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PERSISTENCE EXPONENT FOR RANDOM PROCESSES IN BROWNIAN

SCENERY

FABIENNE CASTELL, NADINE GUILLOTIN-PLANTARD, AND FRÉDÉRIQUE WATBLED

Abstract. We consider the one-sided exit problem for random processes in Brownian scenery,
that is the asymptotic behaviour for large T , of the probability

P

[

sup
t∈[0,T ]

∆t ≤ 1
]

where

∆t =

∫

R

Lt(x) dW (x).

HereW = {W (x);x ∈ R} is a two-sided standard real Brownian motion and {Lt(x);x ∈ R, t ≥ 0}
is the local time of some self-similar random process with stationary increments, independent
from the process W .

1. Introduction

Let W = {W (x);x ∈ R} be a standard two-sided real Brownian motion and Y = {Y (t), t ≥ 0}
be a real-valued self-similar process of index γ ∈ (0, 2) (i.e. for any c > 0, {Y (ct), t ≥ 0} (d)

=
{cγY (t), t ≥ 0}), with stationary increments. When it exists, we will denote by {Lt(x);x ∈ R, t ≥ 0}
a version of the local time of the process {Y (t); t ≥ 0}. The process L satisfies the occupation
density formula: for each bounded measurable function f : R → R and for each t ≥ 0,

∫ t

0
f(Y (s))ds =

∫

R

f(x)Lt(x)dx. (1)

The processes W and Y are defined on the same probability space and are assumed to be
independent. We consider the random process in Brownian scenery {∆t; t ≥ 0} defined as

∆t =

∫

R

Lt(x) dW (x).

The process ∆ is itself a h-self-similar process with stationary increments, with

h := 1− γ

2
.

This process can be seen as a mixture of Gaussian processes, but it is neither Gaussian nor
Markovian. It appeared independently in the mathematical literature (see [13],[3]), and in the
physics literature (see [17]) where it was originally introduced to model diffusion in layered

white-noise velocity field. Note indeed that ∆t can formally be written as
∫ t
0 Ẇ (Y (s))ds. Thus,

it describes the horizontal motion of a tracer particle in a (1+1)-dimensional medium, where
the motion of the particle along the vertical direction y is described by the process Y , while
along the horizontal direction, the particle is driven by the white noise velocity field Ẇ (y), that
depends only on the vertical coordinate y. The process {∆t; t ≥ 0} provides a simple example
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of anomalous super-diffusion, being for instance of order t3/4 when Y is a Brownian motion. In
this paper, we are interested in the persistence probability of the process ∆, i.e. the asymptotic
behaviour of

F(T ) := P

[

sup
t∈[0,T ]

∆t ≤ 1
]

as T → +∞. The study of the one-sided supremum process of random processes is a classical
issue in probability. One usually gets polynomial decay of the persistence probability: F(T ) ≍
T−θ for a non-negative θ, often called persistence exponent, or survival exponent. Classical
examples where this exponent can be computed, include random walks or Lévy processes, and
we refer the reader to the recent survey paper [1] for an account of models where the persistence
exponent is known. However, there are relevant physical situations where this exponent remains
unknown (see for instance [15]). The persistence exponent of the Brownian motion in Brownian
scenery was studied by Redner [19, 20], and Majumdar [16]. Based on physical arguments,
numerical simulations and analogy with Fractional Brownian Motion, Redner and Majumdar
conjectured the value of the persistence exponent. In [6], their conjecture was proved up to
logarithmic factors, when the process Y is a stable Lévy process with index δ ∈ (1, 2]. The
proof of [6] depends heavily on the increments independence of the process Y and the question
raises if it is possible to compute the persistence exponent without it. The aim of this paper is
to answer this question, and to provide assumptions on Y allowing to compute the persistence
exponent of the random process in Brownian scenery.

(H1): There exists a version {Lt(x);x ∈ R, t ≥ 0} of the local time of Y ;
(H2): Y is a self-similar process of index γ ∈ (0, 2);
(H3): Y has stationary increments;
(H4): Let V1 :=

∫

L2
1(x) dx be the self-intersection local time of Y . There exist a real

number α > 1, and positive constants C, c such that for any t ≥ 0,

P [V1 ≥ t] ≤ C exp(−ctα) ;

(H5): There exist a real number β > 0, and positive constants C, c such that for any t > 0,

P [V1 ≤ t] ≤ C exp(−ct−β) .

Our main result is the following one.

Theorem 1. Assume (H1) to (H5) hold. There exists a constant c > 0, such that for large
enough T ,

T−γ/2(lnT )−c ≤ P

[

sup
t∈[0,T ]

∆t ≤ 1
]

≤ T−γ/2(lnT )+c. (2)

The paper is organized as follows. Section 2 provides three examples of processes satisfying
(H1) to (H5), including the stable Lévy process with index δ ∈ (1, 2], and thus generalizing the
result of [6]. Section 3 states some useful properties of the process ∆. Section 4 is devoted to
the proof of Theorem 1.

2. Some examples

2.1. A sufficient condition for (H5). In this section we assume that (H1) holds and we
provide a sufficient condition on {Y (t), t ≥ 0} allowing to check (H5). Let us first compare V1

with max
s∈[0,1]

|Y (s)|. By noting that

1 =

∫

{|x|≤maxs∈[0,1] |Y (s)|}
L1(x)dx ≤ V

1/2
1

√

2 max
s∈[0,1]

|Y (s)|,
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we deduce that
1

2 max
s∈[0,1]

|Y (s)| ≤ V1. (3)

Lemma 2.1. Assume that (H1) holds and that there exist positive constants C and c, and a
real number β > 0 such that for all t > 0,

P

[

max
s∈[0,1]

|Y (s)| ≥ t

]

≤ C exp
(

−ctβ
)

.

Then, (H5) holds true.

Proof. It is a direct consequence of (3) that for all t > 0,

P [V1 ≤ t] ≤ P

[

max
s∈[0,1]

|Y (s)| ≥ 1

2t

]

≤ C exp(−c2−βt−β) .

�

2.2. Stable Lévy processes. A process Y = {Y (t), t ≥ 0} is a strictly stable Lévy process
with index δ ∈ (1, 2] if it is a process with stationary and independent increments, such that
Y (0) = 0 and for any t ≥ 0 and u ∈ R,

E[eiuY (t)] = exp
{

− c|u|δt
(

1 + iζ sgn(u) tan(πδ/2)
)}

, (4)

where ζ ∈ [−1, 1], and c is a positive scale parameter.

Lemma 2.2. The stable Lévy process with index δ ∈ (1, 2] satisfies (H1) to (H5) with γ = 1
δ ,

α = δ, and β = δ
2δ−1 .

Proof. It is immediate that the Lévy process satisfies (H2) and (H3). A continuous version of
the local time exists since δ > 1 (this was proved by Boylan [4]), so it satisfies (H1). Moreover,
Corollary 5.6 in [14] states that there exist positive constants C and ξ s.t. for every t > 0,

P[V1 ≥ t] ≤ Ce−ξtδ ,

which gives (H4). To prove (H5) we let Vt :=
∫

L2
t (x) dx be the self-intersection local time of Y

up to time t for t ≥ 0, and we show that there exists l > 0 such that

P [Vt ≤ 1] ≤ e−lt for t large enough. (5)

As {Vt, t ≥ 0} is self-similar of index 2δ−1
δ , (5) implies that for every positive ε small enough,

P[V1 ≤ ε] = P[V
ε
−

δ
2δ−1

≤ 1] ≤ e−lε
−

δ
2δ−1

,

which gives (H5). To prove (5) we show that the function defined on R
+ by

f(t) = logP[Vt ≤ 1]

is subadditive. Let us fix s, t in [0,+∞). We consider the process Y (s) := {Y (s)
u , u ≥ 0} defined

by

Y (s)
u = Yu+s − Ys,

its local time {L(s)
u (x);x ∈ R, u ≥ 0}, and its self-intersection local time {V (s)

u , u ≥ 0}. Note
that

Lt+s(x) = Ls(x) + L
(s)
t (x− Ys).

Hence
Vt+s ≥ Vs + V

(s)
t .
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The process Y being a Lévy process, V
(s)
t and Vs are independent and V

(s)
t has the same law as

Vt. Therefore

P[Vt+s ≤ 1] ≤ P[Vs ≤ 1;V
(s)
t ≤ 1] = P[Vs ≤ 1]P[Vt ≤ 1].

Thus f is subadditive, which implies that f(t)
t converges, as t → +∞, towards a limit −l =

inft>0
f(t)
t (see [11]). It remains to show that l is strictly positive. As −l is less or equal than

f(1), it is enough to show that P[V1 > 1] > 0. But thanks to (3) and Proposition 10.3 of [9],

P[V1 > 1] ≥ P

[

max
s∈[0,1]

|Y (s)| < 1

2

]

> 0,

and this concludes the proof of (5). �

2.3. Fractional Brownian motion. The Fractional Brownian motion of Hurst index H ∈
(0, 1) is the real centered Gaussian process {BH(t), t ≥ 0} with covariance function

E[BH(t)BH(s)] =
1

2
(t2H + s2H − |t− s|2H) .

Lemma 2.3. The Fractional Brownian motion with Hurst index H ∈ (0, 1) satisfies (H1) to
(H5) with γ = H, α = 1/H, β = 2.

Proof. It follows readily from the definition that BH is self-similar with index H and has sta-
tionary increments. The existence of a jointly continuous version of its local time process for
H ∈ (0, 1) is a classical fact (see for instance paragraph 22 in [10]). Theorem 1 of [12] asserts
that there exists λ0 > 0 such that for every 0 < λ < λ0,

E

[

eλV
1/H
1

]

< ∞ , (6)

which implies (H4) with α = 1/H. Finally, (H5) follows from Lemma 2.1 and Fernique’s
estimation ([8], Theorem 4.1.1): there exists cF > 0 such that for any x ≥

√
5,

P[ max
s∈[0,1]

|BH(s)| ≥ cFx] ≤ 10

∫ +∞

x
e−

v2

2 dv . (7)

This implies (H5) with β = 2. �

2.4. Iterated Brownian motion. Let {B(x), x ∈ R} be a two-sided real standard Brownian

motion, and let
{

B̃(t), t ≥ 0
}

be a real standard Brownian motion, independent of {B(x), x ∈ R}.
The iterated Brownian motion is the process {Y (t), t ≥ 0} defined by

Y (t) = B(B̃(t)) .

Lemma 2.4. The iterated Brownian motion satisfies (H1) to (H5) with γ = 1/4, and α = β =
4/3.

Proof. The self-similarity and increments stationarity of the iterated Brownian motion are direct
consequences of the self-similarity and increments independence of the Brownian motion. The
existence and joint continuity of the local times of iterated Brownian motion were proved in
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[5, 7]. Let us prove (H5). For x > 0,

P

[

max
s∈[0,1]

|Y (s)| ≥ x

]

≤ P

[

max
s∈[0,1]

∣

∣

∣
B̃(s)

∣

∣

∣
≥ x2/3

]

+ P

[

max
|u|≤x2/3

|B(u)| ≥ x

]

≤ P

[

max
s∈[0,1]

∣

∣

∣
B̃(s)

∣

∣

∣
≥ x2/3

]

+ P

[

max
u∈[0,x2/3]

|B(u)| ≥ x

]

≤ 2P

[

max
s∈[0,1]

|B(s)| ≥ x2/3
]

≤ 4P

[

max
s∈[0,1]

B(s) ≥ x2/3
]

= 4P
[

|B(1)| ≥ x2/3
]

. (8)

This proves (H5) with β = 4/3 using Lemma 2.1.

To prove (H4), we use the uniform norm on the local times of iterated Brownian motion
proved in Lemma 4 of [21]: there exists a constant K > 0 such that for any even integer n,

sup
x∈R

E [(L1(x))
n] ≤ Kn(n!)3/4 . (9)

Since
∫

R
L1(x) dx = 1, Hölder’s inequality implies that for any integer n,

V n
1 =

(
∫

R

L1(x)
2 dx

)n

≤
∫

R

L1(x)
n+1 dx =

∫ maxs∈[0,1]|Y (s)|

−maxs∈[0,1]|Y (s)|
L1(x)

n+1 dx .

Therefore,

E [V n
1 ] ≤

∫

R

E

[

L1(x)
n+11|x|≤maxs∈[0,1]|Y (s)|

]

dx

≤
∫

R

√

E
[

L1(x)2(n+1)
]

√

P

[

max
s∈[0,1]

|Y (s)| ≥ |x|
]

dx

≤ Kn+1 ((2n + 2)!)3/8
∫

R

√

P

[

max
s∈[0,1]

|Y (s)| ≥ |x|
]

dx , (10)

where we used (9) in the last inequality. By (8), the integral in (10) is finite. We deduce then
from Stirling’s formula that there exits a constant C > 0 such that for any integer n,

E [V n
1 ] ≤ Cnn

3
4
n .

Hence, for any t > 0, and any integer n,

P [V1 ≥ t] ≤ t−nCnn
3
4
n .

Optimizing over the values of n leads to take n =
⌈

e−1
(

t
C

)4/3
⌉

, so that t−nCnn
3
4
n ≃ exp(− 3

4e

(

t
C

)4/3
)

for large t. This proves that the iterated Brownian motion satisfies (H4) with α = 4/3.

�

3. Auxiliary statements on (∆t, t ≥ 0)

For a certain class of stochastic processes {Xt; t ≥ 0} (to be specified below), Molchan [18]
proved that the asymptotic behavior of

P

[

sup
t∈[0,T ]

Xt ≤ 1
]
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is related to the quantity

I(T ) := E

[

(
∫ T

0
eXt dt

)−1
]

.

We refer to [2] where the relationship between both quantities is clearly explained as well as the
heuristics.

Theorem 3.1 (Statement 1, [18]). Let {Xt; t ≥ 0} be a continuous process, self-similar with
index γ > 0, with stationary increments s.t. for every θ > 0,

E

[

exp
(

θ max
t∈[0,1]

|Xt|
)]

< +∞.

Then, as T → +∞,

E

[

(
∫ T

0
eXt dt

)−1
]

= HT−(1−γ)
(

E

[

max
t∈[0,1]

Xt

]

+ o(1)
)

.

By applying this result to our random process ∆ we get

Proposition 3.2. Assume (H1) to (H4) hold. For any γ ∈ (0, 2), as T → +∞,

E

[

(
∫ T

0
e∆t dt

)−1
]

=
(

1− γ

2

)

T−γ/2
(

E

[

max
t∈[0,1]

∆t

]

+ o(1)
)

.

Before proving Proposition 3.2 we first establish three useful inequalities concerning the pro-
cess {∆t, t ≥ 0}. First we show that the process satisfies the Kolmogorov-Centsov criterion,
which allows us to assume that its sample paths are continuous (Lemma 3.3). Then we show
that the process satisfies a maximal inequality (Lemma 3.4), and next we provide an exponential
upper tail bound for ∆1 (Lemma 3.5).

Lemma 3.3. Assume (H1) to (H4) hold. Then for every a ≥ 1,

(E|∆t −∆s|a)1/a = C(a)|t− s|h, t, s ≥ 0 (11)

where C(a) ≤ caν with ν := 1
2

(

1 + 1
α

)

. In particular the process satisfies the Kolmogorov-
Centsov criterion of continuity.

Proof. The increments of the process ∆ being stationary, by self-similarity, we have for every
t, s ≥ 0,

E[|∆t −∆s|a] = |t− s|ha E[|∆1|a]
≤ |t− s|ha E[|∆1|2([a]+1)]a/(2([a]+1))

From the formula of the even moments of a centered Gaussian law, we can derive the even
moments of the random variable ∆1, namely, for any m ∈ N,

E[∆2m
1 ] = E

[

E[∆2m
1 |Y ]

]

= E[V m
1 ]

(2m)!

2mm!
.

First of all, from Stirling’s formula, for m large enough, we have

(2m)!

2mm!
≤ C

(2

e

)m
mm

for some constant C > 0. Moreover, we deduce from (H4) that

E[V m
1 ] =

∫ +∞

0
mxm−1

P[V1 ≥ x] dx

≤
∫ +∞

0
Cmxm−1 exp(−cxα) dx =

Cm

α
c−m/αΓ

(m

α

)

. (12)
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It is now easy to derive (11). In particular taking a > 1
h we get the Kolmogorov-Centsov criterion

of continuity. �

Lemma 3.4. Assume (H1) holds. Let T, x ≥ 0. Then

P[ max
s∈[0,T ]

∆s ≥ x|Y ] ≤ 2P[∆T ≥ x|Y ], (13)

P[ max
s∈[0,T ]

∆s ≥ x] ≤ 2P[∆T ≥ x]. (14)

Proof. Conditionally to the process Y , the process (∆t)t≥0 is a centered Gaussian process on R

with covariance function

E [∆s∆t|Y ] =

∫

R

Ls(x)Lt(x)dx.

Moreover for any t ≥ s ≥ 0,

E

[

∆2
t |Y

]

− E

[

∆2
s|Y

]

− E

[

(∆t −∆s)
2|Y

]

=

∫

R

(L2
t (x)− L2

s(x)− (Lt(x)− Ls(x))
2)dx

=

∫

R

2Ls(x)(Lt(x)− Ls(x))dx ≥ 0,

hence applying Proposition 2.2 in [14], we deduce the inequality (13). By integrating we obtain
the maximal inequality (14). �

Lemma 3.5. Assume (H1) and (H4) hold. There exist C > 0 and δ > 0 such that for any
x > 0,

P[∆1 ≥ x] ≤ C exp(−δx
2α
1+α ). (15)

Proof. Conditionally to the process Y , the random variable ∆1 is a real centered Gaussian
variable with variance V1. For each u ∈ R, let

Φ(u) =
1√
2π

∫ +∞

u
e−

s2

2 ds.

Then for x > 0 and θ > 0,

P[∆1 ≥ x] =

∫ +∞

0
Φ(xz−1/2)PV1(dz) =

∫ xθ

0
Φ(xz−1/2)PV1(dz) +

∫ +∞

xθ

Φ(xz−1/2)PV1(dz)

≤ Φ(x1−
θ
2 ) + P[V1 ≥ xθ],

where we used that the function z 7→ Φ(xz−1/2) is non decreasing with values in [0, 1].

Using (H4) and the classical inequality

Φ(u) ≤ 1√
2πu

e−u2/2 for every u > 0,

and choosing θ = 2
1+α , we obtain that for x large enough,

P[∆1 ≥ x] ≤ x−α/(1+α)

√
2π

e−
1
2
x2α/(1+α)

+ Ce−cx2α/(1+α) ≤ Ce−δx2α/(1+α)
,

with δ = min(c, 1/2). This implies (15) for every x > 0. �

Proof of Proposition 3.2. It follows easily from assumptions (H1), (H2), (H3), that the process
{∆t; t ≥ 0} is self-similar with index h := 1− γ

2 , with stationary increments. By Lemma 3.3 we
can assume that it is continuous. Hence, it is enough to prove that for every θ > 0,

E

[

exp
(

θ max
t∈[0,1]

|∆t|
)]

< +∞. (16)
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Let θ > 0. We have

E

[

exp
(

θ max
t∈[0,1]

|∆t|
)]

=

∫ ∞

0
P

[

exp (θ max
t∈[0,1]

|∆t|) ≥ λ
]

dλ

≤ 2 +

∫ ∞

2
P

[

max
t∈[0,1]

|∆t| ≥
ln(λ)

θ

]

dλ.

Since the process {∆t; t ≥ 0} is symmetric and satisfies the maximal inequality (14) of Lemma
3.4,

P

[

max
t∈[0,1]

|∆t| ≥
ln(λ)

θ

]

≤ 2 P

[

max
t∈[0,1]

∆t ≥
ln(λ)

θ

]

≤ 4 P[∆1 ≥ (lnλ)/θ].

We apply the inequality (15) of Lemma 3.5, and since the function λ → exp(−δ((ln λ)/θ)2α/(1+α))
is integrable at infinity for any α > 1, the assertion (16) follows. �

4. Proof of Theorem 1

Aurzada’s proof of the lower bound of P
[

supt∈[0,T )BH(t) ≤ 1
]

(see [2]), rests on both following

arguments: the Fractional Brownian motion satisfies the hypothesis of Theorem 3.1, and it
satisfies the inequality (valid for a large enough)

(E|BH(t)−BH(s)|a)1/a = C(a)|t− s|H , t, s ≥ 0 (17)

with C(a) ≤ caν , for some c and ν > 0. Our random process ∆ satisfies the hypothesis of
Theorem 3.1, and we showed in Lemma 3.3 that it satisfies the inequality (17). Therefore the
proof of Aurzada ([2]) allows us to derive the lower bound in Theorem 1.

As in [18] and [2], the main idea in the proof of the upper bound in (2), is to bound I(T )
from below by restricting the expectation to a well-chosen set of paths.

Conditionally to Y , the process {∆t; t ≥ 0} is a centered Gaussian process such that for every
0 ≤ t < s,

E[∆t∆s|Y ] =

∫

R

Lt(x)Ls(x) dx ≥ 0,

E[∆t(∆s −∆t)|Y ] =

∫

R

Lt(x)(Ls(x)− Lt(x)) dx ≥ 0,

since t → Lt(x) is a.s. increasing for all x ∈ R. It follows then from Slepian’s lemma, that for
every 0 ≤ u < v < w and every real numbers a, b,

P

[

sup
t∈[u,v]

∆t ≤ a, sup
t∈[v,w]

∆t ≤ b
∣

∣

∣
Y

]

≥ P

[

sup
t∈[u,v]

∆t ≤ a
∣

∣

∣
Y

]

P

[

sup
t∈[v,w]

∆t ≤ b
∣

∣

∣
Y

]

(18)

P

[

sup
t∈[u,v]

∆t ≤ a, sup
t∈[v,w]

(∆t −∆v) ≤ b
∣

∣

∣
Y

]

≥ P

[

sup
t∈[u,v]

∆t ≤ a
∣

∣

∣
Y

]

P

[

sup
t∈[v,w]

(∆t −∆v) ≤ b
∣

∣

∣
Y

]

.

(19)

Let aT = (lnT )a, where a > 0 will be chosen later; let αT := lnT
1+lnT , which belongs to (0, 1)

and set βT =
√

VaT where VaT :=
∫

R
L2
aT
(x)dx. Let us define the random function

φ(t) :=

{

1 for 0 ≤ t < aT ,
1− βT for aT ≤ t ≤ T ,
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which is Y -measurable. Clearly, we have

E

[

(
∫ T

0
e∆t dt

)−αT ∣

∣

∣
Y

]

≥
(
∫ T

0
eφ(t) dt

)−αT

P

[

∀t ∈ [0, T ],∆t ≤ φ(t)
∣

∣

∣
Y
]

.

By Slepian’s lemma (see (18)), we have

P

[

∀t ∈ [0, T ],∆t ≤ φ(t)
∣

∣

∣
Y
]

≥ P

[

∀t ∈ [0, aT ],∆t ≤ 1
∣

∣

∣
Y
]

P

[

∀t ∈ [aT , T ],∆t ≤ 1− βT

∣

∣

∣
Y
]

.

Remark that

P

[

∀t ∈ [aT , T ],∆t ≤ 1− βT

∣

∣

∣
Y
]

≥ P

[

∆aT ≤ −βT ;∀t ∈ [aT , T ],∆t −∆aT ≤ 1
∣

∣

∣
Y
]

≥ P

[

∆aT ≤ −βT

∣

∣

∣
Y
]

P

[

∀t ∈ [aT , T ],∆t −∆aT ≤ 1
∣

∣

∣
Y
]

,

by Slepian’s lemma (see (19)). Note that

P[∆aT ≤ −βT |Y ] = Φ(βTV
−1/2
aT ) = Φ(1).

Moreover, it is easy to check that when T goes to infinity,
∫ T

0
eφ(t) dt = O(aT + Te−βT ).

In the following C is a constant whose value may change but does not depend on T . Then we
can write that for T large enough

E

[

(
∫ T

0
e∆tdt

)−αT ∣

∣

∣
Y

]

≥ C(aT +Te−βT )−αT P
[

sup
t∈[0,aT ]

∆t ≤ 1
∣

∣Y
]

P
[

sup
t∈[aT ,T ]

(∆t−∆aT ) ≤ 1
∣

∣Y
]

.

(20)
Next we use the maximal inequality (13) of Lemma 3.4 to write

P
[

sup
t∈[0,aT ]

∆t ≤ 1
∣

∣Y
]

= 1− P
[

sup
t∈[0,aT ]

∆t ≥ 1
∣

∣Y
]

≥ 1− 2P
[

∆aT ≥ 1
∣

∣Y
]

= P[|Z| ≤ V −1/2
aT |Y ]

where Z is a Gaussian variable N (0, 1) independent of Y , from which we deduce that there
exists a constant c > 0 such that

P
[

sup
t∈[0,aT ]

∆t ≤ 1
∣

∣Y
]

≥ cmin(V −1/2
aT

, 1). (21)

Injecting (21) into (20) we get that for T large enough,

P
[

sup
t∈[aT ,T ]

(∆t −∆aT ) ≤ 1
∣

∣Y
]

≤ CE

[

(
∫ T

0
e∆tdt

)−αT

|Y
]

(aT + Te−V
1/2
aT )αT max(V 1/2

aT , 1).

By integrating and using successively Hölder’s inequality with pT = 1
αT

, 1
qT

+ 1
pT

= 1, Jensen’s

inequality, the inequality (x + y)αT ≤ xαT + yαT for x, y > 0, and Proposition 3.2, we get that
for T large enough,

P
[

sup
t∈[aT ,T ]

(∆t −∆aT ) ≤ 1
]

≤ CE

[

(
∫ T

0
e∆tdt

)−1
]1/pT

E

[(

aαT
T max(V 1/2

aT , 1) + TαT e−αT V
1/2
aT max(V 1/2

aT , 1)
)qT ]1/qT

≤ CT
− γ

2pT ‖f1 + f2‖qT ≤ CT
− γ

2pT (‖f1‖qT + ‖f2‖qT ),
with

f1 = aαT
T max(V 1/2

aT , 1), f2 = TαT e−αT V
1/2
aT max(V 1/2

aT , 1).
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The lefthand term is greater than the quantity we want to bound from above, since by station-
arity,

P
[

sup
t∈[aT ,T ]

(∆t −∆aT ) ≤ 1
]

= P
[

sup
t∈[0,T−aT ]

∆t ≤ 1
]

≥ P
[

sup
t∈[0,T ]

∆t ≤ 1
]

.

Concerning the righthand term, we recall that αT = 1
pT

= lnT
1+lnT and 1

qT
= 1 − αT = 1

1+lnT .

Hence, when T goes to infinity, T
− γ

2pT ≤ CT− γ
2 . Therefore,

P
[

sup
t∈[0,T ]

∆t ≤ 1
]

≤ CT− γ
2 (‖f1‖qT + ‖f2‖qT ). (22)

It remains to prove that ‖f1‖qT and ‖f2‖qT are bounded by logarithmic terms.

‖f1‖qT = aαT
T E

[

V qT /2
aT 1VaT

≥1 + 1VaT
≤1

]1/qT ≤ aαT
T

(

E
[

V qT
aT

]1/(2qT )
+ 1

)

.

By (H2), VaT
L
= a2−γ

T V1. Therefore,

E
[

V qT
aT

]1/(2qT )
= a

1− γ
2

T E [V qT
1 ]

1/(2qT )
.

Recall from (12) that ,

E[V m
1 ] ≤ Cc−m/αm

α
Γ
(m

α

)

for every m ∈ N,

so that using Stirling’s formula, it is easy to show that for T large enough

E[V qT
1 ]1/2qT ≤ C(lnT )

1
2α .

We conclude that for T large enough

‖f1‖qT ≤ C(lnT )a(2−
γ
2
)+ 1

2α . (23)

Let us now turn our attention to ‖f2‖qT .

‖f2‖qT ≤ TαTE

[

e−2qTαT V
1/2
aT

]1/2qT
E [max(VaT , 1)

qT ]1/2qT

≤ CT (lnT )a(1−
γ
2
)+ 1

2αE

[

e−2qTαT a
1−

γ
2

T

√
V1

]1/2qT

.

Let us note λT = 2qTαTa
1− γ

2
T = 2(ln T )1+a(1− γ

2
). Then using (H5),

E

[

e−λT V
1/2
1

]

≤
∫ +∞

0
P

[

V1 ≤
u2

λ2
T

]

e−u du

≤ C

∫ +∞

0
e
−c

λ
2β
T

u2β e−u du ,

for some constants c and C. We perform the change of variable u = λ
2β

1+2β

T v in the preceding
integral. This yields
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E

[

e−λT V
1/2
1

]

≤ Cλ
2β/(1+2β)
T

∫ +∞

0
e−λ

2β
1+2β
T (v+cv−2β)dv

≤ Cλ
2β/(1+2β)
T

∫ +∞

1
e−λ

2β
1+2β
T v dv + Cλ

2β/(1+2β)
T

∫ 1

0
e−λ

2β
1+2β
T cv−2β

dv

≤ Ce−λ

2β
1+2β
T + Ce−cλ

2β
1+2β
T

≤ Ce−cλ

2β
1+2β
T ,

for some other constants c and C. This leads to

‖f2‖qT ≤ CT (lnT )a(1−
γ
2
)+ 1

2α e−c(lnT )
2β

1+2β (1+a(1−
γ
2 ))−1

.

We choose a such that a(1− γ
2 ) > 1+ 1

β . Then, Te
−c(lnT )

2β
1+2β (1+a(1−

γ
2 ))−1

remains bounded, and

when T goes to infinity, we get

‖f2‖qT ≤ C(lnT )c , (24)

for some constant c > 1 + 1
β + 1

2α . From (22), (23) and (24) we deduce that for T large enough,

P
[

sup
t∈[0,T ]

∆t ≤ 1
]

≤ CT− γ
2 (lnT )c,

with c > β+1
β

4−γ
2−γ + 1

2α .
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