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Abstract—In this paper we propose a robust and direct 2D-to-
3D registration method for localizing 2D cameras in a known 3D
environment. Although the 3D environment is known, localizing
the cameras remains a challenging problem that is particularly
undermined by the unknown 2D-3D correspondences, outliers,
scale ambiguities and occlusions. Once the cameras are localized,
the Structure-from-Motion reconstruction obtained from image
correspondences is refined by means of a constrained nonlinear
optimization that benefits from the knowledge of the scene.
We also propose a common optimization framework for both
localization and refinement steps in which projection errors in
one view are minimized while preserving the existing relationships
between images. The problem of occlusion and that of missing
scene parts are handled by employing a scale histogram while the
effect of data inaccuracies is minimized using an M-estimator-
based technique.

I. INTRODUCTION

Structure-from-Motion (SfM) methods reconstruct an un-
known 3D scene from a set of correspondences in two or
more views. Such methods customarily refine the pose and
reconstruction by minimizing the re-projection error in all the
views (i.e. through Bundle Adjustment (BA)). For a better
camera localization, it is highly desirable to benefit from
the knowledge of the scene when available. Besides scene
augmentation and 2D-to-3D data fusion, camera localization
in a known 3D scene has the potential of playing a key role
in collaborative 3D reconstruction from networks of moving
cameras. Furthermore, even for a single camera, when a large
sequence is captured, it can be more beneficial to refine the
pose of the next frame using a previously acquired reliable 3D
rather than performing BA for every new frame.

The 2D-to-3D registration problem is approached in the
literature through direct and indirect methods. The direct reg-
istration methods rely on establishing feature correspondences
such as points, lines, planes, skylines and building bounding
boxes between the images and the 3D scene. The point-based
matching methods proposed in [11], [6] require the 3D scene
along with a scale invariant feature descriptor (SIFT) for each
point. Correspondences are obtained by matching these feature
descriptors to that of image feature points. Establishing reliable
correspondences may be undermined by the absence of such
descriptors in the provided scene points as well as by the
variability of the illumination conditions during the 2D and
3D acquisitions. Methods relying on higher level features, such
as lines [1], planes [12] and building bounding boxes [7], are

generally suitable for Manhattan World scenes (or the like)
and hence applicable only in such environments. Skylines-
based methods [10] as well as methods relying on a predefined
3D model [2] are, likewise, of limited applicability. Indirect
methods are performed either by 3D-to-3D registration or
by finding some appropriate registration parameters. Methods
based on 3D-to-3D registration are performed using the (rigid
or non-rigid) Iterative Closest Point (ICP) algorithm between
SfM reconstruction and the known scene. However, such
registration is not straightforward due to the unknown scale of
reconstruction. For instance, this scale ambiguity is handled by
an extension of the 4-point congruent sets algorithm in [3]. On
the other hand, registration based on complex parameters, such
as mutual information [15] and region segmentation [13], are
based on single images. Therefore, each camera requires its
own initialization and is individually localized independently
from the rest of the cameras. Cameras that are localized in this
fashion may fail to satisfy the multiview geometric constraints
(such as the epipolar constraint in two images). Regarding the
camera pose refinement, the method proposed in [12] provides
a very good insight into the way the camera pose can be
improved when a partial 3D is known. However, this method
uses only information about scene planes and assumes that the
initial 2D-to-3D registration has already been carried out

In this paper, we propose a method for direct 2D-to-
3D registration of multiple calibrated cameras and a known
scene. We also propose a constrained nonlinear optimization
framework that takes advantage of the knowledge of the scene
to simultaneously refine the pose of all cameras once the coarse
registration is obtained. Our method demands only a rough
knowledge of the pose of only one of the cameras and, apart
from 3D scene point coordinates, requires no other knowledge
regarding the geometry of the input scene. We assume that
the point correspondences across images are available but 2D-
3D correspondences are unknown. To our knowledge, there
is no method that makes use of both 2D and 3D information
without 2D-3D correspondences. Note that methods such as
BA with known scene [14] and PnP [4] require such 2D-
3D correspondences to be established. In practice, good 2D
correspondences between instantaneously captured images can
be obtained by using state-of-the-art feature descriptors (such
as SIFT). Starting from a roughly known pose of one camera,
registration is carried out by minimizing the projection error
in one view while preserving the relationship between all pairs
of images in the sequence. The 2D-to-3D correspondences
required here are selected such that every pair of corresponding



points in two images yields a 3D counterpart whose distance
to the scene is minimal while all 3D points emanating from
those images share a common relative scale. This distance
measurement is derived from epipolar geometry and hence
independent from the relative scale. Using such distance
measurement allows to avoid the scale problem that arises
during the reconstruction. The true relative scale can then
be recovered by building a scale histogram where 2D-to-3D
correspondences vote for their relative scales. The 3D scene
required for our method is no more than a set of points, which
in practice, can easily be acquired from other 2D cameras or
3D sensors. Likewise, a rough pose estimation of one camera
can be obtained either from SfM itself or from odometry. This
pose refinement process also minimizes the same objective
used for 2D-to-3D registration while additionally enforcing the
epipolar constraint between pairs of views. Both registration
and refinement are incorporated in a common optimization
framework whose optimal solution is obtained by an iterative
method. We use an M-estimator-based iterative weighting
scheme for cost as well as the constraints to reduce the
effect of inaccuracies in the data. The scale histogram we
have built to find the correspondences and the true scale can
efficiently detect the occluded/missing parts of the scene. The
registration part of our method uses only the known part of
the scene whereas our refinement process uses the constraints
that arise from the unknown part of the scene as well. Our
experiments show that the accuracy of our refinement method
is significantly better than that of the commonly used BA.

Our paper is organized as follows: Section II introduces
the necessary background and notations. In Section III, we for-
mulate our optimization problem for the 2D-to-3D registration
problem and propose an algorithm for solving it. Experiments
using both synthetic and real data are presented in Section IV.
Finally, Section V concludes our work.

II. NOTATION AND BACKGROUND

Let Xi, i = 1 . . . n be the points from a known scene in
3-space represented in a world co-ordinate system Ow. Our
goal is to accurately localize a set of p calibrated cameras
with respective camera co-ordinate systems O1, O2. . .Op with
respect to Ow by taking advantage of the known scene. Let
R and t be the rotation and translation, commonly known

as “pose”, of the first camera with respect to Ow. If xj1 and

xj2, j = 1 . . .m are the corresponding set of feature points in
two views, the relative pose of the second camera with respect
to the first one (R0, t0) can be obtained by decomposing the
essential matrix using [9]. Note that, we use the term “relative
pose” for the transformation from one camera co-ordinate

system to another. Let eXj , j = 1 . . .m be the reconstruction
from two views in O1. Every rotation matrix R is represented
by a 4×1 vector of quaternions q unless mentioned otherwise.
Both 3D and 2D points are represented by 3-vectors, the
latter being in the homogeneous representation. The 2D-to-3D
correspondences are specified by a function φ. For instance, we
denote by φ(j) the function that maps each pair of 2D points

xj1 ↔ xj2 to the corresponding 3D point Xi. The distance
between two rotation matrices is measured by computing the
spectral norm of their difference. For a matrix A, its spectral
norm is denoted as |||A|||. Two given up-to-scale translation
vectors are compared by measuring the angle between them.
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Fig. 1: Triangulation.

III. 2D-TO-3D REGISTRATION METHOD

In this section, we establish the relationships between pairs
of image points in two views and the known scene. We
propose an optimization framework using these relationships
whose optimal solution is the required registration parameters.
We also present and discuss an algorithm for solving this
optimization problem.

A. Problem formulation

The relationship between 2D and 3D points is depicted in
the triangulation diagram given in Fig. 1. The inner product
between the normal of the plane [t0]⇥R

0x2 and the vector
RX + t lying on the same plane results in the relationship

f(R, t, R0, t0) = (RX + t)T [t0]⇥R
0x2 = 0. (1)

Since the vector x1 should align with the vector RX + t,

RX + t = ↵x1 (2)

must also be satisfied for some unknown scale factor ↵. The
scale factor can be eliminated by using cross-product thus
leading to

g(R, t) = ||[x1]⇥(RX + t)||2 = 0. (3)

Furthermore, the epipolar constraint between two views is
expressed as

h(R0, t0) = xT1 [t
0]⇥R

0x2 = 0. (4)

While (3) locates the first camera, (1) locates the second
camera with respect to the world frame while preserving its
relationship to the first one. Similarly, (4) localizes the second
camera with respect to the first one. Equations (1), (3) and (4)
are obviously redundant. However, in the presence of noisy
data and unknown correspondences all constraints must be
enforced: satisfying only the non-redundant conditions does
not necessarily satisfy all of them. In addition, (4) makes use
of the unknown part of the scene as well. Therefore, all three
equations will be incorporated in our optimization framework
in which (1) is chosen to be the objective (as it includes the
pose of both the cameras) while the rest of the constraints are
used as constraints.

Let us consider for now the problem of localizing two

cameras given known 2D-to-2D (xj1 ↔ xj2) and unknown

2D-to-3D (xj1 ↔ xj2 ↔ Xφ(j)) correspondences in a noisy



environment. The 2D-to-3D registration problem then boils
down to finding the optimal φ through optimization. Finding
the optimal values of R, t, R0 and t0, once φ is obtained,
will be referred to as the camera pose refinement. Stating
both the registration and refinement problems in a common
optimization framework can be written as

minimize
q, t, q0, t0, φ

mX

j=1

{(RXφ(j) + t)T [t0]⇥R
0xj2}

2

subject to ||[xj1]⇥(RX
φ(j) + t)||2 = 0,

{(xj1)
T [t0]⇥R

0xj2}
2 = 0, j = 1 . . .m

||q||2 = 1, ||q0||2 = 1, ||t0||2 = 1. (5)

The optimization problem (5) considers that every image
point has its corresponding 3D point in the scene. In prac-
tice, there could be two problems: (a) multiple 3D points
lying on the back-projected ray from the first camera center
through an image point. All such points satisfy the epipolar
constraint and hence lead to correspondence ambiguities, and
(b) extra 2D or missing 3D points resulting in invalid 2D-
to-3D correspondences. We address both of these problems
by assigning the weights derived from a scale histogram for
each of these correspondences. For 3D-to-3D correspondences
eXj ↔ Xφ(j), j = 1 . . .m, the relative scale of the reconstruc-

tion is

s(j) =
|| eXj ||

||RXφ(j) + t||
, j = 1 . . .m. (6)

Since all the points undergo the same scale change during the
reconstruction, for the ideal case s(j) = s(i) ∀{i, j}✏1 . . .m.
In practice, when the histogram H(u), u = 1 . . . b of these
scales is built, it holds the highest number of samples in the
bin corresponding to the true scale. If umax is the bin with
highest number of samples, then the weights are distributed as

w(j) =

⇢
1 s(j)✏H(umax)

0 otherwise.
(7)

Furthermore, the effect of the inaccuracies in the data is re-
duced by introducing a robust estimation technique. Hence, the
optimization problem (5), after including the robust estimation
and histogram-based weighting, can be re-written as

minimize
q, t, q0, t0, φ

mX

j=1

w(j)⇢((RXφ(j) + t)T [t0]⇥R
0xj2)

subject to w(j)⇢(||[xj1]⇥(RX
φ(j) + t)||) = 0,

⇢((xj1)
T [t0]⇥R

0xj2) = 0, j = 1 . . .m

|||q||2 = 1, ||q0||2 = 1, |t0||2 = 1. (8)

where ⇢(x) is Tukey bi-weighted potential function. For a
threshold of ⇠, it is defined as

⇢(y) =

(
y6

6 − ξ2y4

2 + ξ4y2

2 for |y| < ⇠
ξ6

6 otherwise
(9)

whose influence function is  (y) = y
(
⇠2 − y2

)2
for |y| < ⇠

and 0 otherwise.

Note that, the cost and first constraint functions consider
only the known part of the scene. However, the second

constraint includes the unknown part of the scene as well.
The optimal registration parameters are obtained by iteratively
solving this optimization problem. Each iteration breaks down
the problem into two: (a) 2D-to-3D registration and (b) Camera
pose refinement.

B. 2D-to-3D registration

A camera pair is localized in the scene by iteratively
estimating the registration parameters R, t and φ. This is
performed by solving

minimize
R, t, φ

mX

j=1

w(j){(RXφ(j) + t)T [t0]⇥R
0xj2}

2

subject to w(j)||[xj1]⇥(RX
φ(j) + t)||2 = 0, j = 1 . . .m.

(10)

In general, finding φ is also a part of the optimization process.
In this case, our choice of φ is such that it maps every pair of
image points to a 3D point that minimizes the distance between
them. This is written as

φ(j) =
argmin

i = 1 . . . n
d(R, t,Xi, xj1, x

j
2), j = 1 . . .m, (11)

where d(R, t,X, x1, x2) is a distance that measures the sum
of square of projection errors in two views given by

d(R, t,X, x1, x2) = ||[x1]⇥(RX + t)||2

+ ((RX + t)T [t0]⇥R
0x2)

2. (12)

Hence, the optimal pose of the first camera is

{R⇤, t⇤} =

argmin
R, t

mX

j=1

w(j){(RXφ(j) + t)T [t0]⇥R
0xj2}

2

subject to w(j)||[xj1]⇥(RX
φ(j) + t)||2 = 0, j = 1 . . .m.

(13)

Since both cost and constraint functions are linear in R and
t, the solution to this problem can be obtained by singular
value decomposition. Note that, the linear solution in this case
does not consider the rotation matrices in their quaternionic
representation. The obtained solution is forced to be a rotation
matrix and then converted to quaternions.

C. Camera pose refinement

Coarse registration obtained from 2D-to-3D registration is
refined using a constrained nonlinear optimization process.
This step refines the pose of the first camera as well as the
relative pose of the second camera using the knowledge of
3D scene. Once, the correspondence function φ is known, the
registration parameters are refined by solving the following
optimization problem

{q⇤, t⇤, q0⇤, t0⇤} =

argmin
q, t, q0, t0

mX

j=1

w(j)⇢((RqX
φ(j) + t)T [t0]⇥Rq0x

j
2)

subject to w(j)⇢(||[xj1]⇥(RqX
φ(j) + t)||) = 0,

⇢((xj1)
T [t0]⇥Rq0x

j
2) = 0, j = 1 . . .m

||q||2 = 1, ||q0||2 = 1, ||t0||2 = 1. (14)



This is a constrained nonlinear optimization problem whose lo-
cal optimal solution can be obtained by iteratively re-weighted
least-squares (IRLS) technique. Each iteration of IRLS uses
the interior-point method to solve the constrained nonlinear
least-squares problem.

D. The algorithm

Starting from the initial estimate of the parameters
{R0, t0, R

0

0, t
0

0}, obtained from roughly known first camera
pose and the essential matrix decomposition, the algorithm
iteratively estimates the parameters {Rk, tk, R

0

k, t
0

k, φk} such
that the cost function (8) reduces over the iterations k = 0 . . . s
while satisfying its constraints. Each iteration performs the
following two steps:

1) Camera pair alignment: the camera pair is it-
eratively aligned with the 3D scene starting from
the initial estimate {Rk,0, tk,0} = {Rk, tk}. Each
iteration (l = 0 . . . r) of this part of the algorithm
comprises the following

a) compute 2D-3D correspondences using (11);
b) build the scale histogram and compute

weights w(j), j = 1 . . . n;
c) update the pose of the first camera using (13).

2) Simultaneous pose refinement: starting from the
initial estimates {Rk,r, tk,r, R

0

k, t
0

k, φk,r}, the poses
of both the cameras are refined by solving (14).

E. Normalization and pose recovery

For the sake of numerical stability, the 3D scene points
are normalized such that the distance between its centroid to
the first camera is approximately equal to 1. If the initial esti-
mate of the first camera pose is {R0, t0}, such normalization
corresponds to Xi

n = (R0X
i + t0)/||t0||, i = 1 . . . n. After

this transformation, R0 and t0 simplify to I3⇥3 and 03⇥1

respectively. If the optimal registration parameters obtained
from the optimization are R⇤, t⇤, R0⇤, and t0⇤; R0 and t0 are
updated to R0⇤ and t0⇤, but R and t are updated to R⇤R0 and
R⇤t0+ ||t0||t

⇤. On the other hand, we also normalize the data
during robust estimation i.e. y in Equation (9) is scaled with
twice of its median value and ⇠ is set to 1 whenever it is used.
The iterations are terminated when the improvement of the
pose between two consecutive iterations k − 1 and k of both
the cameras becomes insignificant. The improvements on the
rotational and translational components are computed using

eR = |||Rk−Rk−1||| and et = cos−1

✓
tTk tk−1

||tk||||tk−1||

◆
. (15)

Improvements on R0 and t0 are also computed in the same way.
The algorithm terminates when eR < T1, eR0 < T1, et < T2,
and et0 < T2 for some given thresholds T1 and T2.

F. Generalization to multiview

In multiview case of p cameras, the registration parameters
estimation using (8) for two views has been generalized to

minimize
ql, q

0

l, φ,
tl, t

0

l

pX

l=1

mX

j=1

wl(j)⇢((RlX
φ(j) + tl)

T [t0l]⇥R
0

lx
j
l+1)

subject to wl(j)⇢(||[x
j
l ]⇥(RlX

φ(j) + tl)||) = 0,

⇢((xjl )
T [t0l]⇥R

0

lx
j
l+1) = 0, j = 1 . . .m

||ql||
2 = 1, ||q0l||

2 = 1,

||t0l||
2 = 1, l = 1 . . . p− 1. (16)

Our solution to this problem is similar to resection-intersection
based BA [14]. Since we do not directly refine the 3D points,
the first part of the algorithm performs the registration followed
by the refinement method. Once a pair of cameras is localized,
the refined pose of the second camera is used to initialize the
pose of the first camera of the next pair. As both cameras of
the next pair are free to move during refinement, the error
introduced in previous pairs does not propagate to the next
ones. More importantly, roughly known pose of only one
camera suffices for the multiview case as well.

IV. EXPERIMENTS

We tested our method using synthetic and real data. Our
results with synthetic data are compared against those of ICP
with classical SfM. The results obtained on two benchmark
real datasets and one in-house scene are compared against SfM
for two views and BA for multiple views.

A. Simulations

We generated a set of 800 random 3D points scattered on
the surface of four faces of a [−10 10]3 cube. The cameras
were placed about 20 ± 2 units away from the origin with
randomly generated rotations while roughly looking towards
the centroid of the scene. All scene points were projected onto
256×256 images with zero-skew, 100 pix. focal length and an
image-centered principal point. The 2D data were obtained by
adding various levels of zero-mean Gaussian noise to the pixel
coordinates. 400 out of 800 projected points were randomly
selected and used to localize the second camera with respect to
the first one using classical SfM. During this process, half of
the points are rejected to minimize the effect of outliers thus
leading to the reconstruction of only 200 points. The same
data were used in our method to perform the registration and
refinement. We ran 100 tests for each noise level of standard
deviation (0 to 2.0 with a 0.25 step). The simulation results
are presented for the two-view case only.

The roughly known R was generated by introducing an
error of [0.05 0.075]c in roll, pitch and tilt each. We introduced
these relatively small errors in R to observe the improvements
when the iterative scheme converges. Similarly, a small error
of ±5% is introduced in each translation axis. Nevertheless,
these errors are very significant since the scene is relatively far
from the cameras. The histogram was built with auto adjustable
10 bins after discarding the scales of less than 0.1 and greater
than twice its median. First, we obtained the best possible
R, t, R0, and t0 using classical SfM and ICP. As ICP cannot
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Fig. 2: SfM+ICP vs. Our method with noise; ∆R (left-top),
∆t (right-top), ∆R0 (left-bottom), and ∆t0 (right-bottom).

be performed without the knowledge of relative scale, the
extra information of scale is recovered with the assumption
of the image-based reconstruction being spread all over the
provided 3D scene. Note that, our method does not require this
extra information of scale. To analyze the improvements on
camera pose, we computed the deviation of these results from
their ground truth values. The errors ∆R, ∆t, ∆R0, and ∆t0

correspond to the residuals computed as in (15). Fig. 2 shows
the Root-Mean Square (RMS) plots of the computed errors
for various levels of noise. It can be seen that our method
performs significantly better than SfM with ICP even when
the ICP is favored with extra information of scale. ICP was
performed using [5] and the optimization was carried out using
the interior point method (MATLAB-R2012a).

B. Real data

For the first experiment with real data, we built the prior 3D
scene by registering multiple frames acquired from a 3D sensor
(Kinect). This scene was then down-sampled to about 50,000
points as shown in Fig. 3 (left). After the 3D scene is acquired,
a standard sized football was placed in the same scene and two
1080×1920 images were captured by a moving camera. These
images and their 1198 correspondences are shown in Fig. 3
and Fig. 4. 14 manually selected points from the corners of
the Truncated Icosahedron (TI) (Fig. 4 (right)) were retained
for assessing the quality of the reconstruction. To overcome the
problem of initialization, the first views of both 2D and 3D
cameras are captured approximately from the same location
while facing towards the same part of the scene.

The final metric reconstruction of the scene is upgraded
to Euclidean for the measured length of polygon sides equal
to 4.5 cm. Reconstructed TI from two views is placed in the
given 3D scene and shown in Fig. 5. We have approximated
the circumference of the football by fitting a sphere passing
through the vertices of the reconstructed TI. For a quantitative
analysis, the following geometric parameters of reconstructed
TI are computed: (i) LS: RMS error of the length of sides. (ii)
AH: RMS error of the internal angles of hexagons. (iii) AP:
RMS error of the internal angles of pentagons. (iv) A-HP: RMS
error of Dihedral angles between hexagons and the pentagons.

Fig. 3: Left: Kinect 3D scene; Right: image pair.

Fig. 4: Left: Correspondences; Right: feature points.

(v) A-HH: Dihedral angle between two hexagons (expected:
138.19). (vi) CS: Circumference of the sphere (expected: 68-
70 cm). Table I compares these parameters against FIFA’s
standard. This is an example of 2D-to-3D data fusion where
the reconstruction from two views is added to the 3D scene.
This example also demonstrates the handling of occlusion
problem because of the football placed in the scene after the
3D acquisition. Furthermore, even when the 3D data is not very
accurate, like in this case, it shows that our method still benefits
from the scene information. We also tested our method with
the public datasets Fountain-P11 and Herz-Jesu-K7 (Fig. 6
from http://cvlabwww.epfl.ch/⇠strecha). These datasets con-
sist, respectively, of 11 and 7 images of size 3072×2048 along
with ground truth partial 3D point clouds of the scenes. To
validate the ground truth, the texture was mapped on the scene
by back-projecting images using their ground truth projection
matrices. Fig. 7 shows that the provided camera poses are very
satisfactory (unlike M. Corsini et al. reported in [3]). First, the
3D reconstructions for every consecutive pair of images are
obtained using classical SfM. All these results are then refined
separately using our method. Results before and after the
refinement are compared against the ground truth in Table II.

Fig. 5: Two views of the 3D scene with TI.

LS
AP AH A-HP A-HH

CS

(cm) (cm)

SfM 0.201 4.267 2.008 6.195 140.19 76.25

Our method 0.117 2.943 0.863 3.342 139.20 73.10

TABLE I: Geometric parameters.

http://cvlabwww.epfl.ch/~strecha


Fig. 6: Left: Fountain-P11; Right: Herz-Jesu-K7.

Fig. 7: Texture mapping of Herz-Jesu-K7.

The 3D errors shown here are the mean 3D RMS error of all
the pairs. During the implementation, we have decimated the
3D scenes to about 50,000 points by uniform down-sampling
for a faster computation. About 2000-3000 feature points were
selected in each pair of views for the reconstruction. For
the multiview case, reconstructions from each consecutive
pair of views are registered. Such registration undergoes error
accumulation and scale factor drift. We separately refined these
results using our method and sparse BA [8]. The results using
our method were found to be significantly better than those
of BA. We also considered refining our results using BA.
Results obtained from BA, our method, and BA performed
to refine our results are shown in Table III. It is observed that
the BA performed on our results diverges from the ground
truth instead of further refinement. Since BA takes only the
image information into account and cannot incorporate the 3D
knowledge; noise present in the image might be the reason
for this divergence. For qualitative analysis, results obtained
from BA as well as our method were used to map the texture
(Fig. 8). Texture mapping using BA contains many artifacts
the most visible of which has been circled in this figure. Note
that, as the scene being relatively far from the cameras, even a
small error in pose can significantly affect the texture mapping.
It clearly shows the pose refinement using our method is very
accurate and visually no different from the ground truth.

V. CONCLUSION

In this paper, we have proposed an optimization framework
to accurately localize two or more cameras in a known
environment. We have demonstrated the possibility of precisely
registering 2D images to 3D scene using only the feature

Method Fountain Herz-Jesu

∆R0(RMS)
SfM 0.0044 0.0072

Our method 8.49e-4 0.0013

∆t0(RMS)
SfM 0.0404 0.0757

Our method 0.0031 0.0052

3D error
SfM 0.0011 0.0025

Our method 5.95e-4 0.0018

TABLE II: SfM vs. our method (two views).

Method Fountain Herz-Jesu

∆R(RMS)

BA 0.0436 0.0123

Our method 0.0020 0.0067

Refined 0.0251 0.0080

∆t(RMS)

BA 0.0311 0.0402

Our method 0.0019 0.0224

Refined 0.0172 0.0241

3D error

BA 0.0020 0.0069

Our method 0.0015 0.0068

Refined 0.0020 0.0069

TABLE III: BA vs. Our method and unsuccessful refinement
of our results using BA (multiview).

Fig. 8: Texture mapping: BA (left) and Our method (right).

points. Usage of a known 3D scene to refine the camera pose
is key to achieve such accuracy. To make it possible, a direct
2D-to-3D registration method has also been integrated in the
optimization process.
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