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Abstract. A Petri net is reversible if its initial marking is a home mark-
ing, a marking reachable from any reachable marking. Under the as-
sumption of well-behavedness we investigate the property of reversibil-
ity for strongly connected weighted Choice-Free Petri nets, nets which
structurally avoid conflicts. Several characterizations of liveness and re-
versibility as well as exponential methods for building live and home
markings are available for these nets. We provide a new characteriza-
tion of reversibility leading to the construction in polynomial time of
an initial marking with a polynomial number of tokens that is live and
reversible. We also introduce a polynomial time transformation of well-
formed Choice-Free systems into well-formed T-systems and we deduce
from it a polynomial time sufficient condition of liveness and reversibility
for well-formed Choice-Free systems. We show that neither one of these
two approaches subsumes the other.

Keywords: Reversibility, well-behavedness, polynomial conditions, de-
composition, place-splitting transformation, weighted Petri nets, Choice-
Free, Fork-Attribution, T-system

1 Introduction

Weighted Choice-Free Petri nets constrain every place to have at most one out-
put transition, hence structurally avoid conflicts. They extend the expressive-
ness of weighted T-systems, also known as generalized Event Graphs, which are
equivalent to Synchronous Data Flow graphs (SDF)[1] and have been widely
used to model embedded applications. Choice-Free Petri nets are called output-
nonbranching in [2], where they are shown to be distributable.

Home markings can be reached from any reachable marking. Used as an
initial data distribution of the system, they avoid a transient phase and define a
reversible Petri net. In this context, all reachable markings remain reachable after
any firing sequence. This reversibility property is often required in embedded
applications that need a steady behavior. Moreover, the study of the reachability
graph is consequently simplified.

? The work of this author is supported by Digiteo / Project Tatami.
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Relationship with well-behavedness. Embedded systems have to keep all
their functions active over time within bounded memory. In Petri nets, these
requirements are formalized by the notions of liveness and boundedness, which,
taken together, define well-behavedness. The objective is to build systems that
are well-behaved and reversible. However, live systems are not necessarily re-
versible, while reversibility does not imply liveness [3]. In this paper, we focus
on the reversibility property under the well-behavedness hypothesis. Since the
well-formedness property, defining structural liveness and structural bounded-
ness, is necessary for the well-behavedness of Choice-Free systems [4], we focus
on systems that are well-formed.

Previous results. All strongly connected well-behaved T-systems are known to
be reversible [5]. Characterizations of liveness, well-behavedness and reversibility
have been found for the class of Choice-Free systems [4], even though reversibil-
ity may not be deduced from well-behavedness for these systems. However, the
existing reversibility condition is expressed in terms of the ability to fire a se-
quence whose size is exponential and does not lead trivially to a polynomial
time algorithm for checking the reversibility or building a reversible marking of
reasonable size. Live and reversible initial markings for Choice-Free systems are
constructed in [4] by finding a solution of an integer linear program with an
exponential number of constraints.

Home markings have also been studied in other subclasses of weighted Petri
nets. For instance, in Workflow nets, reversibility in a variant of the system
provides information on other behavioral properties [6]. The existence of home
markings is stated for Equal-Conflict systems, which generalize Choice-Free sys-
tems [7], as well as the class of DSSP, which simulate Equal-Conflict systems [8].
However, the construction of home markings is not provided for these classes.

Another approach for studying the behavior consists in transforming the
system while preserving some properties. Many transformation rules have been
proposed, some of which can be found in [3,9,10,11]. However, they do not apply
to the complete class of systems studied in this paper.

Contributions. We propose two new approaches for studying the reversibility
of well-behaved Choice-Free systems.

First, extending a liveness characterization of [4], we show that the reversibil-
ity of a Choice-Free system can be expressed in terms of the reversibility of partic-
ular subsystems belonging to the Fork-Attribution class, where transitions have
at most one input. This decomposition leads to the first live and reversible initial
marking for Choice-Free systems that is constructed in polynomial time with a
polynomial number of tokens, contrasting with previous exponential methods.

We focus then on well-formed Choice-Free systems, for which we provide a
polynomial time transformation into a well-formed T-system by splitting places
having several inputs while preserving the set of T-semiflows. Using a known
polynomial time sufficient condition of liveness for well-formed T-systems, we
obtain a polynomial time sufficient condition of liveness and reversibility for
well-formed Choice-Free systems. We show that this condition neither implies
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the marking construction nor is induced by this marking. Thus both approaches
are worthy of interest.

Organization of the paper. In Section 2, we recall general definitions, nota-
tions and properties of Petri nets. Several structural and behavioral properties of
Choice-Free systems are also detailed. In Section 3, we present the new charac-
terization of reversibility and the construction of the polynomial live and home
marking. We study then the particular case of T-systems. In Section 4, the place
splitting transformation is detailed, as well as the new polynomial time sufficient
condition of liveness and reversibility. Finally, the two conditions are compared.

2 Definitions, Notations and Properties

We first recall definitions and notations for weighted nets, markings, systems
and firing sequences. Classical notions, such as liveness and boundedness, are
formalized. We also consider particular subnets, subsystems and subsequences.
We then present the special classes of nets considered in this paper, namely
Choice-Free nets and some of their subclasses. Finally, we recall general results
on the structure and behavior of Choice-Free nets.

2.1 Weighted and Ordinary Nets

A (weighted) net is a triple N = (P, T,W ) where:

− the sets P and T are finite and disjoint, T contains only transitions and P
only places,

− W : (P × T ) ∪ (T × P ) 7→ IN is a weight function.

P ∪ T is the set of the elements of the net.
An arc is present from a place p to a transition t (resp. a transition t to a

place p) if W (p, t) > 0 (resp. W (t, p) > 0). An ordinary net is a net whose weight
function W takes values in {0, 1}.

The incidence matrix of a net N = (P, T,W ) is a place-transition matrix C
defined as

∀p ∈ P ∀t ∈ T, C[p, t] = W (t, p)−W (p, t)

where the weight of any non-existing arc is 0.
The pre-set of the element x of P ∪ T is the set {w|W (w, x) > 0}, denoted

by •x. By extension, for any subset E of P or T , •E =
⋃
x∈E

•x.
The post-set of the element x of P ∪ T is the set {y|W (x, y) > 0}, denoted

by x•. Similarly, E• =
⋃
x∈E x

•.
We denote by maxNp the maximum output weight of p in the net N and by

gcdNp the greatest common divisor of all input and output weights of p in the net
N . The simpler notations maxp and gcdp are used when no confusion is possible.

A source place has at least one output transition and no input transition.
A join-transition has at least two input places. A net is well-connected if it is
connected and each place and transition has at least one input.
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2.2 Markings, Systems and Firing Sequences

A marking M of a net N is a mapping M : P → IN. We shall also denote by M
the column vector whose components are the values M(p) for p ∈ P . A system
is a couple (N,M0) where N is a net and M0 its initial marking.

A markingM of a netN enables a transition t ∈ T if ∀p ∈ •t ,M(p) ≥W (p, t).
A marking M enables a place p ∈ P if M(p) ≥ maxp. The marking M ′ obtained

from M by the firing of an enabled transition t, noted M
t−→ M ′, is defined by

∀p ∈ P,M ′(p) = M(p)−W (p, t) +W (t, p).
A firing sequence σ of length n ≥ 1 on the set of transitions T is a mapping

{1, . . . , n} → T . A sequence is infinite if its domain is countably infinite. A
firing sequence σ = t1t2 · · · tn is feasible if the successive markings obtained,

M0
t1−→ M1

t2−→ M2 · · ·
tn−→ Mn, are such that Mi−1 enables the transition ti for

any i ∈ {1, · · · , n}. We note M0
σ−→Mn.

The Parikh vector ~σ : T → N associated with a finite sequence of transitions
σ maps every transition t of T to the number of occurrences of t in σ.

A marking M ′ is said to be reachable from the marking M if there exists a
feasible firing sequence σ such that M

σ−→ M ′. The set of markings reachable
from M is denoted by [M〉.

A home marking is a marking that can be reached from any reachable mark-
ing. Formally, M is a home marking in the system (N,M0) if ∀M ′ ∈ [M0〉,M ∈
[M ′〉. A system is reversible if its initial marking is a home marking.

2.3 Liveness and Boundedness

Liveness and boundedness are two basic properties ensuring that all transitions
of a system S = (N,M0) can always be fired and that the overall number of
tokens remains bounded. More formally,

− A system S is live if for every marking M in [M0〉 and for every transition
t, there exists a marking M ′ in [M〉 enabling t.

− S is bounded if there exists an integer k such that the number of tokens in each
place never exceeds k. Formally, ∃k ∈ IN ∀M ∈ [M0〉 ∀p ∈ P, M(p) ≤ k .
S is k -bounded if, for any place p ∈ P , k ≥ max{M(p)|M ∈ [M0〉} .

− A system S is well-behaved if it is live and bounded.

A marking M is live (resp. bounded) for a net N if the system (N,M) is live
(resp. bounded). The structure of a net N may be studied to ensure the existence
of an initial marking M0 such that (N,M0) is live and bounded:

− N is structurally live if a marking M0 exists such that (N,M0) is live.
− N is structurally bounded if the system (N,M0) is bounded for each M0.
− N is well-formed if it is structurally live and structurally bounded.

The algebraic properties of consistency and conservativeness are necessary
conditions for well-formedness for all weighted Petri nets [12,13]. They are de-
fined next in terms of the existence of particular annulers of the incidence matrix.
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2.4 Semiflows, Consistency and Conservativeness

Semiflows are particular left or right annulers of an incidence matrix C that is
supposed to be non-empty:

− A P-semiflow is a non-null vector X ∈ IN|P | such that tX · C = 0.

− A T-semiflow is a non-null vector Y ∈ IN|T | such that C · Y = 0.

A P-semiflow is minimal if the greatest common divisor of its components is
equal to 1 and its support is not a proper superset of the support of any other
P-semiflow. The same definition applies to T-semiflows.

We denote by 1ln the column vector of size n whose components are all equal
to 1. The conservativeness and consistency properties are defined as follows using
the incidence matrix C of a net N :

− N is conservative if a P-semiflow X ∈ IN|P | exists for C such that X ≥ 1l|P |.

− N is consistent if a T-semiflow Y ∈ IN|T | exists for C such that Y ≥ 1l|T |.

The net on Figure 1 is conservative and consistent.
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Fig. 1. This weighted net is conservative (the left vector [2, 2, 1, 1, 1] is a P-semiflow
and its components are ≥ 1) and consistent (the right vector t[2, 2, 2, 1] is a T-semiflow
and its components are ≥ 1).

2.5 P-subnets, P-subsystems and Subsequences

The sequence σ′ is a subsequence of the sequence σ if σ′ is obtained from σ
by removing some transitions of σ. The restriction of σ to the set T ′ ⊆ T of
transitions is the maximum subsequence of σ whose transitions belong to T ′.

The net N ′ = (P ′, T ′,W ′) is a P-subnet of N = (P, T,W ) if P ′ is a subset of
P , T ′ = •P ′ ∪ P ′• and W ′ is the restriction of W to P ′ and T ′. Figure 2 shows
two P-subnets of the net in Figure 1.

The system S′ = (N ′,M ′0), with N ′ = (P ′, T ′,W ′), is a P-subsystem of
S = (N,M0) if N ′ is a P-subnet of N and its initial marking M ′0 is restricted to
P ′, i.e. M ′0 = M0 P ′ .
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2.6 Choice-Free Nets and Subclasses

N = (P, T,W ) is a (weighted) Choice-Free net if each place has at most one
output transition, i.e. ∀p ∈ P , |p•| ≤ 1. A T-net (Event Graph) is a Choice-Free
net such that each place has at most one input transition, i.e. ∀p ∈ P , |•p| ≤ 1.
A Fork-Attribution net (or FA net) is a Choice-Free net in which transitions have
at most one input place, i.e. ∀t ∈ T , |•t| ≤ 1.

The nets presented in Figures 1 and 2 are Choice-Free. The net on the left
hand side of Figure 2 is an FA net while the net on the right hand side is a
circuit, hence a particular T-net and FA net.
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=
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0
0
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0
0
0
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1
1

[ ]
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1 -2

[ ]
=
t

0
0

[ ]

-1 2
1 -2

[ ]
2
1

[ ]
= 0

0

[ ]
Fig. 2. Two FA P-subnets of the net of Figure 1. On the left, the P-subnet is defined
by the set of places {p1, p2, p3}. The net on the right is defined by the set of places
{p4, p5}. Moreover, these two nets are conservative and consistent.

In this paper, we focus on well-formed Choice-Free nets. We recall next prop-
erties of Choice-Free systems that arise from their absence of conflicts and deal
with well-formedness, liveness and firing sequences. The next proposition ex-
presses a necessary and sufficient condition of well-formedness for this class and
states its necessity for well-behavedness, which is not the case for all Petri nets.

Proposition 1 ([4]). Suppose that N is a weighted and strongly connected
Choice-Free net. The properties

− N is consistent and conservative
− N is well-formed

are equivalent. Moreover, if a marking M0 exists such that (N,M0) is well-
behaved, then N is well-formed.

Figure 1 shows a strongly connected, consistent and conservative, thus well-
formed, Choice-Free net. Similarly, the two nets of Figure 2 are well-formed.

The existence of T-semiflows induces strong structural and behavioral prop-
erties. In the case of well-formed Choice-Free nets, they are detailed below.

Proposition 2 ([4]). If N = (P, T,W ) is a well-formed and strongly connected
Choice-Free net, then N has a unique minimal T-semiflow Y . Moreover, the
support of Y is the whole set T .
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A decomposition theory has been developed for Choice-Free systems and
larger classes [4,14], allowing to get insight into their structure and behavior by
studying particular subsystems. The next results show the relevance of FA P-
subsystems to the study of well-formedness and liveness in Choice-Free systems.

Proposition 3 ([4]). Consider a strongly connected well-formed Choice-Free
net N with unique minimal T-semiflow Y . If N∗ = (P∗, T∗,W∗) is a strongly
connected FA P-subnet of N then N∗ is well-formed, with a unique minimal T-
semiflow Y∗, and Y T∗ is a multiple of Y∗. Moreover, N is covered by such FA
P-subnets.

The strongly connected well-formed Choice-Free net of Figure 1 is covered
by the FA P-subnets of Figure 2, which are strongly connected and well-formed.

Proposition 4 ([4]). Consider a Choice-Free system S = (N,M0) without
source places. S is live if and only if all the strongly connected FA P-subsystems
S∗ = ((P∗, T∗,W∗),M0 P∗) of S are live.

This characterization of liveness in terms of subsystems does not trivially
lead to an efficient algorithm for checking liveness, as one may have to check an
exponential number of subsystems.

A system is persistent if every reachable marking M that enables two transi-
tions t1 and t2 enables the sequence t1t2. Persistent systems encompass the struc-
turally persistent Choice-Free systems and have a confluent language [4,15,16,17].
This property is also known as the Church-Rosser property in the context of
rewriting systems. A constructive theorem of confluence for persistent systems
exists [16], however, we only need the following one, illustrated in Figure 3.

Proposition 5 (Confluence ([4])). Consider a Choice-Free system (N,M0).

If M1 and M2 are reachable markings such that M0
σ−→ M1 and M0

τ−→ M2

then a marking M3 exists such that M1
α−→ M3 and M2

β−→ M3, where the
feasible sequences α and β satisfy the following conditions for every transition t:

~α(t) = max{~σ(t), ~τ(t)} − ~σ(t)

~β(t) = max{~σ(t), ~τ(t)} − ~τ(t) .

M0 M1

M2 M3

σ

τ

β

α

Fig. 3. If the sequences σ and τ are feasible in the Choice-Free system, then the feasible
sequences α and β exist and reach the same marking M3.
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3 Reversibility of Well-Behaved Choice-Free Systems

In Choice-Free systems, well-behavedness does not imply reversibility [4]. Under
the well-behavedness hypothesis, we provide a new necessary and sufficient con-
dition of reversibility that is expressed in terms of the reversibility of particular
subsystems, namely strongly connected FA P-subsystems. This result extends
the liveness condition of Proposition 4 for well-formed Choice-Free systems, im-
proving our understanding of their behavior from the decomposition point of
view. To prove this condition, we exploit a known characterization of reversibility
as well as a property of the sequences that are feasible in P-subsystems. More-
over, this approach allows to construct, for these systems, a polynomial, meaning
in polynomial time with a polynomial number of tokens, live and reversible ini-
tial marking, whereas the older characterization gives no direct solution to this
problem. Finally, we compare our result to the liveness and reversibility of the
T-system subclass, in which the interesting P-subnets are circuits.

3.1 A Known Necessary and Sufficient Condition of Reversibility

A characterization of reversibility for well-behaved Choice-Free systems, pre-
sented in [4], is recalled below. This statement relies on the feasibility of a se-
quence whose Parikh vector is equal to the minimal T-semiflow.

Proposition 6 ([4]). Consider a well-behaved and strongly connected Choice-
Free system S = (N,M0) with unique minimal T-semiflow Y . S is reversible if
and only if a sequence σY such that ~σY = Y is feasible at M0.

This proposition is used in the sequel to prove the new reversibility condition.

3.2 Preliminary Result About Subsequences and P-subsystems

We present a general technical result that deals with the restriction of sequences
to P-subsystems. Such subsequences have been used in [14].

Lemma 1. Consider a system S = (N,M0), where N = (P, T,W ), together
with one of its P-subsystems S′ = (N ′,M0 P ′), where N ′ = (P ′, T ′,W ′). For
every feasible sequence σ in S, the subsequence σ T ′ is feasible in S′. Moreover,

if M0
σ−→M in S and M0 P ′

σ T ′−→M ′ in S′, then M P ′ = M ′.

Proof. We prove the claim by induction on the size of a feasible sequence of size
k in S. If σ is empty, it is feasible in both systems and the marking is unchanged.

Hence, suppose that σ = σ1t is feasible in S, where σ1 has size k − 1, and
that the claim is true when the size of the sequence is strictly smaller than k.

We note M0
σ1−→M1

t−→M2 in S. By the induction hypothesis, σ1 T ′ is feasible

in S′, we note M0 P ′
σ1 T ′−→ M ′1 in S′, and for every place p in P ′, M1(p) = M ′1(p).

As S′ is a P-subsystem of S, a transition belongs to T ′ if and only if it is an
input or output of at least one place of P ′.
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If t is not in T ′ then σ1 T ′ equals σ T ′ , which is thus feasible in S′. Moreover,
t does not modify the marking of places in P ′, thus M ′1 = M2 P ′ .

Otherwise t belongs to T ′ and is enabled in (N,M1). Moreover, M1 P ′ = M ′1,
implying that the input places of t that belong to P ′ are enabled in (N ′,M ′1),

thus t is enabled in (N ′,M ′1). We note M ′1
t−→ M ′2. Finally, a place p in P ′ is

an input or output of t in N if and only if it is one or the other in N ′ thus
M2 P ′ = M ′2. ut

3.3 A New Necessary Condition of Reversibility

As mentioned earlier, we focus on strongly connected well-behaved Choice-Free
systems. We present here the necessity part of our characterization of reversibil-
ity. For that purpose, we need the following lemma, deduced from [4].

Lemma 2 ([4]). Consider a strongly connected and well-formed Choice-Free
system S = (N,M0) with minimal T-semiflow Y . If there exists a positive integer
k, k ≥ 1, and a feasible sequence σ in S such that ~σ = k · Y , then there exists a
feasible sequence σY in S such that ~σY = Y .

Now we are able to prove the necessary condition of reversibility.

Theorem 1. Consider a strongly connected and well-behaved Choice-Free sys-
tem S = ((P, T,W ),M0). The reversibility of S implies the reversibility of each
of its strongly connected FA P-subsystems.

Proof. By Propositions 1 and 2, S is well-formed and has a unique minimal T-
semiflow Y whose support is the whole set T . S is reversible, thus by Proposition
6, there exists a sequence σY that is feasible in S and whose Parikh vector is
equal to Y . Consider S∗ = ((P∗, T∗,W∗),M0 P∗) a strongly connected FA P-
subsystem of S, with minimal T-semiflow Y∗. The sequence σY T∗ is feasible
in S∗ by Lemma 1. Moreover ~σY T∗ = Y T∗ and Y T∗ is a multiple of Y∗ by
Proposition 3. We deduce that ~σY T∗ is a multiple of Y∗. Thus, by Lemma 2,
there exists a sequence σY∗ feasible in S∗ and with Parikh vector equal to Y∗.
By Proposition 6, S∗ is reversible. ut

3.4 A New Characterization of Reversibility

We prove the sufficiency part of the characterization, stating that the non-
reversibility of the whole system implies the existence of a non-reversible FA P-
subsystem. For that purpose, we formalize below relations between T-semiflows
and reversibility with the help of several definitions, and an intermediate char-
acterization of reversibility that involves firing sequences. Then, using decompo-
sition arguments, we prove the main characterization of reversibility.

Definition 1. Consider a system S = (N,M0) having a T-semiflow Y . A se-
quence σ that is feasible in S is transient relative to Y if its Parikh vector
is smaller but not equal to Y , that is ~σ(t) ≤ Y (t) for every transition t and
~σ(t′) < Y (t′) for at least one transition t′. The firing of σ in S, leading to a
marking M , induces a transient system denoted by the vector (N,M, σ, Y ).
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In order to simplify our study of transient sequences and systems, we partition
the places and transitions into ready and frozen ones, as specified below.

Definition 2. Consider a transient system S = (N,M, σ, Y ). A transition t is
ready in S if ~σ(t) < Y (t), otherwise the transition is frozen in S, in which case
~σ(t) = Y (t). A place is ready in S if it is an input of a transition that is ready
in S, otherwise it is frozen in S.

In a system that is transient relative to a T-semiflow Y , the firing of a ready
transition reduces the number of steps to attain Y . However, ready transitions
may not be enabled. We formalize next the notion of blocking systems, whose
ready transitions cannot be fired.

Definition 3. A transient system is blocking if it contains no enabled ready
transition.

Hence, we focus on strongly connected well-behaved Choice-Free systems,
which are well-formed (Proposition 1) and have a unique minimal T-semiflow
whose support contains all transitions (Proposition 2). Thus, the Parikh vector of
any feasible sequence is smaller than some multiple of the minimal T-semiflow Y .
If such a system S = (N,M, σ, Y ′) is blocking then liveness induces the existence
of an enabled frozen transition in S and Y ′ is the smallest multiple of Y that is
greater than ~σ. For these systems, the following characterization of reversibility
is an alternative to Proposition 6 that involves blocking systems.

Theorem 2. Consider a strongly connected Choice-Free system S that is well-
behaved. S is reversible if and only if there exists no feasible sequence in S that
leads to a blocking system.

Proof. To prove that the system is reversible, it suffices to consider the empty
sequence, which is transient relative to the unique minimal T-semiflow Y (Propo-
sitions 1 and 2). The corresponding transient system is not blocking, thus a ready
transition is enabled. Firing only ready transitions, every reached marking en-
ables a ready transition until a sequence whose Parikh vector equals Y is fired.
By Proposition 6, the system is reversible.

If S = (N,M0) is well-behaved and reversible, there exists a feasible sequence

σY whose Parikh vector equals the minimal T-semiflow Y , such that M0
σY−→M0

(Proposition 6). Thus, for every k ≥ 1, the sequence σkY = (σY )k is feasible.
Consider a feasible sequence σ and the smallest integer k such that σ is

transient relative to the T-semiflow Yk = k · Y with M0
σ−→M . The confluence

property (Proposition 5) states the existence of two feasible sequences α and β

such that M0
α−→M0 and M

β−→M0, satisfying, for every transition t,

~α(t) = max{~σkY (t), ~σ(t)} − ~σkY (t) = ~σkY (t)− ~σkY (t) = 0

~β(t) = max{~σkY (t), ~σ(t)} − ~σ(t) = ~σkY (t) − ~σ(t) .

The feasible sequence β completes the transient sequence σ up to the T-

semiflow Yk, i.e. ~σ + ~β = k · Y and we note M0
σ.β−→ M0. This particular use
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of confluence is illustrated in Figure 4. We deduce that the transient system
(N,M, σ, Yk) contains an enabled ready transition, hence it is not blocking. ut

M0 M0

M

σkY

σ β

Fig. 4. If both sequences σkY and σ are feasible, then there exists a sequence β such
that σ.β is feasible and ~σkY = ~σ + ~β.

The following lemma shows the existence of a blocking subsystem.

Lemma 3. Consider a transient Choice-Free system S = (N,M, σ, Y ) that is
strongly connected. If S is blocking then it contains at least one non-empty
strongly connected FA P-subsystem (N∗,M P∗) with N∗ = (P∗, T∗,W∗) such
that the transient system (N∗,M P∗ , σ T∗ , Y T∗) is blocking.

Proof. We prove the claim by induction on the number n of join-transitions. If
n = 0, S is an FA system and we are done. Otherwise, let t be a join-transition.

If t is ready, denote by p one of its non-enabled input places. Such a place
exists since the whole system is blocking. Otherwise, t is frozen. Since S is
strongly connected and blocking, thus transient, there exists in S an elementary
path (i.e. that does not contain two occurrences of the same node) from a ready
transition to t containing an input place p of t.

A new system S′ is obtained by deleting all input places of t except p. Denote
by R the reduced graph of S′, i.e. the directed acyclic graph in which every
node is obtained by contracting all the nodes of a maximal strongly connected
component of S′ into one point and every arc (u, v), u and v being two nodes
of R, corresponds to an arc (a, b) of S′ such that a belongs to u and b belongs
to v. Let G be a node of R with no input. Denoting by NG = (PG, TG,WG) the
subnet of S′ corresponding to G, we show that G = (NG,M PG

, σ TG
, Y TG

),
which is strongly connected, is a non-empty blocking P-subsystem of S.

G is a non-empty P-subsystem of S. Since S has a T-semiflow, it contains
at least one place and one transition. Moreover, S is strongly connected and the
only inputs of nodes that have been deleted are inputs of the transition t, which
has one input after the deletion. Thus, every node of S′ has at least one input
i.e. S′ is well-connected. We deduce that G contains at least one place and one
transition. For every place p of G in S′, all inputs of p in S′ belong to G since
G has no input in R, while the unique output of p in S′ belongs to G since G is
strongly connected. Thus, G is a P-subsystem of S′, which is a P-subsystem of
S since only places were removed. Hence G is a non-empty P-subsystem of S.



12 T. Hujsa, J.-M. Delosme, and A. Munier-Kordon

G is blocking. Consider that S is obtained from S0 = (N,M0) by firing σ.
Since G is a non-empty P-subsystem of S, Y TG

is a T-semiflow of G and σ TG

is feasible in G0 = ((PG, TG,WG),M0 PG
) by Lemma 1. Moreover, for every

transition t of TG, ~σ TG
(t) = ~σ(t), thus if t is ready in S, it is ready in G. We

show first that G contains a ready transition.
Suppose that G contains only frozen transitions, then consider a frozen tran-

sition tf in G. Since S is strongly connected, an elementary path c from a ready
transition tr to tf exists in S. This path does not exist in S′ since G has no input,
thus c contains a deleted input place of t. We note c = c1 t c2 tf . The elementary
path t c2 tf exists in S′ and belongs to G since G has no input in R. If t is ready,
we have a contradiction. Otherwise t is frozen, and by the choice of its deleted
input places, there exists an elementary path c′1 from a ready transition t′r to t
in S′. The path t′r c

′
1 t c2 belongs to G, which thus contains a ready transition, a

contradiction.
We deduce that G contains at least one ready transition and σ TG

is transient
relative to Y TG

in G0. Moreover, all the transitions of G have the same inputs
in G as in S′. Thus, if t belongs to G and is ready then its input place was cho-
sen to be non-enabled, which is the case in G. The other ready transitions of S′

are not enabled either, thus no ready transition of G is enabled and G is blocking.

Finally, G is a strongly connected blocking Choice-Free P-subsystem of S
that contains strictly fewer join-transitions than S. Applying the induction hy-
pothesis on G, a non-empty strongly connected and blocking FA P-subsystem
F = ((P∗, T∗,W∗), (M PG

) P∗
, (σ TG

) T∗
, (Y TG

) T∗
) exists in G, thus exists in S

with (M PG
) P∗

= M P∗ , (σ TG
) T∗

= σ T∗ and (Y TG
) T∗

= Y T∗ . ut

We are now able to prove the characterization of reversibility.

Theorem 3. Consider a strongly connected and well-behaved Choice-Free sys-
tem S = ((P, T,W ),M0). S is reversible if and only if each of its strongly con-
nected FA P-subsystems S∗ = ((P∗, T∗,W∗),M0 P∗) is reversible.

Proof. The necessity comes from Theorem 1. We prove the sufficiency next.
If S is empty or contains a unique place or transition, then the claim is true.

Hence we suppose that S has a place and a transition. Suppose that S is not
reversible, then by Theorem 2 a sequence σ is feasible in S such that M0

σ−→M ,
leading to the blocking system Sb = ((P, T,W ),M, σ, Y ), where Y is a T-
semiflow of S. Besides, Lemma 3 applies and Sb contains a non-empty strongly
connected blocking FA P-subsystem Sb∗ = ((P∗, T∗,W∗),M P∗ , σ T∗ , Y T∗), ob-
tained by firing σ T∗ in S∗ = ((P∗, T∗,W∗),M0 P∗). By Propositions 3 and 4, S∗
is well-behaved. Applying Theorem 2, S∗ is not reversible. ut

3.5 A Polynomial Live and Home Marking for Choice-Free Systems

We provide the first polynomial live and reversible initial marking for strongly
connected well-formed Choice-Free systems, extending a polynomial live mark-
ing of [18] that was improved in [19]. To achieve this construction, we use the
following polynomial markings for FA and Choice-Free systems.
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The set of markings MFA for FA systems. Each place p of an FA system
defines a marking Mp of MFA satisfying Mp(p) = maxp and for all other places
p′, Mp(p

′) = maxp′ − gcdp′ .

The marking MCF for Choice-Free systems. Consider a Choice-Free sys-
tem having at least one join-transition. For all input places p of join-transitions,
MCF (p) = maxp and for all other places p′, MCF (p′) = maxp′ − gcdp′ .

Their main behavioral properties are now recalled.

Theorem 4 ([19]). Consider a strongly connected and well-formed Choice-Free
net N . If N is not an FA, then (N,MCF ) is well-behaved. If N is an FA and
M∗ belongs to MFA, then (N,M∗) is well-behaved and reversible. Moreover, in
both cases, any larger initial marking also possesses these properties.

We extend this theorem, showing the reversibility of the polynomial marking
MCF in well-behaved Choice-Free systems.

Theorem 5. Consider a strongly connected and well-formed Choice-Free net N
that is not an FA. The system S = (N,MCF ) is well-behaved and reversible.

Proof. Every non-empty strongly connected FA P-subsystem S∗ = (N∗,M∗) of
S contains at least one input of a join-transition, otherwise strong connectedness
would imply the existence of a place p in S∗ having an input that does not belong
to S∗, contradicting the fact that S∗ is a P-subsystem. Since M∗ is the restriction
of MCF to the places of N∗, we deduce that a place p in S∗ contains maxp tokens,
while all other places p′ of S∗ are assigned at least maxp′ − gcdp′ tokens. Thus,
M∗ is greater than or equal to a marking of MFA and by Theorem 4, S∗ is
live and reversible. Applying the characterization of Theorem 3, the Choice-Free
system is live and reversible. ut

3.6 Comparison With the Special Case of Weighted T-systems

T-systems form a proper subclass of Choice-Free systems. When strongly con-
nected and well-behaved, they are covered by well-behaved circuits [5]. A char-
acterization of reversibility for these systems is recalled next.

Theorem 6 ([5]). If a weighted strongly connected T-system is well-behaved,
then it is reversible.

Thus, under the well-behavedness hypothesis, the reversibility of a strongly
connected T-system is equivalent to that of all its strongly connected circuit
P-subsystems, constituting a particular case of Theorem 3.

In the general case of Choice-Free systems, well-behavedness of the whole
system ensures that of all its FA P-subsystems, which may however not be
reversible. This contrast is illustrated in Figure 5.
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Fig. 5. On the left, the well-behaved Choice-Free system is not reversible and contains
an FA P-subsystem that is well-behaved but not reversible (bottom left). On the right,
the well-formed T-system is well-behaved and reversible, as well as all its circuit P-
subsystems.

We presented two new necessary and sufficient conditions of reversibility for
well-behaved strongly connected Choice-Free systems. For this class, the decom-
position into FA P-subsystems induces polynomial markings that are reversible.
However, these markings impose a distribution of the initial tokens over the
entire system. In particular, no place is initially empty, which may cause dif-
ficulties in designing specific systems. In the next section, we develop another
polynomial time sufficient condition of liveness and reversibility that provides
more flexibility on the initial distribution of tokens.

4 The Place Splitting Transformation

In this section, we propose a polynomial time transformation of a strongly con-
nected and well-formed Choice-Free system into a strongly connected and well-
formed T-system with the same set of T-semiflows. We show that the liveness
of this T-system is sufficient to ensure both liveness and reversibility of the ini-
tial Choice-Free system. We then derive an original polynomial time sufficient
condition of liveness and reversibility for well-formed Choice-Free systems.

4.1 Definition of the Transformation

Let S = ((P, T,W ),M0) be a strongly connected well-formed Choice-Free sys-
tem. By Proposition 2, S has a unique minimal T-semiflow Y whose support
is T . We denote by U the least common multiple of the components of Y . The
system S′ = ((P ′, T,W ′),M ′0) has the same set of transitions and is obtained
from S as follows.
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Splitting of particular places. Every place p having at least two input tran-
sitions t1 . . . tk and an output t is replaced by k places p1 . . . pk in P ′ such that,
for every i ∈ 1 . . . k, pi is an output of ti and an input of t.

New weights. For every place p split into k places p1 . . . pk, for every i ∈ 1 . . . k,
all the weights surrounding the place pi are determined as follows:

W ′(ti, pi) = U ·W (ti, p)

W ′(pi, t) = W ′(ti, pi) ·
Y (ti)

Y (t)
.

Since the support of Y is T , the division by Y (t) ≥ 1 is allowed. Moreover,
by definition of U , U

Y (t) ∈ IN, thus W ′(pi, t) ∈ IN. All other weights are kept

identical.

New marking. The initial marking M ′0 is computed from the marking M0

according to:

M ′0(pi) =
⌊M0(p) · U ·W (ti, p) · Y (ti)

gcdpi ·W (p, t) · Y (t)

⌋
· gcdpi .

This transformation is illustrated in Figure 6.
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Fig. 6. The Choice-Free system on the left has the minimal T-semiflow (6, 3, 2), thus
U = 6. Applying the transformation, W ′(t2, p

′
1) = 2 · 6, W ′(t3, p

′′
1 ) = 3 · 6, W ′(p′1, t1) =

3 · 12/6 and W ′(p′′1 , t1) = 2 · 18/6. The marking of p2 and p3 does not change. Since
gcdp′1 = 6, W (t2, p1) = 2, gcdp′′1 = 6 and W (t3, p1) = 3, we get M ′

0(p′1) = M ′
0(p′′1 ) = 6.

We obtain the T-system on the right with the same minimal T-semiflow.

4.2 Properties of the Transformation

The transformation clearly preserves strong connectedness. As shown below, it
also preserves the set of T-semiflows and well-formedness.
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Theorem 7 (T-semiflow preservation). Consider the well-formed strongly
connected Choice-Free system S and the transformed T-system S′. Both systems
have the same set of T-semiflows and S′ is well-formed.

Proof. S and S′ have the same set of transitions T . The system S, being well-
formed, has a unique minimal T-semiflow Y , whose support is T (Proposition
2). For every transition ti, Y (t) ·W ′(pi, t) = Y (ti) ·W ′(ti, pi), thus Y is a T-
semiflow of S′. We deduce that S′ is consistent and strongly connected, thus well-
formed (Proposition 1) and it has a unique minimal T-semiflow with support T
(Proposition 2). Since Y is a T-semiflow of S′ and the gcd of its components is 1,
there is no smaller T-semiflow in S′, thus Y is the unique minimal T-semiflow of
S′. As each T-semiflow is a multiple of Y , the set of T-semiflows is preserved. ut

This property is illustrated by Figure 6, where both systems are well-formed
and have the same set of T-semiflows, including the unique minimal one.

The next property compares the number of initial tokens in both systems.

Theorem 8 (Marking bound property). Consider a well-formed strongly
connected Choice-Free system (N,M0) and its transformation (N ′,M ′0). The fol-
lowing inequality is satisfied for each place p transformed into k places p1 . . . pk:

k∑
i=1

M ′0(pi) ≤M0(p) · U .

Proof. By definition of M ′0, we obtain:

∑
i=1...k

M ′0(pi) =
∑
i=1...k

⌊M0(p) · U ·W (ti, p) · Y (ti)

gcdpi ·W (p, t) · Y (t)

⌋
· gcdpi

≤
∑
i=1...k

M0(p) · U ·W (ti, p) · Y (ti)

W (p, t) · Y (t)

≤ U ·M0(p)

W (p, t) · Y (t)
·
∑
i=1...k

W (ti, p) · Y (ti)

Since
∑k
i=1W (ti, p) · Y (ti) = W (p, t) · Y (t), the claim is proved. ut

On Figure 6, M ′0(p′1) +M ′0(p′′1) = 12 while M0(p) · U = 2 · 6 = 12.

The inclusion of the language of S′ in the language of S is shown below.

Theorem 9 (Language inclusion). Every sequence that is feasible in S′ is
feasible in S.
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Proof. We prove the claim by induction on the size of a sequence σ that is
feasible in S′ = (N ′,M ′0).

If σ is empty, then it is also feasible in S = (N,M0). Hence suppose that
σ = σ1t has size k ≥ 1 and the property is true for σ1, thus σ1 is also feasible in

S. We note M0
σ1−→M1 and M ′0

σ1−→M ′1
t−→M ′.

If no input of t has been modified by the transformation, then for each
of its input places p, the weights surrounding p have not been modified and
the corresponding transitions have been fired the same number of times, thus
M ′1(p) = M1(p) and t is enabled by M1 in S. Otherwise, the same argument
applies to any non-modified input place of t, and for every input place p of t
that has been transformed into places p1 . . . pk, we show that if the places pi,
i = 1 . . . k, are enabled by M ′1 in S′ then p is enabled by M1 in S. It is equivalent

to show that M ′(pi) ≥ 0, ∀i ∈ {p1, . . . , pk}, implies M(p) ≥ 0 where M1
t−→M .

For every such place pi, i ∈ {1, . . . , k},

M ′0(pi) +W ′(ti, pi) · ~σ(ti)−W ′(pi, t) · ~σ(t) ≥ 0 .

From the definition of W ′, we get

M ′0(pi) + U ·W (ti, p) · ~σ(ti)− U ·W (ti, p) ·
Y (ti)

Y (t)
· ~σ(t) ≥ 0 .

By summing the preceding inequality over places p1 . . . pk, we obtain

∑
i=1...k

M ′0(pi) + U ·
( ∑
i=1...k

W (ti, p) · ~σ(ti)− (
∑
i=1...k

W (ti, p) · Y (ti)) ·
~σ(t)

Y (t)

)
≥ 0

Since
∑
i=1...kW (ti, p) · Y (ti) = W (p, t) · Y (t),∑

i=1...k

M ′0(pi) + U ·
( ∑
i=1...k

W (ti, p) · ~σ(ti)−W (p, t) · ~σ(t)
)
≥ 0

From the marking bound property (Theorem 8), it follows that

U ·
(
M0(p) +

∑
i=1...k

W (ti, p) · ~σ(ti)−W (p, t) · ~σ(t)
)
≥ 0

thus U ·
(
M1(p)−W (p, t)

)
≥ 0 and σ is feasible in S. ut

4.3 A Sufficient Condition of Liveness and Reversibility

We show that the transformation induces a sufficient condition of liveness and
reversibility for strongly connected well-formed Choice-Free systems. For that
purpose, we need the following characterization of liveness, given in [4].
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Proposition 7 ([4]). Consider a Choice-Free system S = (N,M0), its set of
transitions T and the incidence matrix C of N . S is live if and only if there exist
a reachable marking M ∈ [M0〉 and a sequence σ that is feasible in (N,M) such

that ~σ ≥ 1l|T | and C · ~σ ≥ 0.

We are now able to prove the sufficient condition of liveness and reversibility.

Theorem 10. Consider a strongly connected and well-formed Choice-Free sys-
tem S. Denote by S′ the T-system obtained by applying the transformation to S.
If S′ is live, then S is live and reversible.

Proof. Both systems have the same unique minimal T-semiflow Y and S′ is well-
formed (T-semiflow preservation, Theorem 7). If S′ is live, then it is reversible
(Theorem 6) and a sequence σY , with Parikh vector equal to the minimal T-
semiflow Y of both systems, is feasible in S′ (Proposition 6). By the language
inclusion (Theorem 9), σY in also feasible in S, which is consequently live (take
M = M0 and σ = σY in Proposition 7) and reversible (Proposition 6). ut

The Sufficient Condition is Not Necessary. The liveness of the T-system
is not necessary for the liveness and reversibility of the Choice-Free system, as
highlighted by the counter-example on the left in Figure 7.

Comparison with the Polynomial Live and Reversible Markings. The
example on the left in Figure 7 shows that the live and reversible markings of
MFA for FA systems are not always detected by the sufficient condition. The
same holds for Choice-Free systems that are marked with MCF , as pictured on
the left when considering the dotted place p4. Moreover, there exist markings
that are live and reversible without being greater than or equal to some marking
of MFA, while detected by the sufficient condition, as pictured on the right in
Figure 7. This is also the case for the marking MCF , when the dotted place p4
is added. Thus, the set of markings detected by one method neither is included
in the other set nor includes it.

4.4 A Second Polynomial Time Sufficient Condition of Reversibility

The complexity of checking the liveness of a T-system is not known. However,
a non trivial sufficient condition of liveness has been developed in [20] for well-
formed T-systems, leading to a polynomial time algorithm whose complexity is
O(max{|P |·|T |, |P |·log(minp∈P maxp)}). By Theorem 10, this algorithm applies
to the T-system S′ issued from a well-formed Choice-Free system S to obtain a
polynomial time sufficient condition of liveness and reversibility for S.

5 Conclusion

For the class of strongly connected, weighted and well-behaved Choice-Free sys-
tems, we provided a new characterization of reversibility in terms of the re-
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Fig. 7. On the left, the well-formed FA system (resp. Choice-Free, with the dotted part),
marked with MFA (resp. MCF ) hence live and reversible, is transformed into a non-live
T-system. On the right, the initial marking of the FA (resp. Choice-Free) system is not
greater than or equal to any in MFA (resp. MCF ), since maxp3 − gcdp3 = 3 − 1 = 2.
However, the transformation leads to a well-behaved T-system, satisfying the sufficient
condition, and the FA (resp. Choice-Free) system is live and reversible.

versibility of particular FA P-subsystems, generalizing a known liveness condi-
tion. This decomposition leads to the first polynomial time construction of live
and reversible initial markings with a polynomial number of tokens, whereas
prior methods were exponential. We then presented another sufficient condition
of liveness and reversibility based on a polynomial time transformation into a
weighted T-system. Comparing these two sufficient conditions, the set of live
and reversible markings detected by one is not included in the other. Moreover,
using a known polynomial time sufficient condition of liveness for T-systems,
we obtained a polynomial time sufficient condition of liveness and reversibility
for well-formed Choice-Free systems. Perspectives encompass extensions of these
results to other weighted classes as well as applications to model-checking and
to the design of embedded systems.
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