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ABSTRACT: The purpose of our study consists in the research of new ways of designing reinforced concrete structures 
submitted to commercial aircraft impact. We will particularly focus on the shaking resulting from such load case. The cutoff 
frequency for this type of loading is typically within the    to        range, which would be refered to as the medium 
frequency range [1]. 
The determination of the shaking induced by an aircraft impact on an industrial structure requires dynamic simulation. The 
response, especially during the transient stage, cannot be completely described using classical finite element method associated 
with explicit numerical schemes. Indeed, the medium frequency range is often ignored unless the calculation is carried out with 
a very refined mesh and consequently, a refined time discretization. This could lead to prohibitive computation times. 
The linear behaviour is not questioned outside the impact area, however, the non-linearity of the portion of the impacted 
structure can have a significant influence. The method consists in an initial FFT (Fast Fourier Transform) of the signal loading. 
The VTCR then ensures an efficient calculation of the response of the structure. The obtained signals are then processed by 
inverse FFT (IFFT) to reconstruct a time signal and a response spectrum. A new multiscale computational strategy, the 
Variational Theory of Complex Rays [2], is developed for the analysis of the vibration of structures in the medium frequency 
regime. Using two-scale shape functions which satisfy the dynamic equation and the constituve relation within each 
substructure, the VTCR can be viewed as a mean of expressing the power balance at the different interfaces between 
substructures in a variational form. The solution is searched as a combination of propagative and evanescent waves. Only the 
amplitude of these waves, which are slowly varying quantities of the solution, is discretized. This leads to a numerical model 
with few degrees of freedom in comparison with a Finite Element model. 
The aim is to develop a robust method to get mid-frequency spectra generated by an aircraft impact on a simplified structure. 
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1 INTRODUCTION 

The purpose of our study is to develop new ways for 
calculating the induced vibrations in reinforced concrete 
structures submitted to a commercial aircraft impact (see 
Figure 1). The cutoff frequency for this type of loading is 
typically within the 40 to 100 Hz range, which would be 
referred to as the medium frequency range [1]. 
Taking into account this type of problem and assuming that 
the structure is appropriately sized to withstand an aircraft 
impact, the vibrations induced by the shock bring about 
shaking of the structure. Then the generated waves travel 
along the containment building, as directly linked with the 
impact zone, but also in the inner part of the structure due to 
the connection with the containment building by the raft. The 
vibrations can therefore induce significant displacements and 
stresses at the level of equipment and thus the damage caused 
by bad dimensioning. Our strategy is inscribed in the context 
of the verification of inner equipment under this kind of 
shaking. In this type of load case, the impact is a bending 
problem. This phenomenon induces a non-linear localized 
area around the impact zone. This area is previously 
determined through a sensitivity analysis associated with a 
Taguchi experimental design. 
The calculation of the shaking induced by an aircraft impact 
on an industrial structure requires dynamic studies. The 

determination of the response by using classical finite element 
method associated with explicit numerical schemes requires 
significant calculation time, especially during the transient 
stage. This kind of calculation requires several load cases to 
be analyzed in order to consider a wide range of scenarios. 
Moreover, the medium frequency range has to be 
appropriately considered and therefore the mesh has to be 
very fine, resulting in a refined time discretization. 

 

Figure 1 : Nuclear power plant. 
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2 DESCRIPTION OF THE STRATEGY 

To solve our problem of shock induced vibrations in a 
reinforced concrete structure the strategy implemented is as 
follows (see Figure 2). The load is applied on a finite element 
model of the target structure and its nonlinear response is 
calculated by finite element method in non-linear case and on 
a sufficiently short time. 

 

Figure 2 : Global calculation strategy. 

The aircraft is replaced by an equivalent force-time function. 
These data are taken from [3]. The loading diagram can be 
found using the Riera model [4]. We can present the Riera 
method as follows: the aircraft impinges perpendicularly on a 
target considered infinitely rigid and it is assumed that it 
crashes only at the cross-section next to the target (see Figure 
3). 

 

Figure 3 : Model aircraft impacting against a rigid surface. 

The cross-sectional buckling load decelerates the remaining 
rigid uncrushed portion. The total impact force      is the 
sum of the buckling load and the force required to decelerate 
the mass of the impinging cross-section. Since it is a one-

dimensional ideal plastic impact approach, in the model only 
the buckling load and the distribution of mass are needed. The 
equation of motion writes: 

                         
 (1) 

where    is the mass per unit length of the uncrushed aircraft 

at impact,     the crushed length, 
       the velocity of 

uncrushed portion and     the resistance to crushing, i.e. 
crushing strength. 
Equation (1) is used to calculate the current force. The force-
time history can thus be determined. A typical force-time 
history, where the impact force and the time function are 
normalized, is given in Figure 4. In this case, we chose         for the impact velocity and     tons for the mass. 

 

Figure 4 : Force as a function of time. 

Then the influence of different parameters on the extent of the 
area of non-linearity is studied. Among these variables, one 
consider: the thickness of the target ( ), the rate of 
reinforcement (longitudinal and shear rebars) ( ), the 
compressive strength of concrete (   ), the loading surface 
( ). 
The impact of each parameter on the results is also explored 
through experimental design using the Taguchi methods, as 
defined in [5]. A sensitivity analysis associated with the 
experimental design allows us to determine the radius of the 
damaged area and the attenuation of the nonlinear area on the 
input signal. The temporal attenuated signal can then be 
applied at the boundary of the damaged area to obtain the 
response of the rest of the structure, which behavior remains 
linear, by a simulation with the VTCR (Variational Theory of 
Complex Rays). This calculation requires a transformation 
from time to frequency domain that is achieved by FFT (Fast 
Fourier Transform). After solving the problem in the 
frequency domain, a time recomposition is performed by IFFT 
(Inverse Fast Fourier Transform). 

3 DESCRIPTION OF THE VARIATIONAL THEORY OF 
COMPLEX RAYS (VTCR)  

This work, which uses new computational strategies in 
dynamics, provides an answer for the steady state of the 
solution. The problem is solved in the frequency domain. One 
needs to solve a forced vibration problem over a frequency 
range which includes the low- and medium-frequency ranges 
([6]). The low-frequency and medium-frequency ranges are 
handled using the Variational Theory of Complex Rays 
(VTCR) [2]. 



 The reference problem for an assembly of n 3.1
substructures. 

We consider the case of homogeneous Kirchhoff-Love’s thin 
shells which vibrate at a pulsation  . The thickness is    and 
the density   . Under the assumptions of Kirchhoff-Love, the 
out-of-plane displacement takes the following form: it is 
linear in   (thickness variable) and a perpendicular to the 
mean surface stay perpendicular to during the displacement. 
The displacement    of the average surface becomes: 

 
                                                                 (2) 

where    is the displacement of the average surface,    is the 
out of plane displacement and    the curvature tensor. The 

average surface of the shell is defined by two independent 
parameters    and   . The position of a point on the medium 
surface is defined by the position vector           (see Figure 
5). 

 

Figure 5 : Geometry of a shell   . 
The vector     is defined by            . The curves               and               are the bending lines, 
and form a network of orthogonal lines [7]. The base (           ) is then orthogonal. The curvature tensor writes: 

    [  
                  ]  

 
(           )

 (3) 

And where     and     are the radii of curvature of the 
bending lines. 
Let   shells   , with a common border  . The actions of the 
environment are modeled on    by imposing displacement on      and     , rotations on       , line stresses on      and     , and line momentum on     . Figure 6 shows the 
actions of the environment between the field    and   . 

 

Figure 6 : The reference problem. 

The reference problem to be solved is: find               

such that:  Kinematic equations 

 

                                                                                                           (                           (                                                      
 (4) 

Where           and           
The stiffness and damping of the boundary associated with the 
subdomain    and between the subdomains    and    ([8]) are 
chosen rigid to simplify our assumptions.  Equilibrium equations on     
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 Equilibrium equations on      
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 Constitutive relations  

 

                                  (        (7) 

where                 Hooke’s operator under plane 

stress assumption,    denote densities,    denote the structural 
damping coefficients and operators   and   are defined as: 



            [  
   

                                                      √          √       ]  
   
(           )       (   [               ]    (              

(8) 

where       the Young’s modulus and       the Poisson’s ratio 
in     and     direction,    the plate’s thickness,    the mass 

density,   the frequency, and    the damping factor.   is the 

symmetric part of the gradient operator. 

 The variational formulation associated to the VTCR 3.2

The 1st ingredient of VTCR is a global weak formulation of 
the boundary conditions in terms of both displacements and 
forces. The variational formulation can be expressed as: find                            such as: 

  (|      |       )   (|       ) (9) 

with the following general form: 

  (|      |       )    {   [∑      ∫                  ∑      ∫                  

 ∫     {    ∑            (      ∑           (      ∑           (       ∑          (    }  ]}(10) 

  (|       )    {   [∑      ∫                   ∑      ∫                ]} (11) 

where:  the integral part on      check on average the imposed 
displacements on   ,  the integral part on      satisfy the imposed stresses on   ,  the integral part     on satisfy the transmission conditions 
on the boundary    .    designates the real part of a quantity and   the conjugate 

part. Spaces        are the space of admissible fields associated 
with homogeneous conditions on the structure  :                        . In our case,                              . 
It is based on a priori independent approximations within the 
substructures. The constitutive relation (Equation 8) and 
dynamic equilibrium equation (Equation 10) are exactly 
satisfied for each substructures    to form the corresponding 
subspace      . 
It is easy to prove that the variational form is equivalent to the 
reference problem, provided that:  the reference problem has a solution, 

 the Hooke’s operator      is positive definite, 

 the damping coefficients are such that      , 
The rigid body movements are blocked provided that    . 

 Derivations of two-scale shape functions 3.3

The VTCR uses a two scale approximation of         , that 

exhibits a strong mechanical meaning. The solution is 
assumed to be properly described locally as the superposition 
of an infinite number of local vibration modes which can be 
written in the following manner: 

 

  (            (                   (            (                  (12) 

where both    and    represent the position vector,    (resp.   ) being associated with slow variations (resp. to rapid 
variations).    is the complex wave vector associated with the 
vibration rays in the plane of the shell. In order for these local 

modes       to be admissible, they must be in       and 

satisfy the constitutive and dynamic equilibrium equation. The 
mechanical waves can be divided into three families (see 
Figure 7): the P waves (Primary), SH (Secondary Horizontal) 
and SV (Secondary Vertical) ([9]). We can identify two types 
of mechanical waves which can describe the membrane effect, 
the P waves for the pressure effects and the SH waves for 
shear effects. 

 

Figure 7 : Three families of mechanical waves. 

3.3.1 Out-of-plane bending shape functions 

For instance, let us consider the out-of-plane bending motions 
of thin homogeneous shells. According to Kirchhoff’s thin 
shell theory, the steady-state out-of-plane displacement    of 
the mid-surface of    is governed by the following wave 
equation:  

 

                     )  
          (    )           

 (13) 



By searching the solution of Equation 13 under the wave form 
Equation 12, one can identify three types of solutions that are 
related to the shell, the edges of the shell, or the corners of the 
shell. 
A complex interior ray corresponds to a plane bending wave 
which propagates through the plate in a given direction         
(see Figure 8). 

 

Figure 8 : Description of interior modes. 

Edges and corners modes are evanescent waves. Examples of 
such modes are shown in Figure 9. 

 

Figure 9 : Interior, edge and corner modes for a homogeneous 
plate. 

3.3.2 The membrane shape functions 

Consider the in-plane displacement    of a homogeneous thin 
shell    through Kirchhoff-Love model. The rays of vibration 
must satisfy Equation 8 and Equation 10 to be admissible. The 
displacement    then checks the dynamic equation: 

         (                                  (14) 

The VTCR uses approximations        with a high 

mechanical content. P-waves and SH-waves describes 
membrane shape functions. 

 The discretized problem 3.4

The displacement of any point of the substructure is generated 
by a basis of admissible complex rays. The unknown is the 
generalized amplitude    (      of the basis (an    -order 
polynomial in    and a large-wavelength quantity). 
Accounting for all the directions        ⁄    ⁄    and          ⁄    in        ⁄    ⁄     ⁄     ⁄    leads to an integral over        ⁄    ⁄     ⁄     ⁄   . 
This integral takes the form:  bending displacement: 

 

   (   ∫                           (                (                 ∫                       (                (                 ∫                         (                (                
 (15) 

with       ,        and        determined by the dispersion 
relation from the solution of Equation 13.  membrane displacement: 

 

  (   ∫                              (                                        ∫                           (                                       (16) 

with         and         determined by the dispersion relation 
from the solution of Equation 14. 

Let us note that admissible space       is of infinite dimension 
since, for instance for interior modes, all directions of 
propagation   are taken into account. To end up with a finite 

dimension problem that can be solved numerically, one need 
to discretize       into a finite dimension space       . 

The integral in Equation 15 and Equation 16 can be 
discretized and one can consider the approximate amplitude             to be constant over each angular sector. The 

advantage of this way of doing is that all directions of 
propagation are still represented in the discretized space, 
though with an approximation on the amplitude of it (see 
Figure 10). 

 

Figure 10 : The discretized amplitudes. 

The choice of the angular discretization and therefore the 
number of modes need for solving this kind of problem is 
related to the number of waves in the structure, on each edges. 
and to the types of boundary conditions. For example the 
number    of bending waves in the characteristic dimension     ⁄  of the shell    can be calculated using Equation 43: 

                                    √  √            (17) 

where     ⁄  is the wavelength in the direction     or    ,   

the pulsation,       ⁄  √ √    ⁄     
 the celerity of bending 

waves,    the density,    the shell thickness and     ⁄  the 

flexural modulus (for a plate     ⁄      ⁄      (        ). 

The number of wavelength    depends on the celerity of the 

waves: for pressure waves,      ⁄  √     ⁄  (         and for 

shear waves,       ⁄  √ √           √      . 



This discretization is related to several parameters, thus it’s 
difficult to define it analytically. Also you can use a "eyes 
criterion" to select it. Overall we take a number of rays 
between 20 and 100. 

4 NUMERICAL EXAMPLE 

The VTCR code developed relies on the one developed in 
[12] for acoustic problems. Adjustments have been made to 
handle mechanical problems. 

 First numerical example: one simply supported plate 4.1

In order to study the convergence of the VTCR for plate 
problems, to validate the associated shape functions and to see 
the differences with a finite element resolution, let us consider 
the example [9] given in Figure 11. A simply supported 
isotropic steel plate with the following mechanical properties 
is subjected to a point shear loading represented by the red 
arrow at frequency 2000 Hz:  Young’s modulus = 210 GPa,  Poisson’s ratio = 0.3,  mass density = 7800 kg/m3,  damping coefficient= 0.01,  thickness of the plate = 0.003 m. 

 

Figure 11 : First example: description of the boundary 
conditions. 

The analytical solution is obtained using the eigenvectors 
basis of the plate, called    . So the analytical out-of-plane 
displacement is given by: 

                  ∑      ∑                  (18) 

where 

 

                 (      )                               (     ) (19) 

For the exact solution, the infinite sum has to be truncated:  

                   ∑      ∑                  (20) 

Indices   and   have been chosen with the following 
assumption: neglected terms have very little influence. We 

need to take into account      √               
 et      √               

. 

A reference solution using the finite element code CAST3M 
[12] was obtained taking around ten linear elements per 
wavelength for good accuracy. To perform an FE calculation 

the element size should depend on the wavelength ([13]). The 
rule of thumb widely used by engineers [14] consists in taking 
ten elements per wavelength, but in medium frequency, it is 
confirmed [15] that an even more refined mesh is required 
since      must remain constant. 
VTCR resolution need to add the particular solution (see 
Equation (22)) corresponding to the solution of an infinite 
plate subjected to a punctual force to take into account this 
kind of stress. 

                                 √              [   √                  
    √                        √                 ] (21) 

where   is the distance to    and   ,    and    the 0th order 
Bessel functions. The problem is a bending one, thus in this 
case the membrane vibration modes can be taken to zero. 
Table 1 shows the out-of-plane displacement obtained with 
CAST3M, with an analytical solution (see Equation 21) and 
with the VTCR. 

Table 1 : The FE (with Cast3m) solution (left), the analytical 
solution (middle) and the VTCR solution with     dofs 

(right). 
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One can see that the two solutions are very similar, even 
though the VTCR was obtained with only 180 DOFs, thanks 
to its ability to capture analytically the wave phenomena in 
the rapid scale  . One can easily notice the computational 
efficiency of the VTCR in such a structural vibration problem. 

 Second numerical example: Civil engineering structure 4.2

In this section the VTCR is used to calculate the medium 
frequency response of a structure subjected to a sinusoidal 
loading. We calculate at first the discrete Fourier transform of 
the load. The VTCR then gives us the frequency response at a 
chosen point (  ) of the structure specify by the blue cross on 
Figure 12 for any frequency. The time response is then 
obtained by the inverse Fourier transform. We therefore 
consider a concrete structure where the mechanical properties 
of concrete are calculated according to the rules of Eurocode 
2:  concrete B30 =30 MPa,  Young’s modulus = 34 GPa,  Poisson’s ratio = 0.2,  mass density = 2500 kg/m3,  damping coefficient= 0.04. 



In this study, an hysteretic damping is used. The geometry of 
the structure is simplified into an assembly of        thick 
plates. 
The structure is then subjected to an impact applied at the 
center of a side wall (  ). This impact produces localized 
damages on this wall. Here the radius of the non-linearity area 
is equal to     and the temporal attenuated signal in 
displacement across the damaged area is given by Equation 
(23). We consider the one-time loading P1 in displacement of 
the form: 

                                                                                            (22) 

This loading is modeled by a red arrow in Figure 18. The red 
and pink lines represent the supports of the structure, 
respectively, clamped and simple supported. 

 

Figure 12 : Geometry of 3rd numerical example. 

The computational strategy is as follows. We calculate the 
discrete Fourier transform of the time load and use it to 
calculate with the VTCR, the frequency response 
corresponding to each frequency on a selected point of the 
structure. The program selects the frequencies having a 
significant amplitude to describe the good time loading. The 
time response is then obtained by applying the IFFT to the 
frequency response. 

 

 

Figure 13 :     displacement applied across the damaged area 
and the associated Fourier transform. 

Two hundred rays are sufficient to properly represent the 
frequency response. The Table 2 shows the solution obtained 
in each of four frequencies studied. The boundary conditions 
are in a good adequacy. This is clearly observable where the 
load is applied and on the structure supports. 

Table 2 : VTCR solution of 3rd numerical example. 
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Following the VTCR calculation we can recover the 
amplitude and the phase of each point of the structure in each 
frequency and thus reconstruct the time response by IFFT. 
Then we obtain for the point selected (  ) and designated by 
a blue cross in Figure 12, the following results (see Figure 
14). 

 

  

Figure 14 : Displacement amplitude in P2 and the associated 
inverse Fourier transform, out-of-plane displacement    . 

This study provides us with a very low cost in terms of 
degrees of freedom used by the VTCR for solving such a 
problem. Figure 15 shows the difference in CPU time between 
resolution with VTCR and with CAST3M for this problem. In 
this figure, the red curve shows different points representing 
the time required for calculating the solution by increments of    . The blue curve provides the computation time for 



different mesh densities. This density must be thin enough to 
properly represent the solution. 

 

Figure 15 : Comparison between VTCR and CAST3M in 
terms of computation time. 

5 CONCLUSIONS AND PERSPECTIVES 

A new methodology is presented that deals with impact 
problems and the determination of the shaking induced on this 
industrial structure. It was illustrated on several examples. A 
load equivalent to an aircraft impact is applied on a finite 
element model of the target structure in a non-linear case. So 
with the non-linear response allows us to determine the radius 
of the damaged area and the attenuation of the non-linear area 
on the input signal. We can then apply the temporal attenuated 
signal at the boundary of the damaged area to obtain the 
response of the rest of the structure by a simulation with the 
VTCR. This methodology involves a transformation from 
time to the frequency domain by FFT. Then a time 
recomposition is performed by IFFT. Comparisons with finite 
element calculations provide us with the followings 
conclusions:  VTCR discretization exhibits a very rich vibrational 

content resulting in a very low number of degrees of 
freedom compared to FEM, at a given frequency,  The FFT-VTCR-IFFT process is an accurate way for 
solving the impact problem over a wide time range and a 
wide frequency range,  The final computation time is far less important than for a 
FEM explicit scheme calculation (as soon as the 
frequency involves medium frequency). 

Thanks to the encouraging results obtained for the simple 
cases presented here, we are able to apply the methodology to 
the industrial load case of an actual building being impacted 
by an aircraft. So we need to define the impacted structure. 
But structures such as nuclear civil engineering may contain 
floors with a large thickness compared to these dimensions. In 
this framework we must to study the impact of this thick 
structures on the response and so if we need to extend the 
VTCR shapess functions and the VTCR variational 
formulation to the Reissner-Mindlin's thick shells. An other 
study must to lead on the large band analysis. Indeed a study 
one by one frequency can be expensive in computation time. 
The Proper Generalized Decomposition (PGD) was 
considered to perform a large band analysis [16]. This method 
allows to decouple the spatial field to the frequency content 
and find patterns that can be likened to the eigenmodes of the 
structure.  
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