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ABSTRACT: The purpose of our study consists in the research wfweys of designing reinforced concrete structures
submitted to commercial aircraft impact. We will particularly focus on theisfpaksulting from such load case. The cutoff
frequency for this type of loading is typically within td® to 100 Hz range, which would be refered to as the medium
frequency range [1].

The determination of the shaking induced by an aircraft impact dndastrial structure requires dynamic simulation. The
response, especially during the transient stage, cannot be completely desirigedagsical finite element method associated
with explicit numerical schemes. Indeed, the medium frequency range isgrftead unless the calculation is carried out with
a very refined mesh and consequently, a refined time discretiZakimcould lead to prohibitive computation times.

The linear behaviour is not questioned outside the impact area, howwvarpn-linearity of the portion of the impacted
structure can have a significant influen¢de method consists in an initial FFT (Fast Fourier Transform)eo$itinal loading.
The VTCR then ensures an efficient calculation of the response of the retruidte obtained signals are then processed by
inverse FFT (IFFT) to reconstruct a time signal and a response spectrumew Anultiscale computational strategy, the
Variational Theory of Complex Rays [2], is developed for the anabfsike vibration of structures in the medium frequency
regime. Using two-scale shape functions which satisfy the dynamic aguatid the constituve relation within each
substructure, the VTCR can be viewed as a mean of expressing tlee palance at the different interfaces between
substructures i variational form. The solution is searched as a combination of propagativevanescent waves. Only the
amplitude of these waves, which are slowly varying quantities ofdildéian, is discretized. This leads to a humerical nhode
with few degrees of freedom in comparison with a Finite Elemenemo

The aim is to develop a robust method to get mid-frequency spectratgehiey an aircraft impact on a simplified structure.

KEY WORDS: shaking, medium frequency, industrial structure, Variationabfyfof Complex Rays (VTCR).

1 INTRODUCTION determination of the response by using classical finite element
The purpose of our study is to develop new ways fdpethgd associated_ with explicit nu_merical _schemes req_uires
calculating the induced vibrations in reinforced concret@ldnificant calculation time, especially during the transient

structures submitted to a commercial aircraft impact (s&&29€- This kind of calculation requires several load cases to
Figure 1). The cutoff frequency for this type of loading i£€ analyzed in order to consider a wide range of scenarios.

typically within the 40 to 100 Hz range, which would pgMioreover, the medlum frequency range has to be
referred to as the medium frequency rande [1 appropriately considered and therefore the mesh has to be
Taking into account this type of problem and assuming th4® el

the structure is appropriately sized to withstand an aircraft \‘ o the shock

impact, the vibrations induced by the shock bring about ;
shaking of the structure. Then the generated waves travel
along the containment building, as directly linked with the
impact zone, but also in the inner part of the structure due to
the connection with the containment building by the raft. The
vibrations can therefore induce significant displacements and
stresgsat the level of equipment and thus the damage caused
by bad dimensioning. Our strategy is inscribed in the context
of the verification of inner equipment under this kind of
shaking. In this type of load case, the impact is a bending
problem. This phenomenon induces a non-linear localized
area around the impact zone. This area is previously
determined through a sensitivity analysis associated with a
Taguchi experimental design.

The calculation of the shaking induced by an aircraft impact
on an industrial structure requires dynamic studies. The

ry fine, resulting in a refined time discretization.

Figure 1: Nuclear power plant.



2  DESCRIPTION OF THE STRATEGY dimensional ideal plastic impact approach, in the model only
To solve our problem of shock induced vibrations in the buckling load and the distribution of mass are needed. The

reinforced concrete structure the strategy impleeig as €duation of motion wrés
follows (see Figure 2). The load is applied on a finite element dxer
model of the target structure and its nonlinear response is F() = Rerxer +mcx”( at ) @)

calculated by finite element method in non-linear case and RMerem, is the mass per unit length of the uncrushed aircraft
a sufficiently short time. . .
y at impact, x,. the crushed Iength,d;tr the velocity of
uncrushed portion an®_,. the resistance to crushing, i.e.

\gq ¥ crushing strength.
s Target Load f(2) Equation (1) is used to calculate the current force. The force-
@." Structure time history can thus be determined. A typical force-time
history, where the impact force and the time function are

normalized, is given in Figure 4. In this case, we chiix@
Semsitrvly study + Experimental design m/s for the impact velocity an@l20 tons for the mass.

Target load curve

- Attenuation of nonlnear area on the mnput signal
= f'(f (), S, feir h )

- Radhus of the damaged area = Ry

Temporal attenuated signal across the damaged

area

&S Aol £ U5, e 7)
K s Target ‘g W an om o e ea ew  om  m ew e
_é’ ¥ Structure ) ) )
g Figure 4 : Force as a function of time.
Then the influence of different parameters on the extent of the
Figure 2: Global calculation strategy. area of non-linearity is studied. Among these varialdes,

) _ ) _ ~ consider: the thickness of the target),( the rate of
The aircraft is replaced by an equivalent force-time functiopginforcement (longitudinal and shear rebars), (the

These data are taken from [3]. The loading diagram can Bgmpressive strength of concretg,], the loading surface
found using the Riera model [4]. We can present the Riefg

method as follows: the aircraft impinges perpendicularly ong,¢ impact of each parameter on the ressl@so explored
target considered infinitely rigid and it is assumed that {hrough experimental design using the Taguchi methods, as
crashes only at the cross-section next to the target (see Figl@ned in [5]. A sensitivity analysis associated with the
3). experimental design allows us to determine the radius of the
damaged area and the attenuation of the nonlinear area on the
input signal. The temporal attenuated signal can then be
applied at the boundary of the damaged area to obtain the
response of the rest of the structure, which behavior remains
linear, by a simulation with the VTCR (Variational Theory of
Complex Rays). This calculation requires a transformation
from time to frequency domain that is achieved by FFT (Fast
Fourier Transform). After solving the problem in the
frequency domain, a time recomposition is performed by IFFT
(Inverse Fast Fourier Transform).

Perpendicular and infinitely rigid target

3  DESCRIPTION OF THE VARIATIONAL THEORY OF
v COMPLEX RAYS (VTCR)

This work, which uses new computational strategies in

dynamics, provides an answer for the steady state of the
solution. The problem is solved in the frequency domain. One
needs to solve a forced vibration problem over a frequency
The cross-sectional buckling load decelerates the remainif@fige which includes the low- and medium-frequency ranges
rigid uncrushed portion. The total impact forg¢t) is the ([6]). The low-frequency and medium-frequency ranges are
sum of the buckling load and the force required to decelerdt@andled using the Variational Theory of Complex Rays

the mass of the impinging cross-section. Since it is a on&/TCR) [2].

Figure 3: Model aircraft impacting against a rigid surface.



31 The reference problem for an assembly of n

substructures. — Wigsur 0y, Q; = wjgsur 3y,
We consider the case of homogeneous Kirchhoffe’s thin 2
shells which vibrate at a pulsation The thickness i&; and
the densityp;. Under the assumptions of Kirchhoff-Love, the LA
out-of-plane displacement takes the following form: it is Kigsur 90, Njgsur dy

linear in z (thickness variable) and a perpendicular to the
mean surface stay perpendicular to during the displacement.
The displacemertt; of the average surface becomes:

Wjnasur Oy, Q;

Figure 6: The reference problem.
Uitx,y,2) = wilx,y) +wilx,y)es + z8;

0;(x,y) = —gradw;(x,y) — Bju;(x,y)

(2)  The reference problem to be solved is: (’rggwi,l(i,gi,%)
_ _ . such that:
wherey; is the displacement of the average surfagels the o  Kinematic equations

out of plane displacement arB] the curvature tensor. The L

average surface of the shell is defined by two independent Ui~ i i = Yia on du{;
parametersy; andg;. The position of a point on the medium w; —ﬁ](i = wy ond,,Q;
surface is defined by the position vectgla;, 5;) (see Figure " 1"“
5). Win + mﬂi%ﬂi =Wina ON0dy Q @
wn; = — ajun; + (1+ a'ij)wj on [
wi= —a;wj+ (1+a;;)un; onTy
wit; = —Piju;t; on T
Win = BijWjn onTj

Whel’eaij = ﬂlﬂ] andﬁi]‘ = £l£]

The stiffness and damping of the boundary associated with the
subdomain; and between the subdomailsand(; ([8]) are
chosen rigid to simplify our assumptions.

e Equilibrium equations of;

: N - B; (div 36) = —pw?hiy; on
Figure 5: Geometry of a shell;. div (div J‘_’G) LTy (M&) = —piwhyw; onQ;
The vectore; is defined bye; =e, Aeg. The curves N; = N;n; — BiM;n; = Nig on dyLY;
—i —i —i — = == =
a; » 1;(a;, Bo:) and B; - r;(ay;, B;) are the bending lines, K; = ni.div M; + (Ei%ﬁi) =Ky ondgQ; ®)
and form a network of orthogonal lines [7]. The base — -
) } nMin; = M; on dycQ;
(ea., ep ,egl) is then orthogonal. The curvature tensor writes: —
—i = =i [[El%ﬂl]] =0
1 - Sharp corners of 9Q;
0 0 0
ot e Equilibrium equations on;
B=lo -1 o 3) | | )
A Mni = aijﬂjnj - (1 + aij)Kj on Fij
0 0 0eeqe) = =
e Ki= a;K;—(1+a;)Nn; onTj
And where R,; and Rg; are the radii of curvature of the N;t; = BijN;t; on [j 6
bending lines. nMiny = =Byn; Mjn, on [ ©)
Let n shellsQ;, with a common borddr. The actions of the ¥, (M)t = 0

environment are queled an by imposing displacement on S (Nym— Kp) = 0
0y {2; andd,L;, rotations org,, 12;, line stresses ody(2; and =1 A==
{2, and line momentum o®,;. Figure 6 shows the ® Constitutive relations

actions of the environment between the fi@|candq;. M=k X(w;) onQ
=15 Bep AW i

(@)

N; = higcpiiz(ﬁi) on

where K;p, = (1 + in,)K® Hooke’s operator under plane

stress z:ssumptiopi denote densitieg); denote the structural
damping coefficients and operatdfsandy are defined as:



1-VqiVpi 1=VaiVpi

—Lai VaiFai *  the Hooke’s operator K, is positive definite,
Kep, = (1 +in;) % 1—ff§v,h e the damping coefficients are such that> 0,
= 0 0  Fafi The rigid body movements are blocked provided éhat 0.
2<1+v"m”31) (ea 5, ) (®) 33 Derivationsof two-scale shape functions
Xw) = ¢g(6;) - [B g(u +wies. ) The VTCR uses a two scale approximatior(g;‘h,gih) , that
— - sym =

exhibits a strong mechanical meaning. The solution is
assumed to be properly described locally as the superposition
whereE,, g; the Young’s modulus and v g; the Poisson’s ratio of an infinite number of local vibration modes which can be

' ’ written in the following manner:

v(w) =@+ wies )

in e, andeg direction, h; the plate’s thickness, p; the mass
Za; B,

i _ PLY; )
density,w the frequency, ang; the damping factors is the Us(X0Yi, Pi) = Un (&'I—Ji)'e‘ on {;

12
symmetric part of the gradient operator. o(X Y P) = Cp (&,ﬂ) efili on (12

3.2  Thevariational formulation associated to the VTCR where bothX; andY; represent the position vecto¥; (resp.

The £'ingredient of VTCR is a global weak formulation ofy;) being associated with slow variations (resp. to rapid
the boundary conditions in terms of both displacements aggriations).P; is the complex wave vector associated with the
forces. The variational formulation can be expressed as: fighration rays in the plane of the shell. In order for these local

(EvWi' Klgzgz) = (ngi) € Sqa, SUCh as: modes(_l,_l) to be admissible, they must be §g,;; and
s1 188, s, satisfy the constitutive and dynamic equilibrium equation. The
c,q( >ZL< ) (9) mechanical waves can be divided into three families (see
Sn 185, 8sp Figure 7): the P waves (Primary), SH (Secondary Horizontal)

and SV (Secondary Vertical) ()9 We can identify two types

s |65, of mechanical waves which can describe the membrane effect,

Jl( ): the P waves for the pressure effects and the SH waves for
shear effects.

with the following general form:

Sn 65n o
Ref-ioo|Sy [, g Ogmi-UidS + ity f, o gm0 dS

S fEE s e o), —_—
K l 1 (gl l) (5gl) _;Zi:t] (g; )

o L
Lf].. = Dircceon SFodstcile

moton
85,

Re {—L'a) [Z?zl fauﬂi 6gini.gi*dd$ + 3, faFQi Eid.(SQ,-*dS]} (11

where:
e the integral part o@,; check on average the imposed
displacements ofl;,

motion Wavelength

[
e the integral part oWz(; satisfy the imposed stresses on Khresions of ey popagation =
L, ) ) o " Figure 7: Three families of mechanical waves.
e the integral parfj; on satisfy the transmission conditions ) )
on the boundary; 3.3.1 Out-of-plane bending shape functions
ij-

Re designates the real part of a quantity arttie conjugate FoOr instance, let us consider the oéiplane bending motions
part. Spaces(, ; are the space of admissible fields associatedf thin homogeneous shells. According to Kirchhoff’s thin

with homogeneous conditions on the structu’refdi = shell theory, the steady-state aitplane displacemeny; of
, 0 ) = the mid-surface oft); is governed by the following wave
0 i=1,..,n.Inourcases,;; = Suq; i=1,. equation:
It is based on a priori independent approxmaﬂons W|th|n the
substructures. The constitutive relation (Equation 8) and
dynamic equilibrium equation (Equation 10) are exactly div| div| Kep: X(wy) | |+
satisfied for each substructur@s to form the corresponding = -
subspace, ;. (13
It is easy to prove that the variational form is equivalent to the
reference ; . hTr| | Kepiv(wi) | B | = —piw?hiw;
problem, provided that: i SCPi L\ | ZE (0w

e the reference problem has a solution,



By searching the solution of Equati®8 under the wave form with Pi,;;, Peqy; and P,,.; determined by the dispersion
Equation12, one can identify three types of solutions that argelation from the solution of Equatidr.
related to the shell, the edges of the shell, or the corners of ghe membrane displacement:

shell.
A complex interior ray corresponds to a plane bending wave u'(x) =
which propagates through the plate in a given diregtipp fgpres,igcpres,i @stsure'i(ziﬁpms,t}-65””"'(9"”5"')'&'d9pres,i(16)

(see Flgure B > + fgshea,i‘gcshea,i ﬂsh(—;’a.f"i (Ei’ HShea:i)' egshea,i(eshea,i)-ﬁid@shea,i

p— With Pp.es; and Pgpe,; determined by the dispersion relation
o n from the solution of Equation 14.

Let us note that admissible spaX;g ; is of infinite dimension
since, for instance for interior modes, all directions of
propagatiorp;are taken into account. To end up with a finite
dimension problem that can be solved numerically, one need
to discretizeS,, ; into a finite dimension spac%‘d'i.

@ = 45°

€q inti

= 90° N
(/i)nl.i o

The integral in Equationl5 and Equation16 can be
discretized and one can consider the approximate amplitude

yh (&,I_Di(qri)) to be constant over each angular sector. The
Edges and corners modes are evanescent waves. Examplegioantage of this way of doing is that all directions of

Figure 8: Description of interior modes.

3.3.2 The membrane shape functions AR e
Consider then-plane displacement; of a homogeneous thin StV 0 } =
shell Q; through Kirchhoff-Love model. The rays of vibration ;\\ /// /

must satisfy Equation 8 and Equation 10 to be admissible. The \ ~J v

displacementy; then checks the dynamic equation: e .\%j

such modes are shown in Figure 9. propagation are still represented in the discretized space,
, though with an approximation on the amplitude of it (see
FigurelQ).
| - - Esact amplitades
. . A
Figure 9: Interior, edge and corner modes for a homogeneous  ypomcdwmpiindges /., LY %
plate. / j 7 >
/?7 A

=

h® .
hié”’i:;’(l—‘i) — 1 Bidiv (gﬁ”i:i(w")> = —pw’hiy (14) Figure10: The discretized amplitudes.

The choice of the angular discretization and therefore the

The VTCR uses approximation@h,yih) with a high number of modes need for solving this kind of problem is
mechanical content. P-waves and SH-waves describ&ated to the number of waves in the structure, on each edges.
membrane shape functions. and to the types of boundary conditions. For example the

i ) numbern; of bending waves in the characteristic dimension
3.4 Thediscretized problem la/p: Of the shell; can be calculated using Equation 43:
The displacement of any point of the substructure is generated
by a basis of admissible complex rays. The unknown is the n = 2;“—/‘* = M = la/m@"\/@ a7
generalized amplitud®*(X;, P,) of the basis (am"-order o/pi Tesvalb S
polynomial in X; and a large-wavelength quantity).where,g; is the wavelength in the directicn_g,, oreg, w
Accounting for all the directions @nt/eqg/cori @nd W b

: / ; a/Bi ; ;
O pres/sheai IN Cint edg)cor/pres/shea: 1€AAS t0 an integral over the pulsation,ce,qe 5 = Vo [== the celerity of bending

pih;
Cin_t/e_dg/cor/pres/shea,i- waves, p; the density,h; the shell thickness anfl,/s; the
This integral takes the form: Eq/pih}
e bending displacement: flexural modulus (for a platB, /p; = 20-vavp)”
wh(x) = The number of wavelengtl, depends on the celerity of the
L\t
(0 o . _ Ea/pi
f‘l’intiscinti W erion i (Xi @ing,i JeRmei(@med Xidgy, o waves: for pressure waves,, p; = fm and for
o . A (15
+ f‘ﬂedg,i"fcedg,i We}ége,i(ﬁi'(pedg,i)eged‘q'l((pe‘w")'&d(pedg'i A EaiEBi
N shear waveSig /5 = |—F————.
+ f‘ﬂcar,i"fccor,i Wc’:)rner,i(ﬁi' (pcor,i)egwr'l((pwr'l){ld(pcor,i sha/Bi ZPi(l"'\/VaiVBi)



This discretization is related to several parameters, thus it’s  the element size should depend on the wavelength ([13]). The
difficult to define it analytically. Also you can use ay&s rule of thumb widely used by engineers [14] consists in takin
criterion” to select it. Overall we take a number of raysen elements per wavelength, but in medium frequency, it is

between 20 and 100. confirmed[15] that an even more refined mesh is required
sincek3h? must remain constant.
4 NUMERICAL EXAMPLE VTCR resolution need to add the particular solution (see

The VTCR code developed relies on the one developed Eguation .22)) corresponding to the solution_ of an infinite .
[12] for acoustic problems. Adjustments have been made ptate subjected to a punctual force to take into account this

handle mechanical problems. kind of stress.
4.1  First numerical example: one simply supported plate _ —iF +[12w2p(1-v2)
WF infinite (xr }’) - En3 T2w0Zp(1-v7) 0( Eh2 T') -
In order to study the convergence of the VTCR for plate e
problems, to validate the associated shape functions and to ,se?; 120%p(1-v2) 2y 4 [1207pGovD) 21
the differences with a finite element resolution, let us considt‘slfO \] Eh? 9] T 0(\] Eh? 0] @

the example [9] given in Figurél. A simply supported ) . &
isotropic steel plate with the following mechanical propertie¥herer is the distance tay andj,, ¥, andK, the G order

is subjected to a point shear loading represented by the R&gFSe! functions. The problem is a bending one, thus in this
arrow at frequency 2000 Hz: case the membrane vibration modes can be taken to zero.

¢ Young’s modulus = 210 GPa Table 1 shows the owfplane displacement obtained with
: . ’ CAST3M, with an analytical solution (see Equati@1) and
Poisson’s ratio = 0.3,

mass density = 7800 kgfm with the VTCR.

[ ]
e damping coefficient= 0.01, Table 1: The FE (with Cast3m) solution (left), the analytical
e thickness of the plate = 0.003 m. solution (middle) and the VTCR solution witl80 dofs
- (right).
Castam Analytical VTCR
results
39000 DOFs . .
elemengszlv&gvelength) Fauation (21) 140*%0 (tadge mogess
g ——
> =
g e v o
a o . » “> -
2 O
° i o
g -~ - | /
Figurell: First example: description of the boundary | £ :.‘g""
conditions. = ® ="
| T | _ i AN
The analytical solution is obtained using the eigenvectoss

One can see that the two solutions are very similar, even
though the VTCR was obtained with only 180 DOFs, thanks
to its ability to capture analytically the wave phenomena in
Wanatyticat (X, ¥) = Xm=1 Ln=1 GmnPmn (X, ¥) (18)  the rapid scale’. One can easily notice the computational
efficiency of the VTCR in such a structural vibration problem.

basis of the plate, called,,,. So the analytical outf-plane
displacement is given by:

where
Fsm(mzp)sm(%) 4.2 . Secon.d numerical example: Civil engineering structure .
Amn =W 19 In this section the VTCR is used to c_alculate the r_nedlu_m
* frequency response of a structure subjected to a sinusoidal
Pmn = Sin ("Zx) sin <%) loading. We calculate at first the discrete Fourier transform of

) o the load. The VTCR then gives us the frequency response at a
For the exact solution, the infinite sum has to be truncated: chosen pointR2) of the structure specify by the blue cross on
h _ M N Figure 12 for any frequency. The time response is then
w (X, y) = - 1 a X, 20 . . .
anatyticat (%, Y) = Zm=1 Zn=1 Gmn®mn (5:3) - (20) obtained by the inverse Fourier transform. We therefore
Indices M and N have been chosen with the followingconsider a concrete structure where the mechanical properties
assumption: neglected terms have very little influence. W concrete are calculated according to the rules of Eurocode

2:
. Ly %4 [1202p(1-v2)
need to take into accoun¥ >>;" ’E—hz et N> o concrete B30 =30 MPa,

Ly +[1202p(1-v2) e  Young’s modulus = 34 GPa,
K En2 e Poisson’s ratio = 0.2,
A reference solution using the finite element code CAST3M mass density = 2500 kg/m

[12] was obtained taking around ten linear elements per damping coefficient= 0.04.
wavelength for good accuracy. To perform an FE calculation



In this study, an hysteretic damping is usede geometry of Two hundred rays are sufficient to properly represent the

the structure is simplified into an assembly0of5 m thick

plates.

frequency response. The Table 2 shows the solution obtained
in each of four frequencies studied. The boundary conditions

The structure is then subjected to an impact applied at taee in a good adequacy. This is clearly observable where the
center of a side wallP(l). This impact produces localized load is applied and on the structure supports.

damages on this wall. Here the radius of the non-linearity area
is equal to1m and the temporal attenuated signal in

Iy
10m;|

displacement across the damaged area iS given by Equation Max/per substructures: 102 interiorsrrreoadre;,oz(lj*ezss edge modes, 50 pressiggand 50
(23). We consider the one-time loading P1 in displacement of 10Hz 20Hz _
the form: T i ;
I I
wpq(t) = 100 sin(2m10t + 10) — 200 sin(2m20t + 20) + gg =
300 sin(2m30t + 30) — 400 sin(2mw40t + 40) (22 | 8 7re iz N
, — o 3% AL I e I
This loading is modeled by a red arrow in Figure 18. The reds B I
and pink lines represent the supports of the structire; T Yo
respectively, clamped and simple supported. =
A 0 & I l
— sE ¥ .
] 58 ?/-'-:, )
— 3g o) l lll
} — 3 ] P11 s o
P | g Load wp, (&
i | Simiply supported éilzes ;ﬁmﬂag(r"hJ

Y.
A

20m|

v K-

o
24m
"""" F-re

Clamped edges

W
oF
S

60m

Figurel2: Geometry of 3rd numerical example.

Table 2: VTCR solution of & numerical example.

Following the VTCR calculation we can recover the
amplitude and the phase of each point of the structure in each
frequency and thus reconstruct the time response by IFFT.
Then we obtain for the point selecteR2) and designated by
a blue cross in Figuré2, the following results (see Figure
14).

Frequency content of wrz

120

The computational strategy is as follows. We calculate the vrer

discrete Fourier transform of the time load and use it to 100
calculate with

the VTCR, the frequency

Cast3m

response

corresponding to each frequency on a selected point of the  *

structure. The program selects the frequencies having a %
significant amplitude to describe the good time loading. The 2

time response is then obtained by applying the IFFT to the 40
frequency response.

1000

Time loading function we(t)

Time (ms)

Frequency content of wr

10 20 k{1 40 50 60 70
Frequency (Hz)

0 10 20 30 40 50 60 70
Frequency (Hz)

Time loading function wes(t)

5 0 50 | 100 1150 200 {250 | BoO

250

Figurel4: Displacement amplitude in P2 and the associated
inverse Fourier transform, oof-plane displacement,..

This study provides us with a very low cost in terms of
degrees of freedom used by the VTCR for solving such a
problem. Figurel5 shows the difference in CPU time between
resolution with VTCR and with CAST3M for this problem. In
this figure, the red curve shows different points representing
the time required for calculating the solution by increments of

Figure13: wp, displacement applied across the damaged arég ;. The blue curve provides the computation time for

and the associated Fourier transform.
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e The FFT-VTCR-IFFT process is an accurate way for
solving the impact problem over a wide time range and
wide frequency range,
e The final computation time is far less important than for a
FEM explicit scheme calculation (as soon as the
frequency involves medium frequency).
Thanks to the encouraging results obtained for the simple
cases presented here, we are able to apply the methodology to
the industrial load case of an actual building being impacted
by an aircraft. So we need to define the impacted structure.
But structures such as nuclear civil engineering may contain
floors with a large thickness compared to these dimensions. In
this framework we must to study the impact of this thick
structures on the response and so if we need to extend the
VTCR shapess functions and the VTCR variational
formulation to the Reissner-Mindlin's thick shells. An other
study must to lead on the large band analysis. Indeed a study
one by one frequency can be expensive in computation time.
The Proper Generalized Decomposition (PGD) was
considered to perform a large band analysis [16]. This method
allows to decouple the spatial field to the frequency content
and find patterns that can be likened to the eigenmodes of the
structure.
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