(1 + F
j′
A )(1 + f

j′
A )

f
j′
B∗

1 +
f ′

B∗
j

log
f

j
A

1 +
f

j
A

j

−
∫

χr,m f
j2
A

j(1 +
f

j
A

j
)
log

f
j
A

1 +
f

j
A

j



BAA
m,n,µ

f
j
A∗

(1 +
f

j
A∗
j

)
+ BAB

m,n,µ

f
j
B∗

(1 +
f

j
B∗
j

)





+

∫

χr,mBBB
m,n,µ

f
j′
B (f j′

B − F
j′
B )

j(1 + F
j′
B )(1 + f

j′
B )

f
j′
B∗

1 +
f ′

B∗
j

log
f

j
B

1 +
f

j
B

j

+

∫

χr,mBBA
m,n,µ

f ′
B(f ′

B − F ′
B)

j(1 + F ′
B)(1 + f ′

B)

f ′
A∗

1 +
f ′

A∗
j

log
fB

1 + fB

j

−
∫

χr,m f
j2
B

j(1 +
f

j
B

j
)
log

f
j
B

1 +
f

j
B

j



BBB
m,n,µ

f
j
B∗

(1 +
f

j
B∗
j

)
+ BBA

m,n,µ

f
j
A∗

(1 +
f

j
A∗
j

)




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with

I
j
AA(f j

A, f
j
A) =

∫

χr,mBAA
m,n,µ





f
j′
A

1 +
f

j′
A

j

f
j′
A∗

1 +
f

j′
A∗
j

− f
j
A

1 +
f

j
A

j

f
j
A∗

1 +
f

j
A∗
j





log











f ′
A

1+
f ′
A
j

f
j′
A∗

1+
f

j′
A∗
j

f
j
A

1+
f

j
A
j

f
j
A∗

1+
f

j
A∗
j











dxdvdv∗dω,

I
j
BB(f j

B, f
j
B) =

∫

χr,mBBB
m,n,µ





f ′
B

1 +
f ′

B

j

f ′
B∗

1 +
f ′

B∗
j

− f
j
B

1 +
f

j
B

j

f
j
B∗

1 +
f

j
B∗
j





log











f
j′
B

1+
f

j′
B
j

f
j′
B∗

1+
f

j′
B∗
j

f
j
B

1+
f

j
B
j

f
j
B∗

1+
f

j
B∗
j











dxdvdv∗dω,

I
j
AB(f j

A, f
j
B) =

∫

χr,mBAB
m,n,µ





f
j′
A

1 +
f

j′
A

j

f
j′
B∗

1 +
f

j′
B∗
j

− f
j
A

1 +
f

j
A

j

f
j
B∗

1 +
f

j
B∗
j





log











f
j′
A

1+
f

j′
A
j

f
j′
B∗

1+
f

j′
B∗
j

fA

1+
f

j
A
j

f
j
B∗

1+
f

j
B∗
j











dxdvdv∗dω.

From ([2]), we have I
j
AA(f j

A, f
j
A) ≥ 0, I

j
AB(f j

A, f
j
B) ≥ 0 I

j
BB(f j

B, f
j
B) ≥ 0.

Moreover by reasonning as in ([6]), it can proved that the terms

−
∫

χr,mBαβ
m,n,µ

f2
α

j(1 + fα

j
)

fβ∗

(1 +
fβ∗

j
)
log

fα

1 + fα

j

, (3.10)

∫

χr,mBα,β
m,n,µ

f ′
α(f ′

α − F ′
α)

j(1 + F ′
α)(1 + f ′

α)

f ′
β∗

1 +
f ′

β∗

j

log
fα

1 + fα

j

(3.11)

are bounded uniformly in j. For the sake of clarity the proof of the control
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of the terms (3.10, 3.11) are written in the appendix. Therefore

∫

R3

ξ

(

f
j
A log(f j

A)(1, v) − j(1 +
f

j
A

j
) log(1 +

f
j
A

j
)(1, v)

)

−
∫

R3

ξ

(

f
j
A log(f j

A)(−1, v) − j(1 +
f

j
A

j
) log(1 +

f
j
A

j
)(−1, v)

)

+

∫

R3

ξ

(

f
j
B log(f j

B)(1, v) − j(1 +
f

j
B

j
) log(1 +

f
j
B

j
)(1, v)

)

−
∫

R3

ξ

(

f
j
B log(f j

B)(−1, v) − j(1 +
f

j
B

j
) log(1 +

f
j
B

j
)(−1, v)

)

≤ c

So by arguing as in ([6], [7]), the entropies of f
j
A and f

j
B can be bounded

uniformly in j. Hence f
j
A and f

j
B are weakly compact in L1.

Remark 1. Contrarily to ([11], [12]), the weak compactness of f
j
A and f

j
B is

directly obtained. In ([11], [12]), the author shows that the sum f j = f
j
A+f

j
B

is weakly compact in L1 by using that f j satisfies the Boltzmann equation
for a single component gas. In the present paper, the 2 components having
different molecular masses, f j is not solution of the Boltzmann equation for
a one component gas.

Remark 2. The quantity 1
4I

j
AA(f j

A, f
j
A) + 1

2I
j
AB(f j

A, f
j
B) + 1

4I
j
BB(f j

B, f
j
B) is

a generalization of the entropy production term used in ([6]).

Let Q
j−
α,β and Q

j+
α,β be defined by

Q
j−
α,β(f j

α, f
j
β) = f j

α(x, v)

∫

R3×S2

χr,mBm,n,µ

f
j
β

1 +
f

j
β

j

(x, v∗)dv∗dω,

Q
j+
α,β(f j

α, f
j
β) =

∫

R3×S2

χr,mBm,n,µ
f

j
α

1 + f
j
α

j

(x, v′)
f

j
β

1 +
f

j
β

j

(x, v′∗)dv∗dω.

In order to pass to the limit in (3.8, 3.9) weak compactness is required on
the terms Q

j−
α,β and Q

j+
α,β . For any {α, β} ∈ {A, B}, the inequalities

Q
j−
α,β(f j

α, f
j
β) ≤ c f j

α,
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with c independant of j, give that Q
j−
α,β is weakly compact in L1. By arguing

as in a one component gas, we can show that

Q
j+
A,A(f j

A, f
j
A) + Q

j+
A,B(f j

A, f
j
B) ≤ K

(

Q
j−
A,A(f j

A, f
j
A) + Q

j−
A,B(f j

A, f
j
B)
)

+
1

lnK

(

IAA(f j
A, f

j
A) +

∫

(

fA(x, v′)fB(x, v′∗) − fA(x, v)fB(x, v∗) ln

(

fA(x, v)

fA(x, v′)

))

. (3.12)

and

Q
j+
B,A(f j

B, f
j
A) + Q

j+
B,B(f j

B, f
j
B) ≤ K

(

Q
j−
B,B(f j

B, f
j
B) + Q

j−
B,A(f j

B, f
j
A)
)

+
1

lnK

(

IAA(f j
B, f

j
B) +

∫

(

fA(x, v′)fB(x, v′∗) − fA(x, v)fB(x, v∗) ln

(

fB(x, v)

fB(x, v′)

))

. (3.13)

By adding the two inequalities (3.10, 3.11), we get

Q
j+
A,A(f j

A, f
j
A) + Q

j+
A,B(f j

A, f
j
B) + Q

j+
B,A(f j

B, f
j
A) + Q

j+
B,B(f j

B, f
j
B)

≤ K
(

Q
j−
A,A(f j

A, f
j
A) + Q

j−
A,B(f j

A, f
j
B) + Q

j−
B,A(f j

B, f
j
A) + Q

j−
B,B(f j

B, f
j
B)
)

1

ln(K)

(

IAA(f j
A, f

j
A) + IBB(f j

B, f
j
B) + IBA(f j

B, f
j
A)
)

.

From the weak compactness of Q
j−
α,β for {α, β} ∈ {A, B} and the boundeness

from above of

IAA(f j
A, f

j
A) + IBB(f j

B, f
j
B) + IBA(f j

B, f
j
A),

the gain terms Q
j+
α,β are weakly compact in L1 for any {α, β} ∈ {A, B}.

Hence by arguing as in ([6], [7]) we can pass to the limit in the equations
(3.8, 3.9). So there is (f r,µ

A , f
r,µ
B ) solution to

ξ
∂

∂x
f

r,µ
A =

∫

R3
v×S2

χrBAA
µ (v − v∗, ω)f r,µ

A (x, v′)f r,µ
A (x, v

′

∗)dv∗dω

+

∫

R3
v×S2

χrBAB
µ (v − v∗, ω)f r,µ

A (x, v′)f r,µ
B (x, v

′

∗)dv∗dω

−f
r,µ
A

∫

R3
v∗×S2

χrBµ(v − v∗, ω)f r,µ
A (x, v∗)dv∗dω,

−f
r,µ
A

∫

R3
v∗×S2

χrBAB
µ (v − v∗, ω)f r,µ

B (x, v∗)dv∗dω, (x, v) ∈ (−1, 1) × R
3
v,

f
r,µ
A (−1, v) = kAM−(v), ξ > 0, f

r,µ
A (1, v) = kAM+(v), ξ < 0, (3.14)
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with
∫

min(µ, (1 + |v|)β)f r,µ
A (x, v)dxdv = 1,

where kA is defined in the equation (2.6) before passing to the limit.

ξ
∂

∂x
f

r,µ
B =

∫

R3
v∗

×S2

χrBBB
µ (v − v∗, ω)f r,µ

B (x, v′)f r,µ
B (x, v

′

∗)dv∗dω

+

∫

R3
v∗

×S2

χrBAB
µ (v − v∗, ω)f r,µ

A (x, v′)f r,µ
B (x, v

′

∗)dv∗dω

−f
r,µ
B

∫

R3
v∗

×S2

χrBBB
µ (v − v∗, ω)f r,µ

B (x, v∗)dv∗dω

−f
r,µ
B

∫

R3
v∗×S2

χrBBA
µ (v − v∗, ω)f r,µ

A (x, v∗)dv∗dω, (x, v) ∈ (−1, 1) × R
3
v,

f
r,µ
B (−1, v) = σ(−1)λ′M−(v), ξ > 0, f

r,µ
B (1, v) = σ(1)λ′M+(v), ξ < 0,

(3.15)

with
∫

min(µ, (1 + |v|)β)f r,µ
B (x, v)dxdv = 1.

Here, σ(−1) and σ(1) have the expressions

σ(−1) =

∫

ξ<0 |ξ|f
r,µ
B (−1, v)dv

∫

ξ>0 ξf
r,µ
B (1, v)dv +

∫

ξ<0 |ξ|f
r,µ
B (−1, v)dv

and

σ(1) =

∫

ξ>0 ξf
r,µ
B (1, v)dv

∫

ξ>0 ξf
r,µ
B (1, v)dv +

∫

ξ<0 |ξ|f
r,µ
B (−1, v)dv

.

By using the mass conservation as in ([11]), the boundary conditions of
(3.15) writes

f
r,µ
B (−1, v) = M−(v)

∫

ξ<0
|ξ|f r,µ

B (−1, v)dv, ξ > 0,

f
r,µ
B (1, v) = M+(v)

∫

ξ>0
ξf

r,µ
B (1, v)dv, ξ < 0. (3.16)
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Let (rj)j∈N with rj → 0 and µj with µj → +∞, f
j
A = f

rj ,µj

A and f
j
B = f

rj ,µj

B .

Next we pass to the limit in the weak formulations satisfied by f
j
A and f

j
B

for 0 ≤ β < 2. By using averaging lemmas as in ([6], [7], [11] [12]), we get

lim
j→+∞

∫

Q
j−
α,β(f j

α, f
j
β)ϕ dxdv =

∫

Q−
α,β(fα, fβ) ϕ dxdv.

Moreover by using th change of variable (v, v∗, ω) → (v′, v′∗,−ω), the same
result holds for the gain terms

lim
j→+∞

∫

Q
j+
α,β(f j

α, f
j
β) ϕ dxdv =

∫

Q+
α,β(fα, fβ) ϕ dxdv.

Finally (fA, fB) satisfies (1.1, 1.2) in the weak sense for 0 ≤ β < 2. In the
situation where −3 < β ≤ 0 the passage to the limit is realized in the weak
reformulation.

But for the sake of clarity we explain the passage to the limit in the
terms (3.16) i.e we prove the weak convergence in L1({v ∈ R

3
v, ξ > 0}) (

resp L1({v ∈ R
3
v, ξ < 0})) of f

j
B(1, .) ( resp. f

j
B(−1, .)) to fB(1, .) (resp.

fB(−1, .)). First, it is important to check that the fluxes
∫

ξ>0 ξf
j
B(1, v)dv

and
∫

ξ<0 |ξ|f
j
B(−1, v)dv are controled. From (3.15) written in the exponen-

tial form, it holds that

f
j
B(x, v) ≥

f
j
B(−1, v)e

−
R

0

− 1+x
ξ

R

R3
v∗×S2

χr(Bµ
BAf

r,µ
A (x+sξ,v∗)+Bµ

BBf
r,µ
B (x+sξ,v∗)dv∗dωds

,

ξ >
1

2
, |v| ≤ 2,

f
j
B(x, v) ≥

f
j
B(1, v)e

−
R

0
1−x

ξ

R

R3
v∗×S2

χr(Bµ
BAf

j
A(x+sξ,v∗)dv∗+Bµ

BBf
j
B(x+sξ,v∗)dv∗dωds

,

ξ < −1

2
, |v| ≤ 2. (3.17)

For v satisfying |v| ≤ 2 with ξ > 1
2 or ξ < −1

2 ,

∫ 1

−1

∫

R3
v∗

×S2

χr

|ξ|
(

Bµ
BAf

r,µ
A (z, v) + Bµ

BBf
r,µ
B (z, v)

)

dv∗dωdz

is uniformly bounded from above. Hence, using the definition of the bound-
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ary conditions (1.6) in (3.17), it comes

f
j
B(x, v) ≥ cM−(v)

∫

ξ<0
|ξ|f j

B(−1, v)dv, ξ >
1

2
, |v| ≤ 2,

f
j
B(x, v) ≥ cM+(v)

∫

ξ>0
ξf

j
B(1, v)dv, ξ < −1

2
, |v| ≤ 2.

So,

c

∫

{ξ> 1

2
,|v|≤2}∪{ξ<− 1

2
,|v|≤2}

f
j
B(x, v)dxdv

≥
∫

ξ>0
ξf

j
B(1, v)dv +

∫

ξ<0
|ξ|f j

B(−1, v)dv.

f
j
B being non negative,

c

∫ 1

−1

∫

R3
v

min(µ, (1 + |v|)β)f j
B(x, v)dxdv

≥
∫

ξ>0
ξf

j
B(1, v)dv +

∫

ξ<0
|ξ|f j

B(−1, v)dv.

Since
∫ 1
−1

∫

R3
v
min(µ, (1+ |v|)β)f j

B(x, v)dxdv = 1, the fluxes
∫

ξ>0 ξf
j
B(1, v)dv

and
∫

ξ<0 |ξ|f
j
B(−1, v)dv are bounded uniformly w.r.t j.

Furthermore, the energy fluxes are also controlled. Indeed, from Property
1.1, the conservation of energy for (f j

A, f
j
B) gives

mB

(∫

ξ>0
ξv2f

j
B(1, v)dv +

∫

ξ<0
|ξ|v2f

j
B(−1, v)dv

)

≤
∫

ξ>0
ξv2(mAf

j
A(−1, v) + mBf

j
B(−1, v))dv

+

∫

ξ<0
|ξ|v2(mAf

j
A(1, v) + mBf

j
A(1, v))dv.

By definition of the boundary conditions (3.14) and (3.15),
∫

ξ>0
ξv2f

j
B(1, v)dv +

∫

ξ<0
|ξ|v2f

j
B(−1, v)dv

≤ (
mA

mB
kj +

∫

ξ′<0
|ξ′|f j

B(−1, v′)dv′)

∫

ξ>0
ξv2M−(v)dv (3.18)

+(
mA

mB
kj +

∫

ξ′>0
ξ′f

j
B(1, v′)dv′)

∫

ξ<0
|ξ|v2M+(v)dv.
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The right-hand side of (3.18) being bounded, the energy fluxes are also
bounded. Finally, the entropy fluxes can also be controled. Indeed

ξ
∂

∂x

(

f
j
A(log(f j

A) − 1)
)

= Q
j
AA(f j

A, f
j
A)log(f j

A) + Q
j
AB(f j

A, f
j
B)log(f j

A),

ξ
∂

∂x

(

f
j
B(log(f j

B) − 1)
)

= Q
j
BB(f j

B, f
j
B) log(f j

B) + Q
j
BA(f j

B, f
j
A) log(f j

B).

(3.19)

Using a Green’s formula and an entropy estimate in the system (3.19), leads
to

∫

ξ>0
ξf

j
B(1, v) log f

j
B(1, v)dv +

∫

ξ<0
|ξ|f j

B(−1, v) log f
j
B(−1, v)dv

≤ (

∫

ξ′>0
ξ′f

j
B(1, v′)dv′ + kj)

∫

ξ<0
|ξ|M+(v) log(M+(v)(

∫

ξ′>0
ξ′f

j
B(1, v′)dv′ + kj))dv

+(

∫

ξ′<0
|ξ′|f j

B(−1, v′)dv′ + kj)

∫

ξ>0
M−(v) log(M−(v)(

∫

ξ′<0
|ξ′|f j

B(−1, v′)dv′ + kj))dv.

By the Dunford-Pettis criterion ([14]), f
j
B(1, .) is weakly compact in

L1({v ∈ R
3
v, ξ > 0}). Let one of its subsequence still denoted by f

j
B(1, .),

converging weakly to some g+ in L1({v ∈ R
3
v, ξ > 0}). Next the aim is to

identify g+ and fB(1, v). We recall that the trace fB(1, v) can be defined by

fB(1, v) = lim
ǫ0→0

1

ǫ0

∫ ǫ0

0
fB(1 − ǫ, v)dǫ ([10]).

(ϕf
j
B)j∈N satisfies

ξ
∂(ϕf

j
B)

∂x
= ξ

∂ϕ

∂x
f

j
B + Qj(f

j
B, f j)ϕ. (3.20)

So by integrating 3.20 on [1 − ε, 1] × R
3 and by using a Green’s formula, it
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holds that

| 1

ǫ0

∫

R3
v

∫ ǫ0

0
(f j

B(1, v) − f
j
B(1 − ǫ, v))ϕ2(v)dvdǫ|

≤ 1

ǫ0

∫ ǫ0

0

∫

R3
v

∫ 1

1−ǫ0

|Qj(f
j
B, f j)(x, v)ϕ(x, v)|dxdvdǫ

+
1

ǫ0

∫ ǫ0

0

∫

R3
v

∫ 1

1−ǫ0

|f j
B(x, v)ξ

∂

∂x
ϕ(x, v)|dxdvdǫ. (3.21)

Hence by using the weak compactess of f
j
B and Qj(f

j
B, f j) and by passing

to the limit in (3.21), g+ and fB(1, v) can be identified. This concludes the
proof of Theorems 1 and 2.

Appendix: Proofs of (3.10, 3.11)

−
∫

χr,mBαβ
m,n,µ

f2
α

j(1 + fα

j
)

fβ∗

(1 +
fβ∗

j
)
log

fα

1 + fα

j

≤ −
∫

fα

1+
fα
j

<1
χr,mBαβ

m,n,µ

f2
α

j(1 + fα

j
)

fβ∗

(1 +
fβ∗

j
)
log

fα

1 + fα

j

,

But for any x ∈]0, 1], −x log(x) ≤ 2
e
, it holds that

−
∫

χr,mBαβ
m,n,µ

f2
α

j(1 + fα

j
)

fβ∗

(1 +
fβ∗

j
)
log

fα

1 + fα

j

≤ −2

e

∫

fα

1+
fα
j

<1
χr,mBαβ

m,n,µ

fα

j

fβ∗

(1 +
fβ∗

j
)

Hence fα and fβ having Mα and Mβ for weighted masses

−
∫

χr,mBαβ
m,n,µ

f2
α

j(1 + fα

j
)

fβ∗

(1 +
fβ∗

j
)
log

fα

1 + fα

j

≤ cMαMβ

and (3.10) follows. The proof of (3.11) is analogous.
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