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Influence of the macro-porosity and the meso-structure on the dynamic
properties of concrete

F. Gatuingt & S. Pierre
LMT-Cachan, ENS Cachan / CNRS / UniverSud Paris, 61 avenue du Président Wilson, F-94235 Cachan, France

ABSTRACT : Traditionally, the variability of concrete properties (in statics) is represented - in classical ma-
croscopic models - using stochastic tools that can be complex and have to be identify with a large number of
experimental tests. However, this phenomenon is usually linked to a “deterministic” characteristic of the ma-
terial : the multiple defaults that can be found in the cement paste matrix. This works intends to explore the
influence of the heterogeneous meso-structure coupled with an explicit representation of the macro-porosity on
the dynamic properties of concrete like material. For this purpose we use FE simulations with a cohesive ap-
proach and an explicit representation of the meso-structure, including macro-pores in the cement paste. In this
kind of material, heterogeneities (in our case the biggest aggregates) have sizes of the order of tens of millime-
ters with defaults (pores) in the matrix we can imagine that they will influence fracture properties. To obtain a
realistic description of the meso-structure we used a distribution of the aggregate according to the Fuller distri-
bution (Fuller & Thompson 1907) and the distribution of the macro-porosity is computed by analyzing images

of real concrete specimens obtained by X-ray microtomography.

1 INTRODUCTION

The aim of this study is to analyze the dynamic be-
havior of concrete with FE simulations using a co-
hesive approach and an explicit representation of the
meso-structure including macro-pores in the cement
paste. The distribution of the macro-porosity is com-
puted by analyzing images of real concrete speci-
mens obtained by X-ray microtomography. With this
description we intend to explore the influence of the
heterogeneous meso-structure coupled with an expli-
cit representation of the macro-porosity on the dyna-
mic properties of concrete like material. For this pur-
poses 2D geometrical models of concrete consisting
of aggregates, interfacial transition zones and a ma-
trix (with holes) are generated. For the simulations,
we use a finite element framework with cohesive ele-
ments to explicitly represent the crack nucleation and
growth. The debonding process in the cohesive ele-
ments is controlled by a traction separation law based
on the popular linear extrinsic irreversible law propo-
sed by (Camacho & Ortiz 1996).

We validate our model by simulating direct dynamic
tension tests of concrete specimens. The role of the

meso-structure and the influence of the loading rate
are then analyzed. We especially focus on the evolu-
tion of the stress peak and the dissipated energy. We
can observe that with a traction separation law inde-
pendent of the strain rate we are not able to reproduce
the macroscopic rate effect experimentally observed
while the global dissipated energy is correctly predic-
ted. We will also show the respective influences of
the meso-structure and the loading rate on the varia-
bility of the peak stress in tension. We finally attempt
to give some results on the scale effects in dynamics
with various sizes of our specimens.

2 MESO-STRUCTURE GENERATION
2.1 Meso-structure description

The meso-scale allows representing the biggest he-
terogeneities and provides a way to better understand
the internal failure mechanisms in the materials. For
these reasons, the choice of the phases represented in
the meso-structure is assumed to be important to pre-
serve the physical meaning of simulations such as the
ones presented hereafter. The choice made here is to
represent only the millimetric porosity and the aggre-



gates larger than these pores. The inclusions, both ag-
gregates and pores, are discretized in classes of identi-
cal radius, based on a distribution function (the Fuller
curve for the aggregates), as in (Cusatis 2011) :
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Where d; (i=1,...,N) are the diameters of the inclu-
sions classes, d,,., = dy is the largest inclusions class
diameter and n = 0,5
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FIGURE 1: Discretization of the aggregates sizes dis-
tribution

As shown in Figure 1, inclusions smaller than d;
will not be represented (Cusatis et al. 2006).
This discretization is computed as follow :
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Where : W, is the ratio of the d; diameter class in-
clusions volume over the total inclusions volume and
F, = F(d;) is the fraction of the d; diameter class.

It is clear that knowing the total granular fraction
and the W, for each of the represented class is suffi-
cient to define the classes.

2.2 Pores distribution

The two types of inclusions are discretized sepa-
rately for the sake of simplicity. This choice implied
the strong hypothesis that a cumulative distribution

function similar to the Fuller curve for the aggre-
gates could be obtained for the macro-porosity. It is
classical to use a Mercury Intrusion Porosimetry test
to obtain the pores size, volume, density and other
porosity-related characteristics of a material. But in
our case, the assumption of a millimetric porosity im-
plies that it is not possible to obtain these pore dis-
tribution through this test as the pores are too wide
(and not connected anyway). From our knowledge,
the data we are interested in are not available for clas-
sical concrete. What can be found is related to per-
vious concrete in cold weather climates and to the
frost resistance of concrete. In these concretes macro-
pores result from entrained air. This parameter can be
controlled in the process of concrete production pro-
vided that concrete will be subjected to freeze-thaw
cycles (Cordon 1966). Unfortunately in these studies,
only the total porosity of concrete was determined by
concrete density volume for instance. This fact led us
approximate a macro-pore distribution curve compu-
ted through the post-treatment of X-ray tomography
images of real concrete specimens (see Figure 2) .
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FIGURE 2: Original tomography image

FIGURE 3: Modified tomography image obtained
from Figure 2

The raw images from the tomography (Figure 2)
are filtered using some native Matlab tools to bina-



rize it (Figure 3). To the resulting images is then ap-
plied a fire-propagation-like algorithm to identify the
pores. The output of this identification is the number
of voxels constituting each pores. We finally use the
strong assumption that all the macro-pores are sphe-
rical that allows us to compute an equivalent radius
for each pore. From this last operation, the expected
cumulative density function can be obtained (see Fi-
gure 4) :
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FIGURE 4: Porous cumulative density function

Based on these results only two classes of pores

are necessary to represent the 3,42% porosity (see
Table 1).

TABLE 1: Pores distribution obtained
Radius [mm)] 07 0.5

Surface fraction [%] 0.85 0.85

For the aggregates, the represented classes are in
Table 2.

TABLE 2: Aggregates distribution
Radius [mm)] 7 6.25 5 4
Surface fraction [%] 2.38 3.98 16.71 14.32

2.3 Meso-structure generation

In order to distribute the inclusions over the surface
of the specimen, the algorithm introduced by (Bazant
et al. 1990) was used. Using this algorithm, the pla-
cing of the inclusions obeys a simple uniform random
draw for the spatial coordinates until the fraction of
each inclusions class is achieved. The position is che-
cked for interferences with inclusions already in place

and another position is drawn if necessary until a va-
lid one is found. In order to fit the larger inclusions
easily and optimize the accuracy, the classes are com-
pleted from the largest to the smallest diameter.
Despite its simplicity, this algorithm guarantees the
isotropic distribution of each inclusions class and in
our case it is accurate enough. Figure 5 shows the re-
lative error (volume fraction generated/volume frac-
tion expected) for different sizes of the specimen ge-
nerated normalized with the diameter of the biggest
aggregate. We can see on this Figure that when the
specimen is larger than five time this diameter, the
error of the algorithm is lower than 5%. The discre-
pancy plotted corresponds to different mesh genera-
tion with the same parameters.

In order to study the influence of the macro-porosity
on the dynamic properties of concrete, the same
meso-structure is generated with and without pores
in order to have the same aggregates arrangement in
both cases.
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FIGURE 5: Relative error on the granular fraction ge-
nerated

We can notice that we have to use this algorithm
with precaution for later studies using denser inclu-
sions structures. Likewise, for large structures this
choice of algorithm might be very expensive in term
of calculation time.

3 NUMERICAL SIMULATION
3.1 FEE. mesh generation

For the numerical simulations presented in the next
section, we have to generate conforming FE mesh
with 6-nodes triangular elements in 2D. The finite
element code used for this study is based on a New-
mark explicit time integration scheme. This scheme
is conditionally stable so that the time step has to be
smaller than a critical value fonction of the element



FIGURE 6: Example of a mesh of a meso-structure
with pores

size (Courant-Friedrichs—Lewy condition). That is
why it is important to be able to control the size of
the smallest element in the FE mesh. In order to gene-
rate this mesh, we use the GMSH software (Geuzaine
& Remacle 2009). The algorithm creating the geo-
metry of the meso-structure outputs GMSH-readable
files containing all the settings for the meshing. The
algorithm used is the common Delaunay two dimen-
sional meshing algorithm and the size of the elements
is chosen to be between 3 to 4 times smaller than the
smallest inclusion diameter. A finer meshing would
not increase significantly the accuracy of the results
as shown by (Gatuingt et al. 2013). It should be noted
that the mesh fits the interfaces so that the elements
each belong to only one material. This is also a re-
quirement for the cohesive model used here. Figure 6
shows a zoom on a part of a mesh where an aggregate
and two pores are shown.

3.2 Cohesive approach

As it has been mentioned before, the numerical fra-
mework used in this study is a Finite Element Me-
thod using an extrinsic cohesive approach. The co-
hesive element method allows us to model dynamic
crack propagation and damage in a brittle material
like concrete. The fracture process is described by the
cohesive approach (introduced by Dugdale (Dugdale
1960) and Barenblat (Barenblatt 1962) in the 1960s)
as a separation process occurring at the crack tip in
a small region of material called cohesive zone. This
can be introduced into a standard finite element envi-
ronment using interface elements with null thickness
and with a fracture-based constitutive law. We assume
that the bulk material outside the cohesive zone re-

mains elastic. In our case the crack path is not known
a priori and all lines in the mesh are considered as a
potential crack path. During the simulation, the stress
at the interface between two adjacent continuum ele-
ments is computed and compared to the fracture cri-
terion at the end of every time step. The interfacial
stress, o, is calculated averaging stresses of the adja-
cent Gauss points of the two continuum elements. If
the inter-element stress exceeds the critical stress va-
lue, the nodes located at the inter-element boundary
are doubled, the two elements are topologically dis-
connected and a cohesive element is inserted (see Fi-
gure 7). After the nodal disconnection, the interfacial
stress starts being controlled by the traction separa-
tion law implemented in the cohesive element (Figure
8).

FIGURE 7: Schematic of the nodal disconnection bet-
ween two continuum elements in which the interfacial
stress has exceeded the critical stress

The coupling of the above mentioned fracture cri-
terion together with an initially rigid cohesive law al-
lows capturing the initiation of new cracks without
an a priori definition of the possible cracks. Never-
theless, the cracks are constrained to propagate follo-
wing the inter-element boundaries and the fineness of
the mesh can affect it. The law we use is the linear
irreversible softening law proposed by (Camacho &
Ortiz 1996). The traction separation law only depends
on the effective scalar displacement 9 :

0= /AZ+ F2A? (3)

where & — (A, Ay) is the relative displacement
vector and the parameter (3 accounts for the coupling
between normal and tangential displacements. The
value of /3 has to be estimated (e.g. by correlating ex-
perimental results with numerical simulations (Ruiz,
Pandolfi, & Ortiz 2001)) but it has been shown by
(Snozzi, Caballero, & Molinari 2011) that the peak
strength is only slightly affected by ( for a tensile loa-
ding. Its value has been kept to one in this study. The
cohesive tractions law is then :
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where ¢ represents an effective cohesive traction. This
traction in case of crack opening is given by :

5 .
t:fct(l—d—) for =06, and >0 (5)

Where f,.; represents the local material strength
and 0. represents the effective relative displacement
beyond which complete decohesion occurs. Whereas
for crack closure or reopening (§ smaller than d,,,,)
the functional form is assumed to have the form :

t = —tmee fOr O <O0max (6)

5max

where t,,,. 1S the value of the effective traction
when ¢ is equal to d,,,,, in Which is stored the maxi-
mal effective opening displacement attained up to the
moment. Moreover d,,,,, also accounts for the irrever-
sibility of the law allowing successive loading, unloa-
ding and reloading. The evolution of the linear de-
creasing law is graphically shown in Figure 8. Note
that the definition of f,.; and J. implicitly establishes
the existence of an effective fracture energy G, which
corresponds to the area under the curve of Figure 8 :

1
Gc = §fct50 (7)

Partially damaged cohesive elements have dissipa-
ted an energy W < G.. As the present work is focused
on tensile uniaxial loading, the fracture energy of the
different phases of our concrete is identified to the ex-
perimental one for Mode I, i.e. G, = Gg .
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FIGURE 8: Representation of the linear cohesive law.

3.3 Dynamic direct tension test

To analyze the dynamic tensile response of a
concrete specimen (2D plane strain), the specimen is
loaded under displacement control with an imposed
strain rate €. All the nodes of the finite element mesh
which are located on the upper (respectively lower)
boundary moved at a constant velocity V}, :

h

Vo =¢3 8)
where h is the height of the studied specimen. To
avoid stress wave propagation and an early fracture
near the boundaries, all the nodes of the finite element
mesh are prescribed an initial velocity in accordance
to their vertical position y (Miller et al. 1999) as illus-

trated in Figure 9 :
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FIGURE 9: Velocity initial condition

3.4 Results obtained

In our simulations we decided to simulate four
strain rates € = 0.1, 1., 10. and 100. /s. Due to our
explicite time integration scheme we are not able to
compute a real quasi-static test and we assume that ¢
= 0.1 is close enough to this test.

Figure 10 shows the response of dynamic tension
tests performed on a 15 x 15 em? specimen. We can
see that with our approach we are able to obtain a rate
effect in the result of this test without any rate effect
in the constitutive laws as already shown in (Gatuingt
et al. 2013). This rate effect is only due to the tran-
sition of a single crack for law strain rate to diffuse
cracking for higher one as shown by comparing Fi-
gure 11 and Figure 12.
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FIGURE 10: Stress-Strain responses in tension for dif-
ferent strain rates

FIGURE 11: Cracks path for € = 0.1/s for the sample
without and with pores

FIGURE 12: Cracks path for € = 10/s for the sample
without and with pores

We can also notice in Figure 11 and Figure 12 that
the macro-pores clearly influence the cracks path both
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FIGURE 13: Rate effect on the tensile strength obtai-
ned without and with pores in the sample tested

for the case of a single crack (¢ = 0.1/s) and for the
case of diffuse cracks (¢ = 10/s). This effect modi-
fies the tensile strength obtained in the same sample
depending on the presence of pores as expected. But
the global influence of the porosity is not yet totally
clear. Figure 13 shows the influence of the porosity on
the rate effect for a 15 x 15 cm? sample. We can see
on this Figure that the tensile strength is lower with
pores but the evolution of the curve seems to be the
same without and with pores. But we have to conclude
with precaution due to the discrepancy (several meso-
structure generations) of the results at € = 100/s in the
same range of the effect of the porosity.

4 CONCLUSION

In this work we proposed a meso-scopic model for
the analysis of dynamic tensile failure of concrete.
This model is based on a 2D finite element descrip-
tion with cohesive capability of a mix of aggregates in
a mortar paste matrix without and with macro-pores.
The influence of the heterogeneous meso-structure
and of the porosity of concrete and the loading rate
on the tensile response have been studied. With our
specimen size we observed a small impact of the ag-
gregates arrangement on the tensile strength for the
smallest strain rates and a more important one at €
= 100/s. The porosity clearly influenced the tensile
strength but its effects on other aspects of fracture is
no so clear up to now. It will be interesting to inves-
tigate in more details the influence of the porosity to
see if we will be able to obtain a kind of “"Weibull”
response of our specimens.
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