
HAL Id: hal-01017074
https://hal.science/hal-01017074

Submitted on 1 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How to Exploit Domain Knowledge in Multiple Software
Product Lines?

Simon Urli, Sébastien Mosser, Mireille Blay-Fornarino, Philippe Collet

To cite this version:
Simon Urli, Sébastien Mosser, Mireille Blay-Fornarino, Philippe Collet. How to Exploit Domain
Knowledge in Multiple Software Product Lines?. Fourth International Workshop on Product LinE
Approaches in Software Engineering at ICSE 2013 (PLEASE 2013), May 2013, San Fransisco, United
States. 4 p. �hal-01017074�

https://hal.science/hal-01017074
https://hal.archives-ouvertes.fr

How to Exploit Domain Knowledge
in Multiple Software Product Lines?

Simon Urli, Sébastien Mosser, Mireille Blay-Fornarino, Philippe Collet
Université Nice-Sophia Antipolis, I3S Laboratory (UMR CNRS UNS 7271), France

{urli,mosser,blay,collet}@i3s.unice.fr

Abstract—As Software Product Lines (SPL) are inevitably
moving towards a multiple form to tackle issues of reuse and
complexity, variability management across the composed SPLs
is still addressed with basic inter-constraints. Based on two
disjoint case studies (digital signage and cloud computing), we
identified this challenging problem for the SPL community. In
this paper we describe how the domain knowledge needs to
be exploited to support a more complete definition of Multiple
Software Product Lines (MSPL). Such an exploitation implies the
definition of a domain-driven definition of configuration and an
order independent configuration process.

Index Terms—Software Product Lines, Feature Modeling,
Domain Model, Digital Signage, Cloud Computing.

I. INTRODUCTION

Software Product Line (SPL) engineering is concerned with
systematically reusing development assets in a given domain,
capturing their common and variable aspects [1]. But with
complex large-scale systems reusing all forms of software
components, variabilities come from different domains or deal
with different concerns, empeding their capture in a single
SPL. Multiple Software Product Lines (MSPL) are defined as
a way to tame the intrinsic complexity of capturing variability
in a complex domain [2], [3].

Managing variability across different SPLs to compose
them is supported by different approaches and tools based on
feature models. Such approaches mainly relate their variability
descriptions with inter-SPL constraints expressed as logical re-
lations [1], [4], [5], [6]. Then constraints are usually expressed
using low-level tooling of the SPL implementation instead of
the business domain. It contradicts the essence of the SPL
paradigm, that is being domain-oriented. The objective of this
paper is to describe this problem, i.e., the need for domain-
oriented modeling to support the definition of MSPLs based
on multiple feature models. Starting from two disjoint large-
scale case studies, the same problem was identified by different
stakeholders (Section 2). We refine it as three challenges
regarding domain modeling of a MSPL (Section 3): i) how
to manage fully-fledged relationships (e.g., aggregation with
cardinality, instantiation) between the domain model and the
corresponding input SPLs, as well as between these SPLs;
ii) how to define the notion of configuration at the MSPL
level, relating it to the domain while reusing configurations of
the input SPLs; iii) how to support an order-independent and
safe configuration process so that any configuration action at
any level (MSPL or input SPLs) can be done in a consistent
way, thus providing a very general framework for MSPL
management. We finally discuss some success criteria for

candidate solutions and present ongoing and future work
(Section 4).

II. CASE STUDIES

This section is dedicated to the description of the two case
studies used to identify the problem. It is worth to note that
the two case studies are disjoint, and implemented by different
research groups, emphasizing the concreteness of the identified
issues.

A. SensApp (Cloud Computing)

The SensApp [7] platform supports the definition of in-
novative applications, based on the Internet of Things (IoT).
Connected “things” push data to the SensApp platform, which
acts as a middleware between things and pieces of software
exploiting sensed data. For example in an intelligent building,
temperature sensors collect room temperatures, and radiators
(or A/C systems) are remotely activated by a dedicated piece
of software to adjust it. The main challenge for SensApp is
to scale w.r.t. the load (e.g., data size, bandwidth, response
time) generated by realistic IoT applications. The cloud-

computing paradigm supports the on-demand deployment of
Virtual Machines (VM) able to absorb such a load. Thus,
SensApp is developed to exploit cloud scaling capabilities,
requiring a fine-grained customization of each layer of the
whole cloud stack (i.e., Infrastructure, Platform and Service).
Several product lines are defined (upper right part of Fig. 1)
to support such a configuration, for example to customize
the operating system used to host the system, or the virtual
machine characteristics to be used (e.g., strong processor,
large storage). As SensApp is designed to be distributed
among several nodes, these SPLs must be instantiated multiple
times. Moreover, as each SPL represents a dedicated body of
knowledge, the configuration process involves several actors
working simultaneously on the same product (e.g., a network
topology expert does not know how to tune a Linux kernel to
improve its performance w.r.t. disk inputs/outputs).

B. YourCast (Digital Signage)

YourCast [8] is a system designed to support the definition
of customized digital signage system. It pursues the research
made by the I3S laboratory on the JSeduite platform [9],
started in 2005 and deployed in 3 institutions. Based on the
experience gained while implementing the JSeduite digital
signage platform (70K LoC, 9 contributors), YourCast captures
the variability of such systems, and provides a user friendly
way of configuration. The project is funded in the aim of

an industrial transfer. It involves 2 SMEs interested by the
automatic generation of digital signage systems applied to
large associations meetings, conferences, or sport events (e.g.,
Tour de France). YourCast targets non-specialist users (e.g.,
association member), who have to compose (i) information
sources implemented through common Internet services (e.g.,
RSS feeds, Twitter), (ii) screens look and feel, and (iii)

information rendering mechanisms. Consequently, there is a
large amount of diverse variabilities to be managed to create
a consistent digital signage system adapted to users’ require-
ments. This leads to the need of a MSPL (e.g., information
sources, layouts, renderings), where several elements must also
be multi-instantiated.

III. CHALLENGES IN DOMAIN-ORIENTED MSPL

We analyze here three main challenges to exploit domain
knowledge in MSPL and we introduce each of them using
concrete examples of issues encountered during the case
studies.

C1. Managing Relationship at the Domain-Level

The first challenge is to exploit a domain-driven approach
to express relationships between SPLs.

SensApp: The SensApp platform involves different body
of knowledge (e.g., virtual machine customization, network
topology definition), captured as SPLs by each expert. Thus,
the existing relationships between features defined in different
SPLs reify some knowledge that cross the boundary of a
single domain of expertise. For example, a data storage service
based on NoSQL technologies requires (i) an immense amount
of RAM available for the VM and (ii) the deactivation of
kernel parameters like diratime to improve the available
input/outputs per seconds (IOPS) at the hard drive level.
Relying on a syntactical binding at the SPLs level to support
such relationships is a time consuming and error-prone task,
as it does not capture the intention associated to a relationship
like “NoSQL ⇒ IOPS”. To properly manage the SensApp
platform as a whole and address a fully-fledged cloud stack,
SensApp’ architects built a domain model reifying the relation-
ship between all the elements and expressing these relations
in a domain-oriented way.

YourCast: At the domain level, a digital signage system is a
composition of information sources connected to renderers and
displayed using a given layout as shown in Fig. 1 (label C1).
An information source broadcasts a given type of information
and can only be connected to renderers able to process the
same type of information. In terms of configurations it means
that only some configurations of source can be connected to
given configurations of renderer. Moreover, some components
could be used several times in a given system: end–users want
to display different sources using each time one renderer and
perhaps several times the same kind of renderer. For example,
a school headmaster wants to display calendars which are
considered as sources. As several kind of renderers could be
used to display calendars (e.g., displaying informations by day,
weeks, months...) this user will be able to use many times the
same kind of renderer in the same digital signage system.

In the literature, MSPL are defined as “a set of several self-

contained but still interdependent product lines that together

represent a large scale-scale or ultra-large-scale system” [2].
In order to link several feature models and to be able to create
multiple instances, Czarnecki et al. defined the cardinality-
based feature model formalism allowing to enrich features
with cardinalities, and to make references to external feature
models [10]. However this solution is only syntactic and
does not refer to the domain knowledge. Different challenges
are described by Schirmeier et al. regarding multiple in-
stances and dependencies between SPLs, but without referring
to the exploitation of domain knowledge [11]. Besides the
Common Variability Language (CVL) proposes the notion of
configurable unit that aims at being a composite variability
model [12]. Configurable units can be referred to and com-
posed, enabling a form of SPL composition, but there is no
specific mechanism to handle a domain model of the MSPL
as described in our case studies.

C2. Relating Configuration Concept to the Domain

At the domain level, a part of a system consists of a com-
position of model elements. At the SPL level, a configuration
is defined as follows: “Given a feature model with a set of

features F, a configuration is a 2-tuple of the form (S,R) such

that S,R ⊆ F being S the set of features to be selected and R

the set of features to be removed such that S ∩R = ∅.” [13].
As there is no concept of configuration for MSPL, it must
be defined to consistently take care of multiplicities and
relationships that exists in a business domain.

SensApp: The platform is defined as a distributed one. As
a consequence, a SensApp instance is intended to be deployed
on several network nodes. It is part of the domain expertise
to properly distribute the services involved in SensApp (e.g.

data dispatcher, data storage, data verification, data conversion)
according to their specificities and the associated cost. For
example, a “small” deployment involves only two VMs to
reduce cost: the first one has a lot of available disk space
to support the storage of sensed data, and the second one is
computation-oriented and has more RAM to quicky handle
the incoming data. But a “real” deployment actually involves
more VMs, coupled to load balancing mechanisms for elastic
scaling and redundant storage to ensure data availability. Thus,
a domain decision (i.e., small or real deployment) while
configuring a SensApp deployment impacts the variability
offered by the defined SPLs, and also impacts the associated
cardinalities. As a user, the selection of a “small” deployment
will restrict the variability available in the VM SPL, but also
restrict the deployment to only two VMs.

YourCast: A digital signage system is an assembly of com-
ponents (e.g., sources, renderers) conforming to the rules of the
domain: e.g., a source of information must be displayed using
exactly one renderer. Thus the composition of the various
elements of such a system is the responsibility of the final user
(Fig. 1 (label C2)), e.g. she selects the renderer associated to
a given source. The resulting assembly must conform to the
domain.

According to Filho et al., “a consistent configuration in the

features level [may] lead to an inconsistent composition of

Layout OSServer VM

Usecases

Input SPLs

Domain

C3

Configuration

Configuration
process

Source Renderer
1

Layout

*

1

Signage 1 1

11

*
*

ServerLayoutRenderersSources

Digital Signage
Domain

Weather

1

C1

C2C2

C2

C3

C3

C3

Source Renderer

C2

Deployment
Domain

Server OS

VM

1

1

Deployment

1*

1

1*

1 1

1

C1

C2

C2

OS VM
OS VM

Fig. 1. A simplified view of the challenges applied to the case studies

elements in the model level” [14]. This issue is even more
important when we consider a MSPL. However MSPLs are
often defined using nested or composed feature models: in
this precise case a configuration of the MSPL is equivalent to
a configuration of a SPL [15], [10]. Other works advocate the
use of a class diagram to reify SPL instances and links between
them [16]. This approach introduces domain knowledge at the
model level but does not allow the end–user to choose the
exact amount of instances she wants at configuration time, so
the model is clearly not expressive and flexible enough for our
two case studies.

C3. Supporting Domain-Driven Configuration Process

While deriving a product, the user needs to be guided by
her own interpretation of the domain knowledge. Such an
interpretation differs from one to another leading to different
configuration paths.

SensApp: The SPLs involved in SensApp address different
domains of expertise. Based on our experience while deploy-
ing SensApp instances in different contexts, it is not possible
to predict the way a customer will perform its configuration.
On the one hand, cloud experts start at the Infrastructure level,
configuring the VMs they want to use to support SensApp
on a cost basis (e.g., no more than $25/month). They expect
the system to automatically prune the variability in the other
SPLs to only show residual configurations. On the other hand,
business experts start at the Service level, based on their
knowledge of their sensor infrastructure. Their intention is
to properly select the needed services, and they expect the
system to automatically prune available topologies and VMs
able to support such needs. In small institutions, these two

personas are often instantiated by the same user who tries to
find a consensus between costs and needs. These users actually
expect the MSPL to guide the configuration of a SensApp
deployment based on their domain knowledge.

YourCast: Based on our experience, setting up a digital
signage system is performed by one user at a time, but
depending on institution they don’t follow the same path to
configure it. For instance, a school headmaster begins selecting
all sources of information she wants, while the director of an
institute for people with visual disabilities starts by defining
the layout and put more emphasis on the visualization of the
content. On average, the assembly of a concrete digital signage
system corresponds to about fifteen sources and renderers (the
same source may be viewed differently in different areas of
the screen). It is therefore important not to delay the detection
of inconsistencies in the derivation process while allowing an
order-independent process.

One of the needed capability in MSPL identified by Holl et

al. is the “user guidance and support for product derivation”:
“People working on different product lines in an MSPL need

to be made aware of the impacts of their changes on other

product lines and vice versa. Such impacts need to be propa-

gated for instance through dependencies between the product

lines.” [2]. Current state of the art solutions are not directly
applicable in this context as they usually consider an ordered
process. The multistage configuration defined by Czarnecki
et al. allows to create only valid configuration but with a
predefined process [10]. This idea is reinforced by Hubaux
et al. with the configuration workflows [17]. Existing works
on ensuring consistency while deriving products in MSPLs
also rely on ordered process [18], [19].

IV. DISCUSSIONS AND PERSPECTIVES

We discuss in this section what criteria we will use to
evaluate success in solving the above mentioned issues and
present briefly our ongoing work to address this problems.

A. Success Criteria

As the problem is to exploit domain knowledge to support
MSPL, we advocate that the success of candidate solutions
will be measured in terms of exploitation capabilities.

The constrained relationships will be expressed at a domain
level relying on unextended, i.e., unmodified, input SPLs
and assets. User-centric experiments should be able to also
evaluate the expressiveness of the solution, i.e., to which extent
the MSPL domain is really and easily captured, taking into
account the multiplicity in the domain elements and in the
input SPLs.

Regarding the MSPL configuration (challenge C2), an im-
portant success criterion is the kind of consistency property the
proposed concept of configuration will be able to enforce. For
example, we have to ensure that any (un/de-)selection made
on the MSPL is propagated through the relationships so that
the input SPLs are consistently configured and the global con-
figuration is still consistent regarding the domain knowledge.
Another criterion is the capacity to detect inconsistency during
a MSPL configuration to raise it at a domain-level.

To measure success w.r.t C3, we have to assess that the
configuration processes supported by the candidate solution
cover the needs of any domain-experts.

Finally, the scalability of all the central operations of the
whole approach has to be validated both on formal and exper-
imental ways. Propagating configuration choices and detecting
inconsistencies are certainly costly operations that must be
implemented with the barrier of dealing with large numbers of
features, intra constraints in input SPLs, and inter-constraints
created by the relationships with cardinality.

B. Ongoing and Future Work

We are currently defining a tool supported solution to
the problems described in this paper. We are experimenting
an integrated approach by defining the MSPL as a domain
model and its relationships to the constituting SPLs. Each
of these SPLs is described by a feature model and a model,
which conforms to a metamodel that defines the relationships
between the FMs. While being currently fine-tuned and tested
on our case studies, we already observed that the resulting
model makes explicit the multiplicity between feature models
and between assets. In addition, we are also formalizing the
resulting concept of MSPL, so to ensure some salient prop-
erties and to drive a safe and order-independent composition
process. Some tool support is also undergoing implementation,
based on feature model composition operators [15] and on the
FAMILIAR DSL [20].

AKNOWLEDGEMENTS

The work reported in this paper is partly funded by the ANR
YourCast project under contract ANR-2011-EMMA-013-01.
SensApp co-development is funded by the IDOL project
(PHC Aurora program, #28864TK). Empirical experiences

with cloud deployment are funded by Amazon through the
Mod4Cloud research grant.

REFERENCES

[1] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag,
2005.

[2] G. Holl, P. Grünbacher, and R. Rabiser, “A systematic review and an ex-
pert survey on capabilities supporting multi product lines,” Information
and Software Technology, vol. 54, no. 8, pp. 828–852, Aug. 2012.

[3] J. Bosch, “Toward compositional software product lines,” IEEE Soft-
ware, vol. 27, pp. 29–34, 2010.

[4] S. Buhne, K. Lauenroth, and K. Pohl, “Modelling requirements vari-
ability across product lines,” in RE ’05: Proceedings of the 13th IEEE
International Conference on Requirements Engineering. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 41–52.

[5] M.-O. Reiser and M. Weber, “Multi-level feature trees: A pragmatic
approach to managing highly complex product families,” Requir. Eng.,
vol. 12, no. 2, pp. 57–75, 2007.

[6] H. Hartmann, T. Trew, and A. Matsinger, “Supplier independent feature
modelling,” in SPLC’09. IEEE, 2009, pp. 191–200.

[7] S. Mosser, F. Fleurey, B. Morin, F. Chauvel, A. Solberg, and I. Goutier,
“SENSAPP as a Reference Platform to Support Cloud Experiments:
From the Internet of Things to the Internet of Services,” in Management
of resources and services in Cloud and Sky computing (MICAS),
workshop. Timisoara: IEEE, Sep. 2012.

[8] S. Urli, M. Blay-Fornarino, P. Collet, and S. Mosser, “Using Composite
Feature Models to Support Agile Software Product Line Evolution,” in
Models and Evolution 2012 (ME’12), workshop. ACM DL, Sep. 2012.

[9] S. Mosser, M. Blay-Fornarino, and M. Riveill, “Web Services Orches-
tration Evolution : A Merge Process For Behavioral Evolution,” in 2nd
European Conference on Software Architecture (ECSA’08). Paphos,
Cyprus: Springer LNCS, Sep. 2008, pp. 35–49.

[10] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged configuration
through specialization and multilevel configuration of feature models,”
Software Process: Improvement and Practice, vol. 10, no. 2, pp. 143–
169, 2005.

[11] H. Schirmeier and O. Spinczyk, “Challenges in software product line
composition,” HICSS’09, pp. 1–7, 2009.

[12] O. Haugen, “Common Variability Language (CVL),” OMG, Tech. Rep.
ad/2012-08-05, Aug. 2012, OMG Revised Submission.

[13] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of
feature models 20 years later: A literature review,” Information Systems,
vol. 35, no. 6, pp. 615–636, 2010.

[14] J. B. F. Filho, O. Barais, B. Baudry, and J. Le Noir, “Leveraging
variability modeling for multi-dimensional Model-driven Software Prod-
uct Lines,” in 2012 Third International Workshop on Product LinE
Approaches in Software Engineering (PLEASE). Ieee, Jun. 2012, pp.
5–8.

[15] M. Acher, P. Collet, P. Lahire, and R. France, “Separation of Concerns
in Feature Modeling: Support and Applications,” in Aspect-Oriented
Software Development (AOSD’12), ser. . ACM, Mar. 2012, pp. 1–12.

[16] M. Rosenmüller and N. Siegmund, “Automating the configuration of
multi software product lines,” in Variability Modelling of Software
intensive Systems VaMoS, 2010.

[17] A. Hubaux, A. Classen, and P. Heymans, “Formal modelling of feature
configuration workflows,” in SPLC’09. IEEE, 2009, pp. 221–230.

[18] M. Vierhauser, P. Grünbacher, W. Heider, G. Holl, and D. Lettner,
“Applying a Consistency Checking Framework for Heterogeneous Mod-
els and Artifacts in Industrial Product Lines,” in 15th IInternational
Conference on Model Driven Engineering Languages and Systems
(MODELS), 2012, pp. 531–545.

[19] C. Elsner, P. Ulbrich, D. Lohmann, and W. Schröder-Preikschat, “Con-
sistent Product Line Configuration across File Type and Product Line
Boundaries,” in Software Product Lines: Going Beyond, ser. Lecture
Notes in Computer Science, J. Bosch and J. Lee, Eds. Springer Berlin
Heidelberg, 2010, vol. 6287, pp. 181–195.

[20] M. Acher, P. Collet, P. Lahire, and R. France, “FAMILIAR: A Domain-
Specific Language for Large Scale Management of Feature Models,”
Science of Computer Programming (SCP) Special issue on programming
languages, p. 55, Dec. 2012.

