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The Stationary Boltzmann equation for a two
component gas in the slab with different molecular
masses.

Stéphane Brull *

Abstract

The stationary Boltzmann equation for hard and soft forces in the
context of a two component gas is considered in the slab when the
molecular masses of the 2 component are different. An L' existence
theorem is proved when one component satisfies a given indata profile
and the other component satisfies diffuse reflection at the boundaries.
Weak L' compactness is extracted from the control of the entropy
production term of the mixture.

*Mathematiques appliquees de Bordeaux, University of Bordeaux I, 351 cours de la
Libération 33405 Talence Cedex, France.
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1 Introduction and setting of the problem.

This article is devoted to the proof of an existence theorem for the stationary
Boltzmann equation in the situation of a two component gas having different
molecular masses for the geometry of the slab. The slab being represented
by the interval [—1, 1], the Boltzmann equation reads

€5 Fale,0) = Qaalfa fa)(e,0) + Qan(fa fo)(e,0), (1)

€5 folw.0) = Qoo I)(2.0) + Qualfo f)w0), (1)
x€[-1,1], v € R,



The non-negative functions f4 and fp represent the distribution functions
of the A and the B component with x the position and v the velocity. &
is the velocity component in the x direction. For for any «, 8 € {A, B},
Qa,p corresponds to the non linear Boltzmann collision operator between
the species o and . More precisely, it is defined for any {«, 5} € {A, B} by

Quolv) = [ B (fulas o) o)) = a0l 0)) dedo, (1.3

where

2mpP U,(ga) 2mpP

1(Ba) _ e ey,
v a_v+ma+mﬁ(v* v, W)w, =T P

(Ve — Vv, W)w.

(1.4)

In the formula (1.4), /%) and P represent the post-colisional velocities
between the species o and § and m® is the mass of the specy «. For more
precisions on the model we refer to ([15], [2]).
(-,-) denotes the Euclidean inner product in R?. Let w be represented
by the polar angle (with polar axis along v — v,) and the azimutal angle ¢.
For the sake of clarity, recall the invariant properties of the collision
operator Qq g, for any {a, 8} € {A, B}. For more details we refer to ([17]).

Property 1.1. For o, 3 € {A, B}, with o # 3, it holds that
/ (17mav7ma’v|2)Qa,a(fa7 fa>d1) = 07
R3
/ Qo (fas f5)do = 0,
RB
/ 10 Qa5 fs f5)d + / 1% Qg0 (f3, fo)dv = 0,
R3 R3
/Rg mv? Qo5 (fa, fa)dv + /w m®v® Qg o(fa, fa)dv = 0.

The function B*#(v —v,,w) is the collision kernel of Q5. It is a noneg-
ative function whose form is determined by the molecular interaction. Be-
cause of the action and reaction principle, it has the symmetry property
BAB = BB:A. More precisely, we consider in this paper the following type

of kernels
1 [d*+d%\°
4@( 2 >'“_”*'ﬁb(9)’
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with
0<pB<2, belLl(o,2n]), bO)>c>0 ae.
for hard forces and
-3<B<0, belLli([0,27]), b0#)>c>0 ae.

for soft forces.
As ([2]) define the collision frequency as the vector (v, vp), with for any
a € {A, B},

Vg = Z /Bo"ﬂfgdwdv*.

Be{A,B}

On the boundary of the domain, the two components satisfy different phys-
ical properties. Indeed, the A component is supposed to be a condensable
gas whereas the B component is supposed to be non condensable.

Hence the boundary conditions for the A component are the given indata
profile

fa(=1,v) = kM_(v),£ > 0, fa(l,v) = kMi(v),€ <0, (1.5)

for some positive k. The boundary conditions for the B component are of
diffuse reflection type

Foto) = (11RO, €0, (1.6

fB(L,v) = ( ¢ fp(1,v)dv' )My (v), & <O.
>0

My and M_ are given normalized Maxwellians

1 lw? _?
=52t - and M4 (v) 2Ty
L~

M_(v)

= 2 [
2Ty

As a theoritical point of view, existence theorem for single component gases
has been firstly considered. These papers are of interest because the case
of the stationary Boltzmann equation is not covered by the DiPerna Lions
theory established for the time dependant non linear Boltzmann equation
([16], [14]). In ([6]), an L' existence theorem is shown for hard and soft
forces when the distribution function has a given indatta profile. In the case



of boundary conditions of Maxwell diffuse reflection type, an analogous the-
orem is also shown in ([7]). In these two papers the solutions are constructed
in such a way that they have a given weighted mass. Existence results for
the stationary Povzner equation for a bounded domain of R3 are shown in
([21], [8]). The situation of a two component gas has been considered in
([11], [12]) when the molecular masses of the two gases are the same. The
existence theorems are proved for (1.5, 1.6). In these papers, the strategy
of the resolution is to use that the sum of the distribution of the two com-
ponents satisfies the Boltzmann equation for a one component gas. Hence
the weak L' compactness is firstly obtained for the sum and transmitted to
the two distribution functions. But in the present, case due to the different
molecular masses, the sum of the distribution functions is not solution to
the Boltzmann equation for a single component gas. Therefore the weak L'
compactenss has to be extracted directy on each component. In ([13]) the
situation of a binary mixture close to a local equilibrium is investigated. In
that case the solution of the system is constructed as a Hilbert expansion
and a rest term rigorously controled. In [17] a moment method is applied
in the situation of small Knudsen number to derive a fluid system.

As a physical point of view and as a numerical point of view, a problem
of evaporation condensation for a binary mixture far from equilibrium has
been considered in ([22]). The binary mixture composed of vapor and non
condensable gas in contact with an infinite plane of condensed vapor. More-
over the non condensable gas is supposed to be closed to the condensed
vapor. For the numerical simulations the authors used a time-dependant
BGK model for a two component gas until a stationary state is reached.
The situation of a small Knudsen number has also been investigated in ([1],
[4], 3], [25]) where two types of behaviour are pointed out. In a first sit-
uation the macroscopic velocity of the two gases tends to zero when the
Knudsen number tends to zero. But the zero order term of the tempera-
ture is obtained from the first order term of the macroscopic velocity. This
means that the macroscopic velocity disappears at the limit but keeps an
influence on the limit. This is the ghost effect pointed in ([23]) for a one
component gas and in ([1],[4], [3]) for a two component gas. In a second case
the B component becomes negligeable and the macroscopic velocity of the
A component becomes constent. Moreover the B component accumulates in
a thin layer called Knudsen layer at a boundary.

In this paper, weak solutions (f4, fg) to the stationary problem in the
sense of Definition 1.1 will be considered.

Definition 1.1. Let M4 and Mp be given nonnegative real numbers. (fa, fB)



s a weak solution to the stationary Boltzmann problem with the B-norms M4
and Mg, if fa, fB, va and vg € Lloc((fl,l) x R3),

[+ [0])? fa(w,v)dzdv = My, [(1+4 |v))?fp(x,v)dzdv = Mp, and there is
a constant k > 0 such that for every test function ¢ € CL([~1,1] x R3) such
that @ vanishes in a neiborhood of € = 0, and on {(—1,v); £ < 0}U{(1,v);& >
0},

1 a(p

[ [ €058 + Qualhas ) + Qun(fa. f)e) (o, v)dads

—1JR3 i
k[ ek [ @)1,

R3,£<0 R3,£>0

1
| [ (€152 + Qualdn S + Qualfi, fa)6) o ),
—1JR3 €T

- /5'<0 €M, )p(Lv)du( | € (1 0))d)

£'>0
- EM_(v)p(—1,v)dv( ¢ fp(=1,0")dv').
&'>0 £'<0
Renormalized solutions will also been considered. We recall their definition.
Let g be defined for x > 0 by

g(x) =In(1 + x).

Definition 1.2. Let M4 and Mp be given nonnegative real numbers. (fa, fB)
1s a renormalized solution to the stationary Boltzmann problem with the 3-
norms Ma and Mg, if fa, fB, va, v € L},.((—1,1) x R3),

[+ )P fa(z,v)dzdv = My, [(1+ |v|)?fp(x,v)dzdv = Mp, and there is
a constant k > 0 such that for every test function ¢ € CL([~1,1] x R3) such
that @ vanishes in a neiborhood of & =0 and on

{(-1,v); & < 0} UA{(1, U)§>0}

Qaa(fa, fa)  Qap(fa, fB)
//gg 7+ 1+/1 7T 14

— / £g(kM y (0))p(1, v)dv — / 9(EEM_(v))p(~1, v)dv,
R3,£<0 R3,£>0

! Op  Qa(fB,fa+ [B) QBa(fB, fa)
|| (atrn gl + Sonimlatin), , Soalle.

— [ eol([ e tult)a) M )e(t 0o
£<0 £>0

©)(x,v)dxdv

) (x, v)dadv,

—/ &g( ¢ fp(—1,0")dv" ) M_(v))p(—1,v)dv.
£>0 €<0

b}



The main results of this paper are the following theorems

Theorem 1.1. Given § with 0 < 8 < 2, My > 0 and Mp > 0 there is a
weak solution to the stationary problem with B-norms equal to M 4 and Mp.

Theorem 1.2. Given 3 with —3 < <0 M4 > 0 and Mp > 0, there is a
renormalized solution to the stationary problem with B-norms equal to My
and Mp.

The present paper is organized as follows. The second and the third
section are devoted to the proof of the theorems 1.1 and 1.2. In section 2,
we perform a fix point step on an approched problem as in ([6], [7], [11],
[12]). In the last part we perform a passage to the limit in the sequences of
approximation.

2 Approximations with fixed total masses

Let r >0,me N* ;u>0,0 >0,j € N".
By arguing as in ([5]), we can construct a function, x™™ € C§°® with range
[0,1] invariant under the collision transformations J, g, defined for any

{a, 8} € {4, B} by
Ja,ﬁ(v, Vs, w) — (v(a,ﬁ)/’ Uﬁa,ﬂ)/’ _w)’
and under the exchange of v and v,. Moreover Y™ satisfies also

X (0, 00,w) =1, Y(a, ) € {4, B} min(|¢], [&.], [€@2], 17| > p),

and

1
X(0,00,0) =0, W@, §) € {A, BY maa((€], 6], €5, 1625 < 7 — —

The modified collision kernel B,Ofl% u 1s a positive C* function approximating
min(B*5, 1), when

— 1 — 1
v2+vf<@,and|v U cw| > —, and|v O wl<1l——
PR PR Rl ey
and such that B?,g%u(v,v*,w) =0, if
9 9 UV — Uk 1 UV — Uk 1
v” 4+ v > /nor | ‘w| < =—, or | cw>1——.
[v — vy 2m \ N 2m



The functions ¢; are mollifiers in the z-variable defined by ¢;(x) := lo(lz),
where

1

0 € CP(RY),  support(p) C (—1,1), >0, / o(x)dr = 1.

-1

For the sake of clarity Theorems 1.1 and 1.2 are shown for M4 = Mp = 1.
The passage to general weighted masses M4 and Mp is immediate and we
refer to ([6], [7], [11], [12]).

Non negative functions g4, gp € K and 6 € [0, 1] are given. By arguing
as in ([11]), we can construct F4 and Fp solutions of the following boundary
value problem

(x,v')w(x,v;)dv*dw

0 Fy
F ZFy = rmpRAA
O0Fa+&5-Fa / xX""B 1+ g

m,n, [l F
R3 xS? 1+ 754

m Fy gB * ¢ '
—I—/ X" BB (,0") s (2, v, ) dvedw
R%* «S? m,n,pn 1 I;A 1 QBJ*‘P

gaxy
—FA/ B T2 X (1 v,)dv,dw
B3, x52 R

r,m gB * @ X
F mB o IBEL (0 Ydvadw, (2,0) € (=1,1) x R,
A/R%*XSQX oy g (7 U, (@0) € (21, 1)
Fa(=1,0) = AM-(v), €> 0, Fa(lo) =AMy(o), £<0,  (21)

and

0 BB Fp n 9B * @ /
o+ = | s e X B ()T e (0 0o

Fp n_gAX P /
+/ X" mBAB (z,v") =%z (z,v,)dv.dw
RS, xS2 ol L;B 1+ —g“j*g’

m B gB * @
—FB/ x"™"B B = —(, vy )dvydw
R%* XSQ m,n,u 1 gBj*(p

*
—Fp rmpBA N z, v )dvedw, (z,v) € (—1,1) x R3,
/]R%* xS2 X S —QAj*‘P ( ) (,0) € ( ) v

Fp(—1,0) = 0AM_(v), €>0, Fp(lv)=(1—0AM,(v), £<0, (2.2)

as the L' limit of sequences. It can also been proven that the equations
(2.1) and (2.2) each has a unique solution which is strictly positive. Hence



the functions f4 and fg,

fa= J min(u, (1 + |v])B3)Fa(z,v)dzdv’
f =
B

= Tmin(u, (L + [v])P) Fp(x, v)dadv

are well defined since F'4 and Fg strictly positive.
Indeed using that f_ll(oc + v(z,v))dr < 2+ 2pu, it holds that

242p 242

Fa(e,v) > AM_(v)e 2%, €0,  Fa(@,v) > AMy()e o, €<0.

Analogously, we obtain

2424

Fp(x,v) > 0AM_(v)e” &€ , £>0,
242p

Fplz,v) > (1— OAM,(v)e” &, €<0.

By taking A as

. 1
A = min( B IS
Jeso M_(0)min(p, (1+ o))" do

1
2+2
Jeco Mo (w)min(pe, (1 + [o])8)e” T d

)

we get

/min(u, (1 + |v])?)Fa(x, v)dedv > 1
and
/min(u, (1 + |v)?)Fp(z,v)dzdv > 1.

Hence the functions f4 and fp are solutions to



(x,v’)M(:n,v;)dv*dw

8 r,m f
5fA+€8fo:/ X" By, - 1+ 9452
J

m?”?# F
R3, xS2 1+ =

* /
r,mBAB fA ’ n 9B*p do.d
+/R%*><SQX m’n7u1+}§4(x v)l—i—giﬂ@:’v*) vedw

* @
— rmpBAA _gaxe T, Uy )dvsdw
fA /]R%* ><S2X My + gAj*go< )

gB *
—fA/ XT’mBéﬁz,uHWﬁD(x’v*)dv*dw’ (z,v) € (=1,1) x R3,
R3S, xS2 7

A
—1,0) = " .
fal=tw) Jmin(p, (1 + [v])P) Fa(z, v)dzdo (v), €>0,
A
b} = M <0
T ) = i, (L o)) PG, odado 0 €<
(2.3)
and
5fB+£8fB:/ MBBE (v, ) /B (2.0)) gB * @ (0,0 )dund
3097 g X B0 ) )
T,mBBA N fB ’ N 9B * @ 7 , do.d
+/Rg*xs2x m,n,u(v7v7w)1+%(sc v)1+93]$(a: v, )dv.dw

BB YB*¢@
—f(z,v) /}R3 - XT’mBm7n7M71 i (2, vy)dvsdw
Ve J

Ak
_fB(x,v)/]Rg SQXT,mB%M%(x,U*)dv*dw, (z,0) € (~1,1) x R,
) wxe

D J .
o) = o (L o) o ey €0
fB(l,U) = A (1 - 0)M+(U>, £ <.

~ [min(u, (1+ [v])9) Fp(z,v)dedy
(2.4)

In order to use a fixed-point theorem, consider the closed and convex subset
of L1 ([-1,1] x R?),

K={feIl(-1,1] x K, /[1 NG o))%) (2, v)dadv = 1.

9



The fixed-point argument will now be used in order to solve (2.3, 2.4) with

ga = fa and gp = fp. .
Define T on K x K x [0,1] by T(ga,98,0) = (fa, fB,0) with

f§<o €| fB(—1,v)dv
Jeco 161/B(=1,0)dv + [ o € fB(1, v)dv

and (fa, fp) solution to (2.3, 2.4).

The mapping T takes K x K x [0,1] into itself. Next by using the
exponetial forms of the equations (2.1, 2.2, 2.3, 2.4) together with averaging
lemmas, it can be shown that the map 7 is continous and compact for
the strong L' topology. So from the Schauder fixed point theorem there is
(fa, fB,0) such that

é:

(2.5)

fa= fB= 9 — f§<o’§‘fB(—1,U)dv
A=49a, [B=9B, Jeso&f3(Lv)dv + [e o [€]fB(—1,v)dv

that satisfy

9 _ rmipAA fA / fA*QDl 4
5fA+€%fA - /]Rf; XSQX Bm,mul_‘_ FTA(:E’U)l + fA;Wl (:c,v*)dv*dw

rmRAB fa / IB * 1% ’
+ \/RS - X Bm,n,,u 1+ Q (w7 v )1 T fB’f‘SDl ((E, U*)d’l)*dw

- rmpRAA m
fA /R3 %2 X Bm,n,ul N M (.ﬁU, ’U*)dv*dw
Vx i

*
—fA/ XT’melﬁL,#%(m,v*)dv*dw, (z,v) € (—1,1) x R3,
RS, xS 1+ f2e

fA(_LU) = ]ﬂAM_<’U>, f >0, fA(laU) = kAM-i-(v)? 5 <0
(2.6)

with
A

ka = [ min(p, (1 + |v|)8)Fa(z,v)dzdv

10



and

9., _ rmpBB B n fB* @ /
5f3+5%f3 = /RB X Bm,n,“H FjB(:g,u)l " fB;w (z,v,)dv.dw

/B n fAa*r /
+ rmpBA T, z, v, )dvdw
/R%*XSQX m’"’“1+1‘;—5( )1+%( )

m,n,
H1 4 Iexo

*
. /3 2 y ™ BBB M(% v, )dvydw
R3, xS Fi

mpBA JAXQl 3
—fB /RS . erBm’n,HW(x,v*)dv*dw, (z,v) € (—1,1) x Ry,
Vs J

fg<o ’€|fB(—1, v)dv

Jeso €B(L0)dv + [, o €] fp (=1, v)dv
Jeso lELfB(1,v)dv

Jeso &fB(L0)dv + [, €l f(=1,v)dv

fe(=1,v) = N(

JM_(v), &>0,

fB(LU) = )‘/(

)M+(U), 5 <0,

(2.7)

with
A

A= [ min(p, (1+ |v|)8)Fg(z,v)dzdv’

3 The slab solution for -3 < <0 and 0 <3 < 2.

This section is devoted to the passage to the limit in (2.6, 2.7). It is per-
formed in two steps. In the first one the solutions of the approached problem
are written in their exponential form and averaging lemmas are used. The
second passage to the limit corresponds to the passage to the limit in (3.8,
3.9). One crucial point is to get an entropy estimate on the sequence of
approximations (f%, f%)jen in order to extract compactness. In ([11]), this
control is obtained from a bound on the entropy of f/ = fo + f é by using
that f7 satisfy the Boltzmann equation for a single component gas. But
in the present paper, due to the difference of the molecular masses, this
property is not satisfied. ‘ ‘

Keeping, I, j, r, m, u fixed, denote fﬁ{‘s’l’r’m’“ by f} and f]jg’d’l’r’m’“ by
f%. Writing the equations (2.6, 2.7) in the exponential form and using the
averaging lemmas together with a convolution with a mollifier ([7],[19]) give
that ffl and Fj are strongly compact in L'([—1,1] x R3). Denote by f4 and
F4 the respective limits of f§ and F$. Following the proofs of ([6], [7], [11])

11



a strong compactness argument is used to pass to the limit in (2.6) when 0
tends to 0. Hence f4 is solution to
9 rompRAA fa N JA* @l /
S%fA = /Rs - X Bm,n,ul L FA (z,v )W(%U*)dv*dw
vr j J

AB A B * @] ’
mma / z,v 7]0 z,v,)dvedw
/R%* s X T 1 F}A ( ) 1 fB;‘SOl ( *) *

1+

— rmpRAA M
fA /1125 ><82X Bm,'nqul_‘_ M(m, 'U*)d'l)*dw’

J

rmpBAB M(m,v*)dv*dw, (z,v) € (—1,1) x R3,

—fa /R3 ><S2X Bm,n,ul N Ie*or
Vx 7

A
fa(=1v) = Jmin(u, (1 + [v])P)Fa(z,v)

A
fa(l,v) = [ min(p, (1+ |v\)5)FA(x,v)dxde+(v)’ £<0,

dxd'UM_(/U)’ €>OJ

(3.8)
with
/mm(,u, (14 \v])ﬂ)fi(x,v)dxdv =1.
For the same reasons, the limit fp of fg satisfies
9 _ r,mpBB fB ’ fB*QOl /
5%}03 - /R% 52 X Bm,n,,ul 4 F;-B(xjv )1 T fB;“Pl (ajvv*)dv*dw

fB n faxqr '
+ rmpBBB T, z, v, )dv.dw
/R%* e £ () + L (@2.)

. rm BB fB * Q1
fB /RS g2 X m,n,,ul T fB%t,OL (Lv*)dv*dw
Ve 7

mpBA _JA* ¢ 3
—fB /]st . erBmm,,Lw(x,v*)dv*dw, (z,v) € (=1,1) x Ry,
Vs 7

fB(=1,v) =c(-1)NM_(v), £>0, fp(l,v)=0c(1)NM;i(v), £<0,
(3.9)

with
[ mintin (4 o)) faGe, o)dzdo = 1.

12



where

f§<0 € fB(—1,v)dv

s f5>0§fB(1’U)dU+f£<0 1€l fp(—1,v)dv’
ol(1) = Jeso&fB(1,v)dv
f5>0 £fp(1,v)dv + f§<0 1€l fB(—1,v)dv
and
N A

= T min(u, (1+ [0])?) i (@, v)dado’

J

-4 B
1+j 1+j

Mutltiply (3.8) by log( fa ) and (3.9) by log( f%- ) and add the two re-

13



sulting equations leads to according to ([6], [2], [17]),

/€ (fAloguA)(l 0-ii+ 5

—/ 3 (filog(fﬂ)( Lv)—j(1+ I
R3 J

+ [ ¢ (f’ log(/4)(1,v) — (L + €B>10g<1+

—/RBE (fB log(f5)(1,v) — j(1 + ‘ZB)log(l + =

= B ) -

=) log(1l +
J J

“)log(l +

S 1) -

i

fA

(1)

gl 23! Fj’ / j

+/Xr’m871741é1u f (f/ ) fA* log fAj
J+ P+ ) f 14 12

J

gl pd! FJ/ ]/ J

_’_/Xr,mB;;lLB;LM f (f/ ) Bx log fA
JA+F)@+ )14 Lo 1+fA

J2 J J
- / X" 4 15 log fAf Brézﬁw fA;j +B¢éﬁz, fB;

JA+=) 1+ (1++4=) (14 =&=)

Fj’ J! j

+/Xr7m85,3;1,u B( z ) B}k log fBj
JA+FA+ )14 L7y Th

J

f5(fp — Fg) fa fB

+ r,mpBA B\/B B */ lo
[ SO ) Tp) 14 2 Py e
j2 fj fj fj

B el L
jA+E)  14+7E (1+ &) (14 =)

14



with

J! i J J
i i mRAA I Fh fa fa
Pl ) =[x, | =2 Y
I 1y Loyt Lo
f;, 7y,
1+% 1+f1?/*
log : _J drdvdv.dw,
i _Fh
WK s
i (gl g BB f5 Ipe b fh
IBB(fBafB): an,u f o i i
L2142 g leg g fo
v YU
73_/ Bx
1478 14 Bx
log | —>—2— | drdvdv,dw,
f5 It
1+% 1+f]%
j/ J/ J J
i g AB A f fa Ine
sl o) = [ B, - Jb
1+ A 1 + 14+ 7‘?‘ 1+ %
fA. g*
log J 7 drdvdvu.dw.

fA. f]JS*
A 4 T
1+T 1+T

From ([2]), we have Iy, (f4, ) > 0, Fyp(fh. f5) > 0 Ihp(fh. L) > 0.
Moreover by reasonning as in ([6]), it can proved that the terms
2 f * (0%
- / B, Iz 5fﬁ* log fa (3.10)
r(f _ ! . N

/Xr,mB%,ﬂn i
" (1+F>(1+fa>1+fi.* 14 L
J

are bounded uniformly in j. For the sake of clarity the proof of the control
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of the terms (3.10, 3.11) are written in the appendix. Therefore

J
/ s<fAlog<fA><1 0) = j(1+ 2) log(1 + f%‘)(l,v))
R3 J J
-/ f(filogui;)(—l,v) J(1+ fA)log<1+fA><—1,v>>
R3 J J
J
K (fB o8 74) (1) — (1 + 25 g1 + J;%B)(w)
_/ i 1ow( fB ! ffé B <
[ ¢ (shostrh)-10 -0+ LB hoga+ 22y ) < o

So by arguing as in ([6], [7]), the entropies of 7 4 and fB can be bounded
uniformly in j. Hence f’ and fB are weakly compact in L.

Remark 1. Contrarily to ([11], [12]), the weak compactness of fA and fé is
directly obtained. In ([11], [12]), the author shows that the sum f7 = fA+fB
is weakly compact in L' by using that f7 satisfies the Boltzmann equation
for a single component gas. In the present paper, the 2 components having
different molecular masses, f7 is not solution of the Boltzmann equation for
a one component gas.

Remark 2. The quantity i]im(fi,fz‘) + %IilB(fip ffg) + %IéB(fé,fé) is
a generalization of the entropy production term used in ([6]).

Let @7, and Q’'; be defined by

i e : f

fl,,@( gﬂf,{]i) = fé(l’,’u)/ Xr’mBm,n,uiﬁj(fL'ny*)d"U*dwa

R3 xS2 1+£

J

i+ (i g 2 p fé ,

QZxﬁ( gu fé) = / ermBm,n,u 7 (!T,U) v (x,v*)dv*dw.

RS2 14 & 145

J

In order to pass to the limit in (3.8, 3.9) weak compactness is required on
the terms Qi and Q] .. For any {a, 3} € {A, B}, the inequalities

g);ﬁ( gnfé) S Cfg;v

16



with ¢ independant of j, give that Qi’_ﬁ is weakly compact in L!. By arguing
as in a one component gas, we can show that

QU AP 1) + QP 1) < K (@halfi £ + Qi p(Fh 1))

+ﬁ <IAA(fi]afi]) + / (fA(as,U’)fB(x,vfk) — falz,v) fB(z,vs) In (M)) . (3.12)

and

Q (fB?fA)+Q (fBafB)<K( (vafB)+Q (fB?fA))

+1 1K <IAA(fB7fB) /(fA(x,v’)fB(x,v;) — falz,v)f5(z, v,) 1In (m» (3.13)

By adding the two inequalities (3.10, 3.11), we get

QU a(fa ) + QU s (Fa, [B) + QB a(fh: F2) + QB s (fh: 15)

< K (@ b )+ Qg )+ @l P2 + Qi <fB,fB>)

vy (IAA<fi;7 P+ Tan(F £5) + Toa(Fh 1))

From the weak compactness of Q]o';ﬁ for {a, B} € {A, B} and the boundeness
from above of

Laa(fy, £3) + I (Fh, 15) + Ina(fh. £4),

the gain terms Q]Jr are weakly compact in L' for any {a, 3} € {4, B}.
Hence by arguing as in ([6], [7]) we can pass to the limit in the equations
(3.8, 3.9). So there is (f}", f5") solution to

£ fTu = /]R3 SQ XTB;?A(U - U*’w)f.ZH(xvU/)f:f“(l‘,l);)dv*dw
3%
+/R3 o XT’B;‘B(U — vy, w) [ (z,0) E“(w,v;)dv*dw
3%
‘fli’”/ N Bu(v = 0, 0) 3 (2, 0, dvydos,
R3 xS2

—f;{“/d . XTB;?B(U — 0, ) fH (, vi)dvdw,  (2,0) € (=1,1) x RS,
R3, xS

WH(=1,v) = kaM_(v), >0, (L v) =kaMi(v), £<0, (3.14)
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with
[ min (14 o)) 75 G w)dodo = 1,

where k4 is defined in the equation (2.6) before passing to the limit.

faafg“ = / XTBEB(U — vy, w) f5(z,0) B”(m,v;)dv*dw
T R

3 2
2 XS

+/R3 . XTBfB(v—v*,w)f;"“(x,v/) ;’“(Jr,v;)dv*dw
v X
_fTH rRBB(, — Ty du.d
fB R3 SQX I (U v*’w)fB (.I,U*) Vs QW
v X

- ;“LL/ XTBEA(’U - U*,w)f:{“(x,v*)dv*dw, (ZL‘,U) € (_17 1) X ngn
R3, xS?

TH(—1,0) = o(—D)NM_(v), £ >0, f3"(1,0) = o(L)N M (v), £ <0,
(3.15)

with
/mm(u, (1+ )P f5t (x, v)dadv = 1.

Here, o(—1) and o(1) have the expressions

_ fg<o |f’fg“(—1,v)dv
Jeso &f5" (L v)dv + [o o €57 (=1, v)dv

o(=1)

and

B Jeoo €43 (L, 0)do
T T ST W 0)dv + [y €1/ (— L, 0)dv

o(1)

By using the mass conservation as in ([11]), the boundary conditions of
(3.15) writes

(~1,0) = M_(v) /E I L, £>0.

B(1v) = M+(v)/ Efgt(1,v)dv, €<0. (3.16)
£>0
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Let (rj)jen with 7; — 0 and p; with p; — +o0, fA = f:f’“] and f" = fg’”j
Next we pass to the limit in the weak formulations satisfied by f J and f4
for 0 < 8 < 2. By using averaging lemmas as in ([6], [7], [11] [12]), we get

lim Q 5 i,fg)gpda:dv—/Q;ﬂ(fa,fg)godxdv.

Jj—+oo

Moreover by using th change of variable (v, v,,w) — (v, v}, —w), the same

result holds for the gain terms

JETOO/Q fﬁ pdrdv = /Qaﬁ fa, f3) pdxdv.
Finally (fa, fB) satisfies (1.1, 1.2) in the weak sense for 0 < 5 < 2. In the
situation where —3 < 8 < 0 the passage to the limit is realized in the weak
reformulation.

But for the sake of clarity we explain the passage to the limit in the
terms (3.16) i.e we prove the weak convergence in L'({v € R3,& > 0}) (
resp L'({v € R3,£ < 0})) of f4(1,.) (‘resp. f5(—1,.)) to fg(1,.) (resp.
fB(—1,.)). First, it is important to check that the fluxes f£>0 §fé(l,v)dv

and f§<0 |§]f]j3(—1, v)dv are controled. From (3.15) written in the exponen-
tial form, it holds that

Th(x,0) >
fj( 1 ) _f 1+z fRB %52 X T(BY L fF (ahsE,0 ) F Bl f it (ak 5€,v4 ) dvsdwds
B\—1,v)e ’
1
&> 5, |U‘ <2,
Fh(w,v) >

fj (1 ) *I?—Tw ng* «§2 XT(B%Afi‘(IJrsé’”*)dU*JFB%Bf]é(x+85,v*)dv*dwds
B ,v)e ’
1
E<—g <2 (317)

For v satisfying |v| <2 with £ > 1 or £ < —3,

1 .
/ / X (B%Af:f“(zﬂf) + By EH(Z,U)) dv,dwdz
-1 JR3, xS? I3

is uniformly bounded from above. Hence, using the definition of the bound-
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ary conditions (1.6) in (3.17), it comes

Fhlaew) = M) [ ALk, €55 <2,

fiew) > M) [ efiLo)de, €< -2, o] <2.
£>0 2

So,

c/ Iz, v)dxdv
{&> 3. lv[<2}ufe<—3,[v|<2}

> Efé(l,v)dv+/ €l fL (=1, v)dv.
£>0 £<0

Gy . .
[ being non negative,

1 .
o [ [ min 1+ o)) (o, v)dede
1 JRs

> [ et v)do+ /5 J€lh(-L vy
<

£>0

Since fil fRf’, min(u, (14 ]v|)ﬂ)fé(x, v)dzdv = 1, the fluxes f£>0 ff{g(l, v)dv

and [, €| 4 (—1,v)dv are bounded uniformly w.r.t j.
Furthermore, the energy fluxes are also controlled. Indeed, from Property
1.1, the conservation of energy for (f%, %) gives

ot ([ erfhos [ ri-Lo)
£>0 £<0

< £v2(m,4fﬁl(—1,v)+m3fé(—1,v))dv
£>0

[l mari(a,o) + mafi(Lv)d.
£<0
By definition of the boundary conditions (3.14) and (3.15),

e (Lot [ et rh(-1,0)ds
£>0 £<0
m? J 1 £J / / 2
<(_pk +/§,<0 E1fp(=1,0")d) £>0£U M_(v)dv (3.18)
A

R [ e / €[ M., (v)do.
m £>0 £<0
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The right-hand side of (3.18) being bounded, the energy fluxes are also
bounded. Finally, the entropy fluxes can also be controled. Indeed

& (Fhllog(75) — 1)) = Qs Flog(F) + @ (7 Fhlog(F5),

€ (Fhllog( ) — 1)) = @bp(Fh Fh)lor(Fh) + Qpa(Fh, F)08( D).
(3.19)

Using a Green’s formula and an entropy estimate in the system (3.19), leads
to

£F3(1,v) log f(1, v)dv + / E1FL(~1,0) log f4(~1, v)dv
£>0 £<0

<(| €0 + k)
&£'>0

/ 1M () log(M () [ € Fh (1, )dv' + k9))dv
£<0 &'>0

+</ €' fL (=1, 0)dv' + k)
£'<0

M) log(M-()( [ |11 ) + K))do,
£>0 £'<0

By the Dunford-Pettis criterion ([14]), fé(l, .) is weakly compact in

L*({v € R3,¢ > 0}). Let one of its subsequence still denoted by ff;(l, ),
converging weakly to some g, in L'({v € R2,¢ > 0}). Next the aim is to
identify g4 and fp(1,v). We recall that the trace fp(1,v) can be defined by

Fo(lo) = lim ~ [ f5(1— ev)de ([10)).

(pf})jen satisfies

a(ofh)

68:(}

Ao o
= §S0 fh+ QiF ). (3.20)

So by integrating 3.20 on [1 — ¢, 1] x R3 and by using a Green’s formula, it
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holds that

1 o |
’5 /R% /0 (f5(1,0) = f5(1 — €,v))pa(v)dvde]|
€0 1 ) )
= 610/0 /Rg /1_60 Qi (f5, 1)) (@, v)p(x, v)|dwdvde

€0 1 )
—i—l/ / / ]fé(:c,v)fgap(x,v)]dxdvde. (3.21)
€0 Jo JR3 J1—¢ Ox

Hence by using the weak compactess of f]j3 and Q;( f]jg, f7) and by passing
to the limit in (3.21), g+ and fp(1,v) can be identified. This concludes the
proof of Theorems 1 and 2.

Appendix: Proofs of (3.10, 3.11)

2
B / xmpep, ,—i Jor g o

mp J;a fﬁ* J;a
JA+T) A+ %) 145
f2 fﬁ* fa
< _/ Xnt?;Lﬁn,u < log
- o Mo fa fox fa?
e By By B

But for any z €]0,1], —zlog(z) < 2, it holds that

2
B / B, e Jor__1og o

S B (e B T

2 J fax
= _C/fa Xnmg%ﬁ,n,ug%
1+qu<1 J (14 )

J

Hence f, and fg having M, and Mg for weighted masses

fg f,@* fa
— [ "B - log < cMaM
/ m,n,,uj(l + J%a) (1+ fg*) 1+ fTa atp

and (3.10) follows. The proof of (3.11) is analogous.
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