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Abstract

Coronary atheroma develop in local sites that are widely variable among patients and are 

considerably variable in their vulnerability for rupture. This article summarizes studies conducted 

by our collaborative laboratories on predictive biomechanical modeling of coronary plaques. It 

aims to give insights into the role of biomechanics in the development and localization of 

atherosclerosis, the morphologic features that determine vulnerable plaque stability, and emerging 

in vivo imaging techniques that may detect and characterize vulnerable plaque. Composite 

biomechanical and hemodynamic factors that influence the actual site of development of plaques 

have been studied. Plaque vulnerability, in vivo, is more challenging to assess. Important steps 

have been made in defining the biomechanical factors that are predictive of plaque rupture and the 

likelihood of this occurring if characteristic features are known. A critical key in defining plaque 

vulnerability is the accurate quantification of both the morphology and the mechanical properties 

of the diseased arteries. Recently, an early IVUS based palpography technique developed to assess 

local strain, elasticity and mechanical instabilities has been successfully revisited and improved to 

account for complex plaque geometries. This is based on an initial best estimation of the plaque 

components’ contours, allowing subsequent iteration for elastic modulus assessment as a basis for 

plaque stability determination. The improved method has also been preliminarily evaluated in 
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patients with successful histologic correlation. Further clinical evaluation and refinement are on 

the horizon.
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INTRODUCTION

Atherosclerosis is a chronic inflammatory disease with systemic manifestations.27,53 

Although the coronary and peripheral systems in their entirety are exposed to the same 

atherogenic cells and molecules in the plasma, atherosclerotic lesions form at specific 

regions of the arterial tree. Such lesions appear in the vicinity of branch points, the outer 

wall of bifurcations and the inner wall of curves.14,34,80 Pathologic studies, 42 have shown 

that healed plaque ruptures are predominantly in the proximal portions of the left anterior 

descending (LAD), right coronary (RCA), left circumflex (LCx) and left main (LM) arteries. 

Investigations over the last decade have elucidated both fluid mechanical32,43,58 and most 

recently structural biomechanical 20,30,62 factors that mediated the site of plaque formation.

The coronary arterial wall is constantly subjected to both flow-induced wall shear stress 

(WSS) and arterial strain by blood pressure, myocardial contraction and local biological 

environment. Low or oscillatory WSS is one well described mechanical stimulus that 

promotes the inflammatory process by inducing an oxidative response in endothelial 

vascular cells.49 Several biological studies performed on cultured endothelial cells have 

reported that, above an endothelial cyclic stretch threshold of 10%, endothelial cell 

sensitivity to shear stress increases, lowering the threshold beyond which WSS induces 

structural responses.48,50,51 Thus, vascular remodeling is a response to alterations in WSS 

and other mechanical factors.

The morphologic characteristics of vulnerable coronary plaque have now been well defined 

in numerous pathological studies.25,59,77 Typically, such plaques have a large extracellular 

necrotic core and a thin fibrous cap (less than 65 μm) infiltrated by macrophages. Clinical 

and biomechanical studies have identified plaque composition and morphology as key 

predictors of vulnerability and likelihood of rupture. 54,70 Such vulnerable plaques can be 

directly or indirectly visualized by various techniques, including intravascular ultrasound 

(IVUS),6,68 optical coherence tomography,37,44 computed tomography23 and magnetic 

resonance imaging.5 However, identifying lesions vulnerable to rupture and characterizing 

them as such remains a major issue for the prevention of acute thrombotic events.67

Although our knowledge of vulnerable plaque features has certainly advanced, predicting 

vulnerable coronary plaque rupture is still imprecise. Indeed, the thickness of the fibrous cap 

(Capthick) is an important factor, but this alone is not a sufficient predictor of plaque 

stability.78 For example, Virmani et al.,78 in a series of 200 cases of sudden death, found 

that while 60% of acute thrombi resulted from rupture of a thin fibrous atheromatous cap, 

70% of the same patients presented similar vulnerable appearing lesions without rupture. 
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Thus thin-cap fibroatheroma do not all have the same likelihood of rupture; other 

morphological characteristics must be involved, and this group emphasized the need for 

biomechanical studies to help define such relationships.78

The challenge to predict plaque rupture based on morphological characteristics of vulnerable 

plaques is largely due to the complexity of the biological and biomechanical interactions. 

While cap thickness is often taken into consideration, geometric features of the necrotic core 

and positive remodeling had been largely unexplored as clinical morphological indices of 

plaque stability or instability until described by Ohayon et al.60 The data in the literature 

shows a wide dispersion in the necrotic core areas, even as a percent of the wall area, that is 

associated with plaque rupture. 26,29,42 Moreover, this dispersion has not been reduced by 

the discordant results of the few computational studies analyzing the influence of core area 

on coronary plaque stability.36,54,71 Although Varnava et al.75 highlighted a direct 

correlation between core area and arterial remodeling index—an indicator of plaque growth

—the above structural analyses did not take into consideration the positive arterial 

remodeling process (or expansive remodeling) described by Glagov et al.31 Thus, it was 

unclear how both the plaque-growth process and necrotic core size affect thin-cap 

fibroatheroma peak stress (which is a predictor of rupture).

Nonetheless, the challenge for imaging based methods is that prediction of the coronary 

plaque rupture requires not only an accurate quantification of fibrous cap thickness78 and 

necrotic core morphology63 but also a precise knowledge of the mechanical properties of the 

arterial wall and plaque components.13,24 Indeed, such knowledge can allow a precise 

evaluation of the thin-cap fibroatheroma peak stress amplitude which, in general, appears to 

be a good biomechanical predictor of plaque rupture.13,24,63 This may be altered when local 

microcalcifications are present with a sufficient size—separation ratio as defined by 

Weinbaum’s group (in this issue).55,76 Fortunately, this apparently occurs in only a small 

percentage of plaques.39

For predictive modeling studies, analysis of plaque mechanical properties is difficult due to 

its heterogeneity. More precisely, establishing a modulogram of a plaque, i.e., an elasticity 

map, constitutes a prerequisite for a reliable computation of intraplaque stresses. 

Computation of such modulograms is a challenge that has been tackled by a rather large 

diversity of approaches.21 Based on the estimation of the strain field inside the atheroma 

plaque obtained from various ultrasound-based techniques17,56,79 and OCT,9,69,74 several 

studies have been performed to estimate vascular elasticity maps.3,10,38,79 Either direct 

approaches38 or iterative procedures3,10,79 were proposed. The iterative approaches used a 

central core optimization algorithm to minimize the error between computed and measured 

strains or displacement fields. In this context, improvement of plaque elasticity 

reconstruction depends on the performance of the optimization procedure. Thus, several 

groups12,40 have developed robust optimization algorithms for extracting elastic moduli of 

plaque components, assuming a known plaque morphology. Nonetheless, it seems that the 

main issue for improving such methods relies on the preconditioning of the algorithm based 

on the best estimation of the plaque components’ contours.
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Still, few studies have been conducted in this direction.4,10 Baldewsing et al.2 developed and 

successfully employed an elegant parametric finite element model (PFEM) to assess the 

morphology of a plaque composed of an unique necrotic core. This approach has been 

roughly extended by the same group to the case of multiple necrotic cores: each core was 

considered separately and the solution was obtained by considering the superposition of 

non-correlated inverse problems.4 Despite its robustness, this PFEM has some limitations. 

Indeed, this method would not be efficient enough to extract the real morphology of plaque 

exhibiting several neighboring necrotic cores and/or calcium inclusions, thus preventing a 

good diagnosis of plaque vulnerability. An early iterative approach to this problem with 

initial clinical evaluation is reviewed. This is based on the integration of an automatic 

segmentation process over the plaque and the strain ultrasound elastographic measurements. 

To demonstrate the robustness of their technique relative to the original one, they studied six 

patients undergoing atherectomy, which allowed pathologic evaluation. Should this prove 

successful in thorough clinical evaluation, it could become a practical tool to detect and 

characterize vulnerable plaques during endovascular exploration performed in a cath lab.

This article is divided into three distinct parts, all of them describing several studies 

conducted by our joint laboratories on biomechanics and imaging of coronary 

atherosclerotic plaques:

First, we present an in vivo study, which investigated the contribution of 

myocardial contraction to the initiation of atherosclerotic lesions in coronary 

bifurcations. In addition to mechanical forces induced by pulsatile blood flow, 

coronary arteries undergo severe strain during the cardiac cycle, as they are 

embedded into the external layer of the epicardium.72 While the effects of vessel 

compliance,35 curvature,81 blood flow66 and cardiac motion on coronary WSS have 

been widely studied,83 the effects of myocardial contraction on arterial strain 

distributions were previously unexplored. Surprisingly, no biomechanical study 

had, until recently, quantified the arterial strain distributions resulting from blood 

pressure and myocardium contraction acting together. Their co-influences are 

summarized in this review.

Second, we summarize a clinical and biomechanical study, which clarified—

through an extensive computational model study—the relative roles of cap 

thickness, necrotic core thickness and positive remodeling index on the risk of 

plaque rupture.

Finally, we discuss two novel IVUS imaging techniques developed by our group 

for the in vivo mechanical characterization and detection of vulnerable coronary 

atherosclerotic plaques. These methods are based on a priori computation of strain 

elastograms to derive Young’s moduli of plaque components. The methods 

reviewed are modulography and our improved palpography imaging techniques.

PROCESSES INFLUENCING CORONARY PLAQUE SITE

Plaque formation is now recognized as an inflammatory process triggered by high levels of 

serum LDL that enter the coronary wall, encounter oxygen reactive species, and become 

oxidize. The oxidization, in turn, stimulates the recruitment of monocytes that convert to 
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macrophages to phagocytize oxidized LDLs.28,53 This forms a necrotic core with 

recruitment of smooth muscle cells from the media to seal over the fatty core.15 Flow-

induced WSS is now well established as being a critical determinant of the specific sites at 

which this intra-wall process develops,11,65 explaining in part its focal nature given that the 

same serum courses throughout the vascular system. In addition to local fluid mechanical 

differences, there are also solid mechanical variances that are contributory. Like most 

biological materials, the vascular wall stiffens as it is stretched.33 This nonlinear elastic 

response may well be critical for the biological function of endothelial cells and smooth 

muscle cells.49,50 The local wall-strain stiffening phenomenon is a local process resulting 

from increased local coronary wall stiffness, with strain due to the nonlinear mechanical 

properties of the arterial wall.33

This, in addition to low WSS and cyclic stretch, has been recently shown to be a 

complementary factor in plaque location in coronary bifurcations.62 In patients with minimal 

coronary disease who had undergone both computed tomography and magnetic resonance 

imaging, the LM coronary bifurcation geometries were reconstructed with quantification of 

the kinematic constraints imposed on the coronary branches by the contracting myocardium. 

Using these 3D reconstructions and kinematic measurements, nonlinear computational 

structural analysis was performed to investigate the effects of cardiac motion and blood 

pressure on spatial luminal arterial wall stretch (LWstretch) and stiffness (LWstiff) 

distributions in left main coronary bifurcations. This approach enabled correlations between 

LWStretch, LWStiff and plaque sites to be investigated. Anatomic coronary geometries and 

cardiac motion were generated based on both computed tomography and magnetic 

resonance imaging examinations of eight patients with minimal coronary disease. 

Computational structural finite element analysis was used to calculate LWstretch and LWstiff 

distributions in left main coronary bifurcations. Our results show that all plaque sites were 

concomitantly subject to high LWStretch with a mean amplitude of 34.7 ± 1.6% and high 

LWStiff, with a mean amplitude of 442.4 ± 113.0 kPa. The LWStiff amplitude was found to 

be slightly greater at the plaque sites in the LM coronary (mean value, 482.2 ± 88.1 kPa) as 

compared to those computed in the LAD and LCx coronaries (416.3 ± 61.5 kPa and 428.7 ± 

181.8 kPa, respectively). These finding suggest that local wall stiffness plays a role in the 

initiation of atherosclerotic lesions.

Figure 1 strenghten this key finding. It considers only arterial wall regions (of 

approximatively 12 mm in length) typical for low WSS and thus, favoring plaque 

deposition. However, this figure shows that among these regions, those found to have 

plaques also have significantly higher mean luminal arterial wall stiffness.

MORPHOLOGIC FEATURES INFLUENCING STABILITY

To understand the evolution of plaque vulnerability during lesion development, we 

conducted a large scale computational analysis60 that simulated a wide range of 

morphologies, which included the compensatory atherosclerotic arterial enlargement 

mechanism described by Glagov et al.31 Such an approach enabled us to investigate the 

effects of anatomical necrotic core features on peak cap stress (Capstress) during plaque 

evolution. Coronary lesion geometries from 24 in vivo IVUS cases were used to test and 
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validate the plaque-growth model used in this extensive computational analysis. Fibrous cap 

thickness (Capthick) has been considered as diagnostic of the degree of plaque instability 

with < 65 microns as generally indicative of vulnerability. Necrotic core area (Corearea) and 

the arterial remodeling index (Remodindex = Abnormal Diameter/Normal Diameter) on the 

other hand, have been historically viewed as among the determinant factors of plaque 

vulnerability. Literature data show a wide dispersion of Corearea thresholds above which a 

plaque becomes unstable. Although histopathology shows a strong correlation between 

Corearea and Remodindex,75 it had been unclear how these factors interact and affect peak 

cap stress (Capstress)—a known predictor of rupture. Our computational study was therefore 

designed to investigate the effects of necrotic core size and plaque morphology on risk of 

plaque rupture.

In order to take full advantage of the arterial remodeling process described by Glagov et 

al.,31 the atherosclerotic plaque was considered as a three-dimensional structure, but under a 

plane strain condition. This assumption is reasonable insofar as (i) plaque length is large 

with regard to the radial dimension, and (ii) neighboring cross-sectional morphologies 

remain similar.16,61 However, to overcome the limitations entailed by the plane strain 

assumption, two additional and more realistic three-dimensional plaque geometries were 

considered, slightly modifying the three-dimensional “plane strain” model (data not shown). 

In the first one, cap thickness varied while necrotic core thickness and plaque length 

remained constant. In the second case, cap thickness was kept constant while necrotic core 

thickness varied. Capstress values were then computed within the plaque cross-section where 

the cap thickness was the thinnest (first case) or where the necrotic core thickness was the 

largest (second case). We found that the variation in Capstress computed with or without the 

plane strain assumption did not exceed 25%. For these models, material properties were 

taken from the literature.82 Such results agree with those obtained by Cilla et al.16 when 

considering the full 3D FE model of atherosclerotic plaque.

Capstress value was calculated on 5500 idealized atherosclerotic vessel models. Taking 

advantage of these extensive simulations, the effects of anatomical plaque features on 

Capstress were investigated. These comprehensive simulations are summarized in Fig. 2. 

This 3D graphic shows the relative and quantitative contributions to plaque instability by 

arterial remodeling index, necrotic core thickness and critical cap thickness, as defined by 

the peak cap stress reaching the rupture threshold of 300 kPa. This analysis shows: (i) at the 

early stages of positive remodeling, lesions with large % necrotic core thickness were more 

prone to rupture, which could explain the progression and growth of clinically silent 

plaques; and (ii) in addition to cap thickness and remodeling index, necrotic core thickness

—rather than area—was critical in determining plaque stability. This study demonstrates 

that plaque instability is not a consequence of fibrous cap thickness alone, but rather is 

dependent on a complex but generally understandable combination of cap thickness, 

necrotic core thickness and the arterial remodeling index.

This relationship may offer some insight into the observation that more than half of 

myocardial infarctions originate in vessels with relatively small stenosis (i.e., 

Stenosdeg<50%).28,41,75 Lee’s group,54 in their structural analysis, explored the influence of 

Stenosdeg. However, in their models, increasing Stenosdeg induced an increase in Capthick, 
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which in turn reduced the stress in the fibrous cap. Moreover, their analyses were restricted 

to high values of arterial stenosis (i.e., 70%<Stenosdeg<99%), which correspond to arterial 

remodeling indexes above 1.6 in Fig. 2. In this range of stenosis, results have shown a 

limited influence of the necrotic core thickness. Thus, no conclusion about the plaque 

stability at early stages of the arterial remodeling process could be inferred from their study. 

We therefore investigated the effect of Stenosdeg alone on plaque stability by considering the 

arterial remodeling process which occurs in response to plaque growth. Interestingly, among 

all plaque topologies those with a large relative Corethick and small Stenosdeg were found to 

be more likely to rupture. This finding is consistent with Varnava et al.’s findings75 that 

plaque rupture often occurs at sites with relatively small luminal stenosis. In addition, it 

shows that once the % necrotic core reaches ~50%, positive arterial remodeling serves to 

reduce the cap stress so that thinner caps can be reached before rupture occurs. As such, 

positive arterial remodeling can be viewed as a protective mechanism that not only preserves 

vessel lumen diameter, but also retards plaque rupture, albeit with limits.

Since this study and analysis was performed, the role of closely spaced microcalcifications

—which appear to occur in 2% of examined post mortem samples—has been studied.39 

Though difficult to detect clinically, this is another consideration as described in this issue 

by Weinbaum’s group. Interestingly, the results of Fig. 2 could be combined with the effect 

of μCalcs highlighted by Kelly-Arnold et al.,39 which have shown that μCalcs between 5 

and 15 μm would increase the Capstress by at least a factor of two.

MODELING PLAQUE STABILITY

Modeling individual plaque stability requires knowledge of the elasticity or Young’s 

modulus of the plaque components, as well as the geometries thereof.24 Quantifying 

intraplaque stress distribution to predict plaque rupture, has been a challenge. To overcome 

this hurdle, the rate of deformation (strain) of a tissue can be calculated and directly related 

to the intraplaque stress and its mechanical properties. Ophir and colleagues 8,64 pioneered 

developing imaging techniques based on the strain field. Based on their work, several 

elegant IVUS methods were developed to highlight the spatial strain distribution (i.e., strain-

elastogram) over the entire vessel wall57 or over a restricted thick endoluminal region.18,22 

Such IVUS techniques, based on the optical flow57 or time-delay correlation estimation, 17 

allowed the calculations of intraplaque strain images during the cardiac cycle. However, 

these methods did not overcome a main limitation related to the complex geometries of 

atherosclerotic plaques, which alter the intraplaque strain fields and inhibit direct translation 

into plaque mechanical properties.

Therefore we designed an initial theoretical study to determine the modulogram of complex 

atherosclerotic plaques by developing an original preconditioning step for the optimization 

process, and a new approach combining a dynamic watershed segmentation method with the 

optimization procedure to extract the morphology and Young’s modulus of each plaque 

component. This combined approach, based on the continuum mechanics theory prescribing 

the strain field, has been successfully applied to coronary lesions of a small number of 

patients imaged in vivo with IVUS and with concurrent atherectomies. This method was 

investigated to assess important factors for the prediction of plaque vulnerability.
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This new approach, called iMOD, reconstructs elasticity maps (or modulograms) of 

atheroma plaques from the estimation of strain fields.47 To test the performance and 

accuracy of this approach, an in vitro experimental study was conducted on PVA-C arterial 

phantoms. The benefit of coupling the iMOD procedure with the acquisition of IVUS 

measurements for detection of vulnerable plaque was also investigated.46 The results 

showed that the combined iMOD-IVUS strategy : (i) successfully detected and quantified 

soft inclusion contours with high positive predictive values and sensitivities of 89.7 ± 3.9 

and 81.5 ± 8.8%, respectively, (ii) reasonably estimated cap thicknesses larger than ~300 

μm, but underestimated thinner caps, and (iii) satisfactory quantified the Young’s modulus 

of hard medium (mean value of 109.7 ± 23.7 instead of 145.4 ± 31.8 kPa), but overestimated 

the stiffness of soft inclusions (mean Young’s moduli of 31.4 ± 9.7 instead of 17.6 ± 3.4 

kPa).

In vivo IVUS modulography, however, remains a major challenge as the motion of the heart 

prevents accurate strain field estimation. Thus a modified technique has been developed to 

extract accurate strain fields and modulograms from recorded IVUS sequences. A set of four 

criteria was identified based on the temporal assessment of overlapping tissue with a RF-

correlation coefficient between two successive frames, the performance of the elasticity 

reconstruction method to recover the measured radial strain, and the reproducibility of the 

computed modulograms over the cardiac cycle. As below, this four-criterion selection 

procedure (4-CSP) was successfully tested on IVUS sequences obtained in twelve patients 

referred for a directional coronary atherectomy intervention.45 As such, this study 

demonstrates the potential of the IVUS modulography technique based on the proposed 4-

CSP to detect vulnerable plaques in vivo.

From the IVUS echogram and strain images, Céspedes et al.7 proposed an elasticity-

palpography technique (E-PT) to estimate the apparent stress–strain modulus (S–SM) 

palpogram of the thick endoluminal layer of the arterial wall. However, this approach suffers 

from major limitations because it was developed for homogeneous, circular and concentric 

VPs. The approach of Deleaval et al.19 was therefore designed to improve the E-PT by 

considering all anatomical shapes of vulnerable plaques, including eccentric lesions.

The details of both the improved S–SM palpography technique and the 4-CSP approach to 

solving the inverse problem of deciphering moduli from serial IVUS images are described in 

Deleaval et al.19 and Le Floc’h et al.,45 respectively. As regards the 4-CSP method, for each 

patient’s atherosclerotic lesion, approximately 30 displacement maps were reconstructed 

based on the IVUS sequence recorded during one second. Then four criteria were used to 

extract accurate displacement, strain and elasticity maps. The first criterion estimates the 

quality of the measured displacement field (displacement quality index Qdispla); the second 

criterion estimates the accuracy of the spatial distribution of the RF-correlation coefficient 

between two successive frames (tracking quality index Qtrack); the third criterion estimates 

the propensity of the Young’s modulus reconstruction method to recover the measured 

radial strain (strain quality index Qstrain); finally, the last criterion estimates the 

reproducibility of resulting modulograms over the cardiac cycle (reproducibility quality 

index Qreprod). The performance of this approach is illustrated in Fig. 3, based on in vivo 

imaging and histologic evaluations (Fig. 4). This 4-CSP was successfully tested on IVUS 
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sequences obtained in twelve patients referred for a directional coronary atherectomy 

intervention. This initial study demonstrates the potential of the IVUS modulography 

technique based on the proposed 4-CSP to detect vulnerable plaques in vivo. Although these 

new in vivo imaging techniques may help detect and diagnose the degree of plaque stability, 

such models need to be extended to include the nonlinear and anisotropic behaviors of the 

artery and plaque components. A subsequent palpography study proposed by Deleaval et 

al.19—which allows a fast wall stiffness quantification based on the arterial strain and blood 

pressure measurements (Fig. 5)—shows further improvements which account for the 

specific shape of the plaque with complex geometries, noise and blood pressure. Overall, 

these studies demonstrate the potential for second generation IVUS modulography 

techniques based on these new criteria to detect vulnerable plaques in vivo. In diagnostic 

cardiovascular medicine, this is a horizon in which bioengineering is playing an essential 

role.

POTENTIAL CLINICAL IMPLICATIONS

Acute coronary syndromes are caused by an occlusion of the lumen by thrombi formed 

secondary to a ruptured atherosclerotic plaque or fissuring in the atherosclerotic wall.28 

There are several major mechanisms causing plaque disruption, including plaque 

erosion,28,77 tissue degradation due to macrophage infiltration28,41,59 and components of 

biological processes that comprise the cellular inflammatory reaction.1,28,73 In vivo imaging 

techniques could help provide a better understanding of the evolution of plaque composition 

and morphology during the arterial remodeling and growth process. The instability of a 

vulnerable plaque is mainly caused by the large mechanical stress that develops in the 

thinnest part of the fibrous cap. It has been shown that this peak cap stress amplitude—a 

biomechanical predictor of plaque rupture—varies exponentially not only with cap 

thickness, but also with Young’s modulus of the necrotic core.24 Several animal and clinical 

studies conducted to analyze the structural variation in the fibrous cap and necrotic core 

demonstrated that treatment with statins enhances plaque stability.52 Our cap stress analysis 

shows how very slight structural changes can tilt a vulnerable plaque from stability to 

instability or vice versa and thus how statins might indeed make a clinically significant 

difference in plaque stability. As this analysis points out, such small changes in Young’s 

Modulus may either ‘precipitate’ rupture or, conversely, ‘stabilize’ a vulnerable plaque. The 

in vivo use of the proposed imaging method may allow studying the evolution of the 

mechanical stability of atherosclerotic plaques. Additionally, the proposed method may 

allow elucidating the process by which during the first few weeks to months of statin 

therapy, vulnerable plaques tend to become more stable. This may likely be attributed to 

changes in mechanical properties of plaque constituents, namely the hardening of the 

necrotic core, as suggested by our previous finite element simulations.24
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FIGURE 1. 
Correlation between luminal wall stiffness and localization of atherosclerotic lesions. (a) 

The statistical analysis was performed by considering several arterial wall regions likely to 

experience low WSS. (b) Our results highlighted that even within low WSS regions there is 

an additional and significant correlation between the mean luminal wall stiffness and plaque 

sites at LAD and LCx. LM: left main coronary artery, LAD: left anterior descending artery, 

LCx: left circumflex artery. Adapted from Fig. 7 of Ohayon et al.62
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FIGURE 2. 
Three-dimensional plot highlighting the influences of remodeling index and relative necrotic 

core thickness on critical cap thickness. The critical cap thickness is defined as the value at 

which cap stress reaches the critical or rupture point tensile stress. This result shows that 

there is no single such threshold. Rather this cap rupture thickness depends strongly on 

remodeling index and relative necrotic core thickness. More interestingly, plaques with low 

remodeling index and a large relative necrotic core thickness can be seen to be more prone 

to rupture, with a high critical cap thickness. This finding may explain, on the one hand, the 

progression and growth of clinically silent lesions and, on the other, why plaques with 

relatively small stenoses have been observed to frequently rupture. Adapted from Fig. 5 of 

Ohayon et al.60
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FIGURE 3. 
Performance of the iMOD reconstruction technique47 and the four-criterion selection 

procedure of Le Floc’h et al.45 to extract plaque morphology and elasticity map from the 

IVUS sequence of patient # 11. Note that regions with tissue overlap, observed in the 

displacement map, correlate well with low RF-correlation coefficient sites. The high value 

of the strain quality index found (Qstrain = 70%) indicates that the method reproduced 

reasonably the measured radial strain field. The green contour in the modulogram 

corresponds to the boundary of the lesion that was excised during the directional coronary 

atherectomy (DCA) procedure.
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FIGURE 4. 
A good agreement was found when comparing the percentage of stiff plaque area (i.e., with 

Young’s modulus >700 kPa) values derived from the computed modulograms with the 

percentage of plaque area with high collagen content obtained from the histological analyses 

of the excised plaque samples. The linear regression line (dark line) and the confidence of 

the prediction interval domains, which are the domains limited by the two internal and 

external dashed lines, respectively, are also given. Adapted from Fig. 8 of Le Floc’h et al.45
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FIGURE 5. 
Performance of the improved E-PT of Deleaval et al.19 to detect a complex vulnerable 

plaque with two necrotic cores. (a) IVUS image of plaque # 4 with plaque constituents (blue 

contours, “nc”: necrotic core; “fi”: fibrous region). The external boundary of the 

palpography domain Ωpalpo is given (red contours). The measured radial strain-elastogram in 

the palpography domain Ωpalpo is also presented. (b) Computed improved S–SM palpogram. 

The color coded strip superimposed on the IVUS image gives at each circumferential point 

the computed modulus over the corresponding radial thickness of the plaque. This result 

illustrates the abilities of the proposed technique to detect the soft inclusions located 

between 1 and 3 o’clock.
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