
HAL Id: hal-01017094
https://hal.science/hal-01017094

Submitted on 1 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Managing a Software Ecosystem Using a Multiple
Software Product Line: a Case Study on Digital Signage

Systems
Simon Urli, Mireille Blay-Fornarino, Philippe Collet, Sébastien Mosser, Michel

Riveill

To cite this version:
Simon Urli, Mireille Blay-Fornarino, Philippe Collet, Sébastien Mosser, Michel Riveill. Managing a
Software Ecosystem Using a Multiple Software Product Line: a Case Study on Digital Signage Systems.
Euromicro Conference series on Software Engineering and Advanced Applications(SEAA’14), Aug
2014, Verona, Italy. pp.1-8. �hal-01017094�

https://hal.science/hal-01017094
https://hal.archives-ouvertes.fr

Managing a Software Ecosystem Using

a Multiple Software Product Line:

a Case Study on Digital Signage Systems

Simon Urli, Mireille Blay-Fornarino, Philippe Collet, Sébastien Mosser, Michel Riveill
Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France

Email: {urli,blay,collet,mosser,riveill}@i3s.unice.fr

Abstract—With the advent of Web 2.0, the growth of developer
teams and user communities increases the number of software
ecosystems: software platforms developed and maintained in a
decentralized way by external contributors. As complexity grows,
these large software systems become more and more complex
to manage and to adapt to specific user needs. In this paper,
we report on a case study on the development of a digital
signage software system called YourCast. Based on several years
experience evolving YourCast from a single system to a medium-
scale ecosystem, we show how organizing it as a multiple software
product line helps in organizing the software platform, taming
some management tasks for a growing community, and giving
more capabilities to final users to build their own products.

I. INTRODUCTION

As software increasingly grows in size and complexity,
the software industry is facing new challenges. First, in most
cases the number of features needed by potential customers
exceeds what can be developed and maintained internally
by a company. The developed software, or at least a part
of it published as an open platform, should be available to
a community of developers. Second, a fully tailored prod-
uct is almost needed for each user, and mass customization
should be facilitated by the possibility to extend the software
product with externally developed artifacts [1]. The software
ecosystem approach meets these requirements by proposing to
build large software systems from a software platform. This
platform aggregates components developed in a decentralized
way by multiple contributors, being internal or external to the
organization that maintains the platform.

The emerging of Web 2.0 few years ago changed a lot
the involvement of users in many projects, including software
projects [2]. Regardless of well-known software ecosystems
such as Eclipse, Google Play, or Apple Store, there exists
numbers of smaller ecosystems emerging inside free and open-
source software projects. The fast evolution of the platform
and its components is also a distinctive property of all these
ecosystems.

Besides, software product lines (SPLs) support the de-
velopment of a family of similar software products from a
common set of shared assets [3], [4]. SPLs are now com-
monly adopted in industries in order to optimize the reuse
of quality software components. The possible shift from SPLs
to software ecosystems has also been identified by Bosch et
al [1], who characterized it by a move from centralization
to decentralization, few to many and multiple contributors
and a more complex evolution settings. In the meantime,
research works have been conducted on the usage of Multiple

Software Product Lines (MSPLs), defined by Holl et al as “a
set of several self-contained but still interdependent product
lines that together represent a large-scale or ultra-large-
scale system” [5]. Consequently considering a large software
development as a MSPL brings benefits of SPL techniques,
while taking into account issues such as multiple software
contributors.

In this paper, we show how organizing a software ecosys-
tem as a MSPL helps in structuring the software platform
with separation of concerns, taming some management tasks
for a growing community while ensuring consistency between
artifacts, and giving more capabilities to final users to build
their own products. We overview the following approach by
reporting on a detailed case study related to the development
and evolution of a medium-scale software ecosystem following
a MSPL approach. The project, called YourCast1, provides dig-
ital signage software systems with an innovative architecture
enabling to easily integrate external sources of information
while providing end-users automation and appropriate cus-
tomization support.

The intended audience of this paper are i) researchers and
practitioners on software ecosystems that are interested in the
SPL paradigm and its benefits; ii) SPL researchers dealing with
fast evolving systems ; and iii) MSPL researchers taking an
interest in applications and lessons learned.

The remainder of the paper is organized as follows. The
next section introduces our case study and the associated
ecosystem. In section III we explain how we evolve from an
ecosystem to a MSPL. In section IV we analyse benefits and
drawbacks of the MSPL approach to support an ecosystem,
while discussing related work. Section V concludes this paper
and discusses future work.

II. A SOFTWARE ECOSYSTEM FOR DIGITAL SIGNAGE

SYSTEMS

We present in this section the background of our case study.
First we introduce the underlying concepts of a Digital Signage
System (DSS). We then discuss the birth of the YourCast
system and its evolution towards an ecosystem.

A. On Digital Signage Systems

A DSS is a software system whose purpose is to display in-
formation or advertising on screens. The decrease of electronic

1http://www.yourcast.fr

products prices and the democratization of the Internet en-
couraged the usage of DSS to broadcast dynamic information,
mainly from the web, both in public institutions and private
companies. Depending on locations, targeted populations and
broadcast information types are different, resulting in many
variations of these systems [6].

1

2 3

4

Fig. 1. Screenshot of one of our DSS

Figure 1 shows a concrete example of a DSS deployed in
a department of the University of Nice. The chosen design is
on purpose very sober in order to emphasize contents. This
DSS uses four different zones to display information: one at
the top (1), one in the middle (2), one on the right (3) and one
at the bottom (4). The first one at the top (1) displays a clock
and forecast information. The second one (2) is configured to
display plannings, picture albums and so one. On the figure it
displays internal information about the department. This zone
uses a fade transition system to go from an information to
another. The third zone (3) on the right presents RSS feeds in
details, using a push system from top to bottom as transition
mechanism. Finally the fourth zone (4) at the bottom also
displays RSS feeds but only the titles, and it uses a scrolling
system from right to left as transition mechanism.

Defining such a DSS needs to take into account three
kinds of end-users, the viewer, who does not know how the
system works but is the main target of displayed contents or
advertising, the manager, who needs to manage contents of
her DSS, the product owner, who wants to build a new DSS.
To define a given DSS a product owner has at least to answer
to some questions related to the different DSS concepts:

• Sources: which kind of information do I want to
display and where do I get them? In our example
on Figure 1, she chose to display RSS feeds, picture
albums and forecast.

• Renderers: how do I want to graphically display the
information set? RSS feeds are presented in details on
the right hand side and in short (only titles) at the
bottom.

• Transitions: how does each piece of information move
from one to another? A scrolling or fading transition
mechanim is typical here.

• Zones: where do I put my information contents on the
screen? For example, she chose to display RSS feeds
in the zones 3 and 4.

• Layout: how many information zones do I need?
Which layout to organize them? With which design?
She chose a layout containing four zones with a blue
sober design.

In the remainder of the paper, we discuss DSS with the
point of view of a product owner who needs to satisfy viewers
and managers expectations.

B. From a Framework to an Ecosystem

We started to create an internal DSS (jSeduite2) for our
campus in 2005. At that time, our main interest was to be
able to display information from our internal services (stu-
dents planning, general university information, etc.). As much
information was accessed through the Internet, we decided
not to rely a complex and cumbersome content management
system that would duplicate or badly aggregate the needed
data. We thus decided to create a decoupled service-based Web
infrastructure organized around the following key components.
The player is the product display seen by the viewer. It is
basically an animated web page using JavaScript components
for renderers and transitions, as well as HTML and CSS
for layout and zones. Sources are Web services from where
the DSS gets information to display. They can be internally
developed to access information from campus specific services,
or can be directly provided by third parties such as FlickR or
Twitter API. The customizer is a web service dedicated to
the management of the DSS: it allows a manager to specify
parameters of sources and player. It must be noted that this
component is only used to set parameters of other components
(e.g. which Twitter account a source is referring to), not to
configure the architecture of the DSS (e.g. how many sources
are used or in which zones are they displayed).

Quickly after deploying a first DSS, we faced different
deployments in other institutions and users’ needs started to
grow, people requesting for more and more information to
be displayed. This encouraged us to open our API, switching
from jSeduite to YourCast, in order to allow new developers,
essentially students as a start, to contribute to our platform.
Then the different parts of the applications (player, sources,
and customizer) were almost independently maintained by
different teams. We reached here the definition of software
ecosystems given by Mens et al: “software ecosystems consist
of a relatively closed core software system that provides the
basic functionality and that is developed by a more or less sta-
ble core team of developers surrounded by a large collection of
contributions provided by peripheral developers or even end-
users” [7]. We more precisely identify the YourCast system
to be an application-centric software ecosystem, as defined by
Bosch in his taxonomy [1].

However managing the growth of this community became
challenging. We identify three kinds of contributors, each
leveraging a challenge discussed in the next sections.

• Passive users are the end-users of our applications
(viewers, managers and product owners). They can
report bugs and propose new requirements. Product
owners want their DSS to be tailored to their vision
without needing a developer to build the DSS. They
thus want to use a tool helping them to master the

2http://jseduite.polytech.unice.fr

variability, i.e. to configure and get their envisioned
products.
The YourCast system is deployed in three different
classes of environment with their own users: univer-
sities (places of learning or research), facilities for
persons with disabilities (schools and centers) and
large events (gatherings, conferences, etc.). For ex-
ample, in universities, viewers are students, teachers,
researchers or visiting people from industry, while
managers are project assistants, secretaries or teachers.
Product owners are site or community manager. For all
deployments already completed, we now have about
50 managers and 10 product owners.

• External developers are contributors of the ecosys-
tem. They do not have all the knowledge of the
system and contribute by implementing new features
and fixing bugs. They have to be able to contribute
separately in different parts of the system with
minimal interference.
Since the inception of the project, about 50 people
have contributed (see table I). There are wide vari-
ations depending on the time of year. Currently we
only have 3 contributors, whereas during the last year
we had at some times more than 10 simultaneous
contributors. Much of the contributors are students of
different levels and therefore address different con-
cerns or parts of the system. Some industrial partners
also contribute, in particular to integrate their own
sources of information in the ecosystem.

• Internal developers are leaders of the ecosystem.
They have the knowledge of the global architecture
and manage all the contributions of external develop-
ers to integrate them in products. They have to be
able to maintain the platform and to ensure the
consistency of all products despite the fast evolution
of the ecosystem.
Currently, only 2 people in the team have this knowl-
edge.

The table I gives metrics comparing the jSeduite framework
centric application, i.e. our starting point in terms of develop-
ment, and the YourCast ecosystem supported by a multiple
software product line (MSPL). We show in the next section
how this MSPL allows to manage more easily the community
of external developers and how it enables passive users to
make their own DSS, explaining the increase in the number of
deployed DSSs.

TABLE I. METRICS ABOUT JSEDUITE AND YOURCAST

Metrics jSeduite YourCast

Lifetime 09/01/2007 - 03/31/2011 01/01/12 - 03/05/14
of days 1260 780
of internal developers 2 2

of external developers 14 19 + 153

of commits - 1410
of external commits - 608
of internal commits - 802
KLOC 200 470
of deployed DSS 4 18

3These developers are not involved in the commits count.

III. SUPPORTING ECOSYSTEM WITH A MSPL

In order to manage the different requirements presented in
the previous section, we built a MSPL as a part of the YourCast
project. As shown in Figure 2 (write on red numbers on the
left), this MSPL is composed of:

1) a domain model describing how the SPLs are inter-
related,

2) several feature models describing the variability of
each SPL and constraints between them4,

3) assets used both at the SPL level and at the MSPL
level and,

4) generation tools associated to each SPL and to the
MSPL.

Layout Zone

Transition

Renderer Source
1 1..*

1

1

1 1..* 1 1

G
e

n
e

ra
ti
o

n
 T

o
o

ls

M
S

P
L
 a

s
s
e

ts

M
S

P
L
 a

s
s
e

ts

M
S

P
L
 a

s
s
e

ts

M
S

P
L
 a

s
s
e

ts

M
S

P
L
 a

s
s
e

ts

SPL
assets

SPL
assets

SPL
assets

SPL
assets

SPL
assets

D
o

m
a

in
 M

o
d

e
l

A
s
s
e

ts Shared
MSPL
assets

P
ro

d
u

c
ts

SPL
for

layout

SPL
for

transitions

SPL
for

zones

SPL
for

renderers

SPL
for

sources

F
M

s

2

1

4

3

Fig. 2. Overview of the MSPL

In this section we show i) how the MSPL helps passive
users in order to create a valid DSS product in composing
configurations; ii) how the external developers can work with
less interference following the MSPL separation of concerns
and iii) how finally the internal developers are able to maintain
the platform ensuring consistency properties for the MSPL.

A. DSS: a Composition of Configurations

From the product owner’s point of view a DSS is easily
described as a set of linked artifacts. For example, the DSS
presented in Figure 1 can be seen as a layout, containing 4
zones, each zone containing a transition system and some
renderers to display sources of information like RSS feeds,
forecast, picture albums, internal news, etc. An abstract model
of this assembly is depicted in Figure 3.

Each artifact in this representation corresponds exactly to
one instantiation of the concepts described in section II-A with
specific configurations such as Fade for a transition or FlickR
for an information source.

Moreover a well-formed DSS must respect some con-
straints: for example, a DSS without layout does not make

4These constraints are not on the metamodel itself, but between the features
of the different SPLs, as it will be exemplified afterwards.

blueLayout

Zone1

Zone2

Zone3

Zone4

ForecastRenderer WeatherChannel

NoTransition

ArticleRenderer InternalNews

MosaicRenderer FlickR

Fade

RSSTitleRenderer RSSReader

ScrollingRight2Left

RSSDetailsRenderer RSSReader

PushTop2Bottom

Fig. 3. Composition of artifacts modeling the DSS of Figure 1

any sense, neither does a renderer without a connected source.
Figure 4 depicts a metamodel representing a DSS system. We
can see that the model given in Figure 3 conforms to this
metamodel.

Layout Zone

Transition

Renderer Source
1 1..*

1

1

1 1..* 1 1

Fig. 4. Domain metamodel for a DSS

Then each instantiated concept presented in Figure 3 is
a feature model configuration. As feature models are a form
of de facto standard to capture variability among family of
products [8], [9], we decided to use them to represent the
variability of our different concepts.

Source (♠)

TypeInfo (♠) Criteria (♠)

Calendar PictureAlbum (♠) Filter (♠)

ICalReader FlickR (♠) Picasa Album (♠) Period

Mandatory feature

Optional feature

XOR

Key

(♠)
Selected features

for FlickR
configuration

Fig. 5. Excerpt of a feature model for Sources

The Figure 5 shows an excerpt of a feature model to
represent sources. The real feature model contains more than
80 features (see table II) and this number is still growing as
the ecosystem evolves. We can see that the configuration for
FlickR represented in Figure 3 is in fact a set of selected
features inside this feature model.

In a situation similar to the work of Rosenmuller et al [10],
we need to deal with multiple variants of one SPL linked
by association instances to variants of other SPLs. Then the
metamodel presented in figure 4 is not only used to define how

configurations should be composed, but also to represent which
are the different SPLs and how they are constrained with each
other. Actually the associations contained in the metamodel are
used to instantiate links between configurations, but they also
support constraints expressed between the configurations sets
of feature models. For example, a constraint is used to express
that a specific renderer must be connected to a source providing
an information type it can manipulate. Consequently choices
made inside a feature model will impact the other connected
feature models following both the associations given in the
metamodel and the semantic of the constraints.

Finally, we cannot assume that a product owner will master
the global knowledge of the MSPL. Even if the architecture
of the MSPL come from a domain engineering work, end-
users need to be guided to compose a DSS conforming to
the meta-model. Moreover, as stated by Holl et al: “User
guidance focuses on easing the modeling and configuration
process for users in an MPL setting. People working on
different product lines in an MPL need to be made aware
of the impacts of their changes on other product lines and
vice versa. Such impacts need to be propagated for instance
through dependencies between the product lines.” [5]. Then
we must provide an appropriate tool to help users making their
choice of configurations, but also creating links between these
configurations.

This environment has been implemented using a model-
driven approach. A domain metamodel captures the relation-
ships between SPLs and supports the process of a composite
configuration derivation. The tool exploits both the metamodel
and the constraint mechanism described above in order to only
propose valid choices to the end-user regarding her previous
ones, and to guide her making links. Moreover the tool itself is
completely domain independent, the domain metamodel being
a simple input.

This environment also provides a graphical interface ded-
icated to the product owner. The interface is adapted to the
context of DSS exploiting feature models annotated with visual
information as icons and explanations, so to improve the
guidance during the derivation process.

B. Separation of Concerns: a Set of Software Product Lines

As stated in section II-B, we have to deal with exter-
nal contributors who develop parts of the software “semi-
independently” [11].

They must be able to add a new contribution without
mastering all the knowledge of the final product. For example,
a contributor who wants to add a connection to a specific
picture sharing service should not need to know how to
effectively display pictures in the player, but only how picture
data must be formatted to be used in the DSS.

We reach this independence using a dedicated SPL with
its own feature model for each concept of the DSS domain as
shown in figure 2. Then the usual SPL tools and practices are
used independently by different teams of external developers,
each of them dealing with a specific part of the domain
knowledge. More precisely, each SPL contains (i) a feature
model, (ii) a repository of assets and (iii) a generation tool in
order to build or retrieve the SPL product.

To ease the growth of feature models by external develop-
ers, we decided to use feature models as libraries of available

products. When developers build new products in one of the
SPLs, they give the assets and a representation of this new
product as a feature model containing all its features as manda-
tory: this feature model then contains a unique configuration. A
feature model representing the available products of the SPL
is then built automatically by merging all feature models of
each product [12], [13]. This feature model building operation
also allows to create a mapping file linking each feature model
configuration to the right asset code.

We used this tooled method to develop our software
ecosystem, keeping trace of changes by putting codes, feature
models and mapping file in a version control system. We get
more than 500 commits in six months between May 2013 and
December 2013, all SPLs combined. We only had two active
internal developers from the beginning of this period until
September. Since September external developers contribute to
the ecosystem on their own. The number of active external
developers evolved a lot during this period: we started with
4 active external developers, had a pick with 10 contributors
during the summer, and finished the year with only two.
Almost half of the commits (44%) have been made by external
developers during this period, and we can see in Figure 6 that
they are almost as much involved as internal developers to
make changes in different parts of the SPLs.

Fig. 6. Evolution impacts by actors

This figure shows the number of commits for each im-
pacted parts of the SPLs, in percentage of the total number
of commits. We observe that internal and external developers
have done almost the same number of commits impacting only
the code and impacting the triplet composed by codes, feature
models and mappings between code and feature models. These
evolutions are indeed supported by our tools, allowing external
developers to do them quite easily. In particular, evolutions
impacting the whole SPL (i.e., the triplet code, mapping,
feature model) are completely transparent for the contributors
who only commit pieces of code and forms. However, some
maintenance changes impacting only the mappings (for exam-
ple) are exclusively done by internal developers as they need
to master the knowledge of the whole MSPL.

This separation of concerns driven by the domain allows
external contributors to develop new specialized products with
less coordination with developments in other SPLs. As shown
on Figure 7, more than half of the commits impacted a single
domain element and only 10% of the commits impacted the
whole MSPL.

To achieve that, developers also need to be able to test their
products. In our MSPL organization, automated tests can be

Fig. 7. Number of impacted DEs by commits

provided for each SPL, using sometimes knowledge of other
SPLs to ensure that the new products meet the integration
requirements. For example, a new renderer displaying pic-
ture albums must consume information following a provided
schema that describes how these albums are represented inside
the system. However, these tests do not necessarily ensure
that there is a global DSS product that can integrate this new
product: some other constraints could forbid this product.

TABLE II. CONFIGURATION NUMBERS FOR EACH CONCEPTS

Concept # Configurations # Features

Sources 68 81
Renderers 74 76
Transitions 15 33

Zones 27 49
Layouts 13 51

We show in Table II the number of configurations and
features for the feature models of each concept of the MSPL. If
the number of configurations in each SPL is not very high (but
still growing), the number of combinations between products
is really important considering that each DSS can use several
sources, renderers, transitions and zones. As an example, if
we only consider a DSS with three zones, the total number
of possible combinations is the order of 10

19. However, this
number does not take into account all the constraints between
feature models which greatly decreases it in practice.

Next internal developers must be able to manage the MSPL
as a whole despite this fast evolution and the large amount of
possible combinations.

C. MSPL: a SPL Composed of Interrelated SPLs

As they master the knowledge of the whole MSPL, internal
developers have to maintain it and to ensure its consistency.
However the fast evolution of the ecosystem encouraged us to
develop automated tools for this purpose.

First we consider that the generation process to obtain a
final DSS product must be completely automatized. A DSS is
not only an assembly of all products realized in the different
SPLs, and the work to integrate all these elements in a final
and packaged product is not trivial. This involves to master
the knowledge of the MSPL as a whole and to use assets
coming from different SPLs. For example the customizer (cf.
section II-B) is built using assets coming from all the SPLs to
create a web interface reflecting the product owner choices: if
a source is used twice or more in the DSS, in different zones,
or if it uses different renderers, the manager must be able to
distinguish them. That is why this component can only be

created from the different assets coming from all independent
SPLs, as shown on Figure 2. For example, the signature of a
specific source, specifying what are the parameters of its web
service, is retrieved from specific assets of the dedicated SPL,
but only used in the transformation process of the MSPL: the
SPL itself does not need these assets to create its own products.

The generation process does not only consist in assem-
bling SPL product from chose associations, it also implies
combining SPL assets to make complex components, like the
customizer, or to use them as glue code, for example inside
the player. In that sense, the generation process of our MSPL
is more than the sum of the products of each SPL.

To facilitate the addition of new products by external
developers, we also consider that adding a new product in one
of the SPL must be completely transparent to them. To make
directly available the new functionality to product owners, we
thus have to ensure, in an automated way, that the whole MSPL
remains consistent through its evolution.

The first step consists in ensuring the consistency of
each SPL independently. As we explained before, this step
is realized using some automated tests on each SPL and by
building automatically the feature model. Then the consistency
of the MSPL as a whole is obtained by ensuring that for every
possible SPL product, a final DSS including this product is
reachable. In other words, we ensure that our MSPL does
not contain any dead product. The very high number of
possible combinations including a specific product does not
allow to build each DSS individually. We thus decided to
check whether composite configurations including a specific
configuration conform to the metamodel and respect the feature
models constraints. This checking process is automatized by
using an incremental algorithm. We assume that a MSPL
containing only one configuration for each SPL is consistent,
checking it manually. Then for each new product added, we
are able to compute with which other SPL products it can
be associated and if it exists a final combination without
inconsistencies regarding the expressed constraints. Thus if
one valid combination can be found, the product is reachable.
Assuming that tests conducted in each SPL are sufficient to
ensure the integration of a product, we can then ensure the
consistency of the derivation process

Consequently, using the MSPL infrastructure, internal de-
velopers have only been involved in the MSPL evolution for
minor maintenance tasks, like fixing platform bugs.

IV. RELATED WORK AND DISCUSSIONS

We discuss in this section the different choices and obser-
vations made in our case study, relating them to the literature.

A. Centralized vs. Decentralized Organizations

In our view, a key idea when realizing a MSPL to support
an ecosystem is to maintain the organization of the ecosystem.
The term “ecosystem” comes from the biology field and as
stated by Mens et al, analogies can be made between software
and natural ecosystems. One of them concerns the evolution
capabilities of such ecosystems: “the resilience of a software
ecosystem then refers to its ability to return to a stable equilib-
rium after minor or major disturbances” [7]. The resilience is
then one of the great strength of the ecosystem and we believe
it comes, in part, from its decentralized organization.

Nakakoji et al define a taxonomy of open-source projects
that can also be applied to software ecosystems [14]. Applying
it in our context, it appears that the project has evolved from
an exploration-oriented project to a utility-oriented project
two years ago and a service-oriented project at present. At
the beginning of the project, its organization was completely
centralized: only one leader controlled the project which was
pretty small and subject to many changes to respond to specific
needs. We tried to set up appropriate process and architec-
ture to meet them. This exploration-oriented project mutated
successfully into a utility-oriented project when we stabilized
the architecture and involved multiple external developers to
satisfy user needs. It was the birth of the ecosystem, leveraging
a decentralized organization involving many different users
with various roles. Finally, in order to involve more the passive
users in the ecosystem and to let them build their own product,
the project moved to a service-oriented project supported by
the MSPL approach.

This move to a MSPL allows us to shift from a traditional
value chain to a networked organization, as expressed by
Hanssen [2]. Through the domain modeling and dedicated
tools that simplify line evolutions, we observer that the MSPL
reinforces the involvement of the external developer com-
munity inside the development process. End-users participate
indirectly to the development, for example by suggesting to
add new web sources. This network is currently expanding
with the integration of user interface ergonomists. The project
organisation itself is architecture-centric, and based on a do-
main engineering unit model (one product engineering unit
per SPL) [15]. Contributors being involved at different times
and often geographically distributed, this organization has
several advantages such as centering communication around
the MSPL internal developers. When conflicting requirements
arise from different SPLs (e.g. adding a new behavior to
control translations has impacted the way to define renderers),
the internal developers allow product engineering units to,
temporarily, create their own versions of shared assets, in line
with Bosch vision [15]. The propagation of changes is then
reduced to the few impacted SPLs.

Finally, Bosch also emphasized the need to use a compo-
sitional approach in SPL to improve their management [16].
He explicitly encouraged a decentralized approach to manage
large-scale SPLs and proposed “to move any remaining co-
ordination needs from the process level to the architecture”.
From our experience in Yourcast, this is largely facilitated by
our MSPL approach, with the MSPL domain metamodel and
especially its associations. These associations are the keystones
of our architecture as they are used both to guide users and
to generate the systems [17]. They are also really important to
understand how the teams communicate with each other.

B. Domain-driven MSPL

The domain metamodel together with the associations and
constraints are the backbone of our approach. Considering as-
sociations as first class entities, the traceability among domain
design and code is also guaranteed. At the feature model level,
the associations model interactions among feature models; at
configuration level, they model links between configurations;
at code level, they drive the code generation. To some extent,
we are close to the definition of connectors used by Dial
et al in their work on transforming an SPL architecture to

Aspect-J code [18]. Nevertheless we do not use an approach
based on aspects for the generation, especially as we do not
only target a composition of components. Contrary to this
work, a generalization of the code generation process is not
an objective in our work.

In the DSS application domain, model elements must be
configured individually [19]. Modeling and configuration steps
are not strictly separated: deciding how many information
sources will be involved in a DSS before configuring them is
not a natural approach. Rosenmuller et al use a model in order
to compose instances coming from MSPL [10], [20]. Their
model supports constraints between SPLs and can express
associations between software artifacts, but it does not allow
an end-user to decide by herself how to compose the chosen
software artifacts coming from the different SPLs. In that
sense, our approach is more flexible and can be viewed as
an extension of this work.

In the current implementation of our approach only con-
straints between feature models are supported. Thus inlike
work of Arboleda et al [19], we are not able to express
constraints inside the metamodel, e.g, stating that only three
picture album sources are allowed in a DSS. Nevertheless, we
see no technical empdiments to integrating similar functional-
ities.

Besides our approach is driven by a case study in which
only one user at a time is involved in the derivation process.
The generation process uses model transformations from a final
consistent composite configuration to obtain a product. It does
not address multiple technological platforms. As a result we
do not face issues related to code weaving or multi-staged
configurations [19] or [21].

Finally one of our main requirements is to provide a
configuration tool to an end-user to let her create her own
DSS. As stated by Holl et al the tool support for product
derivation in the context of a MSPL is still an emerging field to
investigate [5]. For this purpose we partially reuse some works
done in the domain of configuration interface generation from
feature models [22].

C. Ecosystem-driven Evolution

To support the evolution of feature models and software
assets in the MSPL, we need to provide tools that ensure their
consistency. However, many changes may occur according
to user roles and development steps. To identify recurrent
evolution schemes, we used an empirical study done by Lakhal
et al about evolutions of UML Profiles [23]. We carried out this
study analysing commits and state of the art. Lot of works have
already been done in the field of SPL evolution. Here we try to
tame the ecosystem evolution using our MSPL organization.

Botterweck and Pleuss propose a taxonomy for SPL evo-
lution strategies, which is based on the impacted level and
the triggers of evolutions [24]. Using this taxonomy, we have
faced, as of now, the four following situations in our case
study:

• Proactive evolution (rare): this concerns all planned
evolutions of the SPL. In our case, this kind of
evolution is only realized by internal developers in
order to prepare the MSPL at all levels, when features
impacting the whole product are needed. Until now,

this evolution occurs only once at the beginning of the
MSPL development, in order to manage a technolog-
ical change. No dedicated tool were thus defined to
support this kind of evolution.

• Reactive evolution (common): this concerns evolutions
conducted by the external developers answering a
passive user need. In our case, most of them are
anticipated and automated, allowing us to check the
consistency of the MSPL when a new product is added
to one of the SPLs. Tools such as testing environments
were developed to support them.

• branch-and-unite (rare): it happens when a user need
impacts many SPLs at the same time, as well as
the generation process. Then internal developers can
make a specific branch using existing products to
make an experimental prototype before merging the
changes inside the MSPL. In the YourCast case, this
happened at least twice, when we moved from a
technology to another in the generation process. It is
also currently happening as we are extending our DSS
to add interactions. No tool has been created to support
them.

• Maintenance evolution (frequent): in our case study, it
exists different kinds of maintenance operations e.g.,
on the SPL assets, on the MSPL constraints or on
the feature models. They directly depend on the user
role. SPL asset maintenance evolutions correspond to
evolutions for fixing bugs, for example, inside existing
assets. Specific tools have been created in order to
allow this kind of maintenance for external developers.
Modifications of MSPL constraints are critical for the
MSPL organization as it impacts its consistency. Only
the internal developers are allowed to do them and
we are currently developing tools to support them.
Finally, vocabulary alignment on feature models are
authorized both for internal and external developers,
and dedicated tools have been developed to support it.

Another point of view concerns the responsibility levels
described by Bosch [15]. They are also driven by the MSPL
architecture. The internal developers are responsible for shared
architecture elements such as metamodel evolutions, mapping
or global process transformations. On their side, external
developers implement the reusable assets for each SPL. For
the time being we consider that each developer is responsible
for products that she added into a SPL. Thus a person
cannot modify or delete a product created by another (this
includes adding new features). However, we note that leaders
emerge and that other responsibility levels could be needed,
as distributing responsibilities in an hierarchical manner.

The main issue here is to be able to ensure the MSPL
consistency at any time, even if the ecosystem makes it
evolve very rapidly. We manage our MSPL evolution using
a framework which takes into account both the user roles and
some defined types of evolution [25]. However as Botterweck
states about evolution in systems-of-systems: “it is impossible
to introduce changes without causing inconsistencies at least
temporarily. Hence many changes can only happen incremen-
tally and changes are propagated through an introduction
and subsequent resolution of inconsistencies” [26]. Better han-
dling different kinds of evolution while balancing inconsistent

changes and consistency checking is part of our future research
plan.

V. CONCLUSION

Software product lines and software ecosystems are in-
frastructures that are targeting reduction of complexity in
development and maintenance of very large software systems.
In this paper, we have reported on the usage of a multiple
software product line (MSPL), defined as a set of interre-
lated SPLs organized around a domain model, to manage the
YourCast digital signage software (DSS) ecosystem. Promoting
separation of concerns, it enables us to leverage the still needed
customization capabilities of SPL techniques so that each DSS
can be easily configured by final users in a consistent way.

The YourCast system evolved from a framework applying
decoupling principles to a medium-scale ecosystem organized
around a MSPL. We discussed the different stages of the
system evolution that naturally led to a common software
platform developed and maintained by internal and external
contributors, i.e., a software ecosystem. The MSPL thus en-
abled us to automatically build valid composite configurations
for a YourCast deployment, but also to drive evolution of the
ecosystem while preserving its decentralized organization.

We expect this case study report to be valuable for re-
searchers handling either software product lines or software
ecosystems. As future work, we plan to extend the YourCast
MSPL with user interaction features and ergonomic properties,
to evaluate further the practicality of the underlying MSPL
approach and to improve support for evolution management.
We hope these insights can contribute to a methodology that
guide practitioners in managing similar software ecosystems.

ACKNOWLEDGMENT

The work reported in this paper is partly funded by the
ANR YourCast project under contract ANR-2011-EMMA-
013-01.

REFERENCES

[1] J. Bosch, “From software product lines to software ecosystems,”
Proceedings of the 13th International Software Product Line
Conference, pp. 111–119, 2009. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1753235.1753251

[2] G. K. Hanssen, “Opening up software product line engineering,” in
Proceedings of the 2010 ICSE Workshop on Product Line Approaches
in Software Engineering. ACM, 2010, pp. 1–7.

[3] P. Clements and L. M. Northrop, Software Product Lines
: Practices and Patterns. Addison-Wesley Professional, 2001.
[Online]. Available: http://www.amazon.ca/exec/obidos/redirect?tag=
citeulike09-20\&path=ASIN/0201703327

[4] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag,
2005.

[5] G. Holl, P. Grünbacher, and R. Rabiser, “A systematic review and
an expert survey on capabilities supporting multi product lines,”
Information and Software Technology, vol. 54, no. 8, pp. 828–852,
Aug. 2012. [Online]. Available: http://linkinghub.elsevier.com/retrieve/
pii/S095058491200033X

[6] K. Kelsen, Unleashing the power of digital signage: content strategies
for the 5th screen. Taylor & Francis, 2010.

[7] T. Mens, M. Claes, P. Grosjean, and A. Serebrenik, “Studying evolving
software ecosystems based on ecological models,” in Evolving Software
Systems. Springer, 2014, pp. 297–326.

[8] S. Apel and C. Kästner, “An overview of feature-oriented software
development,” Journal of Object Technology (JOT), vol. 8, no. 5,
pp. 49–84, July/August 2009. [Online]. Available: http://www.jot.fm/
issues/issue 2009 07/column5/index.html

[9] D. Benavides, S. Segura, and A. Ruiz-Corts, “Automated Analysis
of Feature Models 20 years Later: a Literature Review,” Information
Systems, Elsevier, 2010.

[10] M. Rosenmüller, N. Siegmund, C. Kästner, and S. S. Ur
Rahman, “Modeling dependent software product lines,” in GPCE
Workshop on Modularization, Composition and Generative Techniques
for Product Line Engineering (McGPLE), 2008, pp. 13–18.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.147.2830\&rep=rep1\&type=pdf

[11] H. Brummermann, M. Platz, and K. Schmid, “Formalizing Distributed
Evolution of Variability in Information System Ecosystems,” in Vamos,
ser. VaMoS ’12. ACM, 2012, pp. 11–19. [Online]. Available:
http://doi.acm.org/10.1145/2110147.2110149

[12] M. Acher, P. Collet, P. Lahire, and R. France, “Composing feature
models,” in Software Language Engineering. Springer, 2010, pp. 62–
81.

[13] M. Acher, A. Cleve, G. Perrouin, P. Heymans, C. Vanbeneden,
P. Collet, and P. Lahire, “On extracting feature models from product
descriptions,” in Proceedings of the Sixth International Workshop on
Variability Modeling of Software-Intensive Systems, ser. VaMoS ’12.
New York, NY, USA: ACM, 2012, pp. 45–54. [Online]. Available:
http://doi.acm.org/10.1145/2110147.2110153

[14] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye,
“Evolution patterns of open-source software systems and communities,”
in Proceedings of the international workshop on Principles of software
evolution. ACM, 2002, pp. 76–85.

[15] J. Bosch, “Software product lines: organizational alternatives,” in Pro-
ceedings of the 23rd International Conference on Software Engineering.
IEEE Computer Society, 2001, pp. 91–100.

[16] ——, “Toward compositional software product lines,” Software, IEEE,
vol. 27, no. 3, pp. 29–34, 2010.

[17] S. Urli, S. Mosser, M. Blay-Fornarino, and P. Collet, “How to exploit
domain knowledge in multiple software product lines?” in Product Line
Approaches in Software Engineering (PLEASE), 2013 4th International
Workshop on. IEEE, 2013, pp. 13–16.

[18] J. Diaz, J. Perez, C. Fernandez-Sanchez, and J. Garbajosa, “Model-to-
code transformation from product-line architecture models to aspectj,”
in Software Engineering and Advanced Applications (SEAA), 2013 39th
EUROMICRO Conference on, Sept 2013, pp. 98–105.

[19] H. Arboleda, A. Kastler, and F.-N. Cedex, “Dealing with Fine-Grained
Configurations in Model-Driven SPLs,” Transformation, pp. 1–10, 2009.

[20] M. Rosenmüller and N. Siegmund, “Automating the configuration of
multi software product lines.” in VaMoS, 2010, pp. 123–130.

[21] L. Tizzei, C. Rubira, and J. Lee, “An aspect-based feature model for
architecting component product lines,” in Software Engineering and
Advanced Applications (SEAA), 2012 38th EUROMICRO Conference
on, Sept 2012, pp. 85–92.

[22] Q. Boucher, G. Perrouin, and P. Heymans, “Deriving configuration
interfaces from feature models: A vision paper,” in Proceedings of
the Sixth International Workshop on Variability Modeling of Software-
Intensive Systems. ACM, 2012, pp. 37–44.

[23] F. Lakhal, H. Dubois, and D. Rieu, “Pattern based methodology for
uml profiles evolution management,” in RCIS, R. Wieringa, S. Nurcan,
C. Rolland, and J.-L. Cavarero, Eds. IEEE, 2013, pp. 1–12.

[24] G. Botterweck and A. Pleuss, “Evolution of software product lines,” in
Evolving Software Systems. Springer, 2014, pp. 265–295.

[25] D. Romero, S. Urli, C. Quinton, M. Blay-Fornarino, P. Collet,
L. Duchien, and S. Mosser, “Splemma: a generic framework for
controlled-evolution of software product lines,” in Proceedings of
the 17th International Software Product Line Conference co-located
workshops. ACM, 2013, pp. 59–66.

[26] G. Botterweck, “Variability and evolution in systems of systems,”
EPTCS, vol. 133, pp. 8–23.

